ΛcN interaction from Iattice QCD and Λc-nuclei

Takaya Miyamoto

(Yukawa Institute for Theoretical Physics, Kyoto University) for HAL QCD Collaboration

Hadron to Atomic Nuclei			
HAL	S. Aoki, K. Sasaki, D. Kawai	(YTTP Kyoto Univ.)	
	T. Doi, T. Hatsuda, T. Iritani	(RIKEN Nishina)	
	T. Inoue	(Nihon Univ.)	
	N. Ishii, Y. Ikeda, K. Murano	(RCNP Osaka Univ.)	
	H. Nemura	(Univ. Tsukuba)	
	S. Gongyo	(Univ. of Tours)	
from Lattice QCD	F. Etminan	(Univ. of Birjand)	

Introduction

How does HQ spin symmetry affect charm hadron interactions ?

We would like to investigate the difference of u,d,s quark physics and c quark physics
Because of the different symmetry, it is difficult to construct the EFT includes two sectors

Lattice QCD: Ab-initio calculation of QCD We extract interactions by using HAL QCD method

Dbar-N system : Y. Ikeda (previous talk)
 Ac-N system : T. M

Outline

(1) Motivation

(2) HAL QCD method

(3) Simulation setup

(4) Numerical results of ΛcN and ΛN interactions

(5) Folding potential analysis for Λ c-nuclei

(6) Summary and conclusion

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010). S. Aoki *et al*, [HAL QCD Collaboration], PTEP., 01A105 (2012).

- Potentials faithful to phase shift by construction
- All 2PI contributions are included in potentials
- \cdot Potentials are energy-independent until a new channel opens

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010). S. Aoki *et al*, [HAL QCD Collaboration], PTEP., 01A105 (2012).

To extract "energy-independent" potentials, N we employ time-dependent HAL QCD method

N. Ishii et al [HAL QCD Coll.], PLB712 (2012) 437.

$$R_{\Lambda_c N}(\vec{r},t) \equiv rac{G_{\Lambda_c N}(\vec{r},t)}{\mathrm{e}^{-m_{\Lambda_c} t} \mathrm{e}^{-m_N t}}$$

Normalized 4pt-correlation function (**R-correlator**)

$$(E_{0} - H_{0}) \psi_{0}(\vec{r}) = \int d^{3}r' U(\vec{r}, \vec{r}\ ') \psi_{0}(\vec{r}\ ')$$

$$(E_{1} - H_{0}) \psi_{1}(\vec{r}) = \int d^{3}r' U(\vec{r}, \vec{r}\ ') \psi_{1}(\vec{r}\ ')$$

$$(E_{2} - H_{0}) \psi_{2}(\vec{r}) = \int d^{3}r' U(\vec{r}, \vec{r}\ ') \psi_{2}(\vec{r}\ ')$$

All equations are combined into one t-dep. eq.

$$\left(-\frac{\partial}{\partial t} + \left[\frac{1+\delta^2}{8\mu}\right]\frac{\partial^2}{\partial t^2} - H_0\right)R_{\Lambda_c N}(\vec{r},t) = \int d^3r' U_{\Lambda_c N}(\vec{r},\vec{r'})R_{\Lambda_c N}(\vec{r'},t) \quad \mu \equiv \frac{m_{\Lambda_c}m_N}{m_{\Lambda_c} + m_N} \quad \delta \equiv \frac{m_{\Lambda_c} - m_N}{m_{\Lambda_c} + m_N}$$

Within the approximation up to O(k²)

Non-local potentials —> local potentials

Derivative (velocity) expansion

In the low energy state, LO term of the potentials is significant.

$$U(\vec{r}, \vec{r}') = V(\vec{r}, \vec{\nabla}) \ \delta^3 \left(\vec{r} - \vec{r}'\right) \quad \text{LO term}$$

 $V(\vec{r}, \vec{\nabla}) = V_0(\vec{r}) + V_\sigma(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12} + \mathcal{O}(\vec{\nabla})$

Outline

(1) Motivation

(2) HAL QCD method

(3) Simulation setup

(4) Numerical results of ΛcN and ΛN interactions

(5) Folding potential analysis for Λ c-nuclei

(6) Summary and conclusion

Lattice QCD setup

Nf=2+1 full QCD configurations generated by PACS-CS Coll

2.9 fm

0.0907 fm

PACS-CS Collaboration:

S. Aoki, et al., Phys. Rev. D79 (2009) 034503

- Iwasaki gauge action
- O(a) improved Wilson-clover quark action
- a ~ 0.09 fm, L ~ 3 fm ($32^3 \times 64$)

m_π ~ 700, 570, 410 MeV

Λc-N potential = repulsive core + attractive pocket

As m_q decreasing,

- repulsive core becomes larger
- \cdot attractive pocket shifts outward

Comparison of ΛN potential and ΛcN potential ($m_{\pi} = 570 \text{ MeV}$)

Comparison of ΛN potential and ΛcN potential ($m_{\pi} = 570 \text{ MeV}$)

Effective central potential of ΛcN $V_{\Lambda_c N}^{eff}(\vec{r}) = V_0(\vec{r}) + V_{\sigma}(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r})S_{12} + \cdots$

These three leading terms (in velocity expansion) can be obtained from NBS wave functions in $J^P=0^+$ and 1^+

Each potential can be applied to nuclear calculations

Comparison of ΛN potential and ΛcN potential (m π = 570 MeV)

 $V_{\Lambda_{(c)}N}^{e\!f\!f}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r})(\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r})S_{12} + \cdots$

Lambda N

Lambda c N

Comparison of ΛN potential and ΛcN potential (m π = 570 MeV)

 $V_{\Lambda_{(c)}N}^{eff}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r})(\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r})S_{12} + \cdots$

Lambda N

Comparison of ΛN potential and ΛcN potential (m π = 570 MeV)

 $V^{e\!f\!f}_{\Lambda_{\!(\!c\!)}\!N}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r})(\vec{\sigma}_1\cdot\vec{\sigma}_2) + V_T(\vec{r})S_{12} + \cdots$

Lambda N

Since the s-wave ΛcN interactions are attraction, the Λc could be bound into heavy nuclei

Λc-nuclei

(Single-) folding potential

$$V_F(oldsymbol{r}) = \int d^3 r'
ho_A(oldsymbol{r}') V_{\Lambda_c N}(oldsymbol{r} - oldsymbol{r}')$$

density distributions for nuclear matter

$$\rho_A(r) = \rho_0 \left[1 + \exp\left(\frac{r - c}{a}\right) \right]^{-1}$$

two-parameter Fermi (FM) form

$$\int d^3r \,\,
ho_A(r) = A$$
)

Parameters for several stable nuclei

Since the spin dep. force is weak, we use only the spin indep. force for the folding potentials.

Nucleus	¹² C	²⁸ Si	⁴⁰ Ca	⁵⁸ Ni	⁹⁰ Zr	²⁰⁸ Pb	
$\rho_0 \text{ (fm}^{-3}\text{)}$ c (fm) $\alpha \text{ (fm)}$	0.207 2.1545 0.425	0.175 3.15 0.475	0.169 3.60 0.523	0.172 4.094 0.54	0.165 4.90 0.515	0.150 6.80 0.515	
Ref: M. El-Azab Farid a, M.A. Hassanain, Nuclear Physics A 678 (2000) 39–75							

In order to calculate binding energies, we solve the Schrodinger equation with physical mass of Λc and nucleus. 22

Conclusion

 \cdot We investigate $\Lambda\,cN$ interactions by the HAL QCD method

Our results show that ΛcN interactions are **attractive**

The feature of ΛcN potentials is **spin-independent**

The spin-spin force and the tensor force are almost negligible

The analysis of the folding potentials with LQCD potentials shows that <u>Ac could be bound with heavy nuclei</u>.

Prospects:

- We will investigate Λc light nuclei by using few/many-body calculation (GEM, AMD, ...).
- Physical point calculation is the next step

Backup

Short summary

AcN single-channel potential Mpi ~ 410 MeV Mpi ~ 570 MeV Mpi ~ 700 MeV

Structures and Interactions of Heavy Quark Hadrons @ J-PARC, 02 March. 2017

25

Comparison of ΛN potential and ΛcN potential (m π =410MeV)

Lambda N	<u> </u>
Lambda_c N	

 ΛcN potentials (both J^P=0⁺ and J^P=1⁺) are weaker than ΛN potentials

ens1:t=13, ens2:t=12, ens3:t=10

ens1:t=13, ens2:t=12, ens3:t=10

Hadron force from lattice QCD

N. Ishii, S. Aoki, T. Hatsuda, Phys.Rev.Lett. 99, 022001 (2007)

- Octet Baryon Interactions
- Decaplet Baryon Interactions
- Meson Interactions, Meson-Baryon Interactions
- Three-body forces
- Charmed Baryon Interactions <- This work

Structures and Interactions of Heavy Quark Hadrons @ J-PARC, 02 March. 2017

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010). S. Aoki *et al*, [HAL QCD Collaboration], PTEP., 01A105 (2012).

Derivative (velocity) expansion: (Non-local potentials —> Local potentials)

$$U(\vec{r}, \vec{r}') = V(\vec{r}, \vec{\nabla}) \, \delta^3 \, (\vec{r} - \vec{r}')$$
LO term
$$V(\vec{r}, \vec{\nabla}) = V_0(\vec{r}) + V_\sigma(\vec{r}) \, (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12} + \mathcal{O}(\vec{\nabla})$$

$$V_X(\vec{r}) = V_X^0(\vec{r}) + V_X^\tau(\vec{r}) \, (\vec{\tau}_1 \cdot \vec{\tau}_2) \qquad X = 0, \sigma, T, \cdots$$

In the low energy state, LO term of the potential is significant.

$$(E_n - H_0) \psi_{\Lambda_c N}^{(W_n)}(\vec{r}) = V_{\Lambda_c N}(\vec{r}) \psi_{\Lambda_c N}^{(W_n)}(\vec{r})$$
$$V_{\Lambda_c N}(\vec{r}) = \frac{(E_n - H_0) \psi_{\Lambda_c N}^{(W_n)}(\vec{r})}{\psi_{\Lambda_c N}^{(W_n)}(\vec{r})}$$

We can construct local potentials by using derivative expansion.

Structures and Interactions of Heavy Quark Hadrons @ J-PARC, 02 March. 2017

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010). S. Aoki et al, [HAL QCD Collaboration], PTEP., 01A105 (2012).

Derivative (velocity) expansion: (Non-local potentials —> Local potentials)

$$U(\vec{r}, \vec{r}') = V(\vec{r}, \vec{\nabla}) \ \delta^{3} (\vec{r} - \vec{r}')$$
LO term
$$V(\vec{r}, \vec{\nabla}) = V_{0}(\vec{r}) + V_{\sigma}(\vec{r}) (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) + V_{T}(\vec{r}) S_{12} + \mathcal{O}(\vec{\nabla})$$

$$V_{X}(\vec{r}) = V_{X}^{0}(\vec{r}) + V_{X}^{\tau}(\vec{r} + \vec{\tau}_{1} \cdot \vec{\tau}_{2}) \qquad X = 0, \sigma, T, \cdots$$
The case of AcN potentials, the LO term of derivative expansion is following form.
$$(\vec{\tau}_{1} \cdot \vec{\sigma}_{2}) \psi_{\Lambda_{c}N}^{(J^{P}=0^{+})}(\vec{r}) = -3 \psi_{\Lambda_{c}N}^{(J^{P}=0^{+})}(\vec{r})$$

$$(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) \psi_{\Lambda_{c}N}^{(J^{P}=1^{+})}(\vec{r}) = +1 \psi_{\Lambda_{c}N}^{(J^{P}=1^{+})}(\vec{r})$$

$$V^{(J^P=0^+)}_{\Lambda_c N}(ec{r},ec{
abla}) = V^0_0(ec{r}) - 3V^0_\sigma(ec{r}) + \mathcal{O}(ec{
abla})$$

$$egin{aligned} &(ec{\sigma}_1\cdotec{\sigma}_2)\,\psi^{(J^P=0^+)}_{\Lambda_c N}(ec{r}) = -3\,\,\psi^{(J^P=0^+)}_{\Lambda_c N}(ec{r}) \ &(ec{\sigma}_1\cdotec{\sigma}_2)\,\psi^{(J^P=1^+)}_{\Lambda_c N}(ec{r}) = +1\,\,\psi^{(J^P=1^+)}_{\Lambda_c N}(ec{r}) \end{aligned}$$

- J^P=1⁺ state,

$$V_{\Lambda_c N}^{(J^P = 1^+)}(\vec{r}, \vec{\nabla}) = V_0^0(\vec{r}) + V_\sigma^0(\vec{r}) + V_T^0(\vec{r})S_{12} + \mathcal{O}(\vec{\nabla})$$

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010). S. Aoki *et al*, [HAL QCD Collaboration], PTEP., 01A105 (2012).

How to extract the NBS wave functions on the lattice

Baryon 4pt-correlation function

$$\begin{array}{lcl} \displaystyle \overline{G_{\Lambda_c N}(\vec{r},t-t_0)} & = & \displaystyle \sum_{\vec{x}} \langle 0 | \Lambda_c(\vec{r}+\vec{x},t) N(\vec{x},t) \overline{\mathcal{J}_{\Lambda_c N}}(t_0) | 0 \rangle \\ \\ \displaystyle = & \displaystyle \sum_n A_n \; \psi_{\Lambda_c N}^{(W_n)}(\vec{r}) \; e^{-W_n(t-t_0)} + \cdots \\ \\ \displaystyle \stackrel{t \to \infty}{\to} \; A_0 \; \psi_{\Lambda_c N}^{(W_0)}(\vec{r}) \; e^{-W_0(t-t_0)} + \mathcal{O}\left(e^{-W_1(t-t_0)}\right) \end{array}$$

Ground state of the NBS wave functions.

 $\mathcal{J}_{\Lambda_c N}(t_0) = \Lambda_c^{\text{smear}}(t_0) N^{\text{smear}}(t_0)$

 $A_n = \langle \Lambda_c N, W_n | \overline{\mathcal{J}_{\Lambda_c N}}(t_0) | 0 \rangle$

For the operator smearing, we employ the wall-source. (Total momentum to be zero.) We choose the following operator. $N = \epsilon_{abc} \begin{bmatrix} u_a^T C \gamma_5 d_b \end{bmatrix} q_c, \qquad q = \begin{pmatrix} u \\ d \end{pmatrix}$ $\Lambda_c = \frac{\epsilon_{abc} \begin{bmatrix} c_a^T C \gamma_5 d_b \end{bmatrix} u_c + \epsilon_{abc} \begin{bmatrix} u_a^T C \gamma_5 c_b \end{bmatrix} d_c - 2\epsilon_{abc} \begin{bmatrix} d_a^T C \gamma_5 u_b \end{bmatrix} c_c}{\sqrt{6}}$

Structures and Interactions of Heavy Quark Hadrons @ J-PARC, 02 March. 2017

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010). S. Aoki *et al*, [HAL QCD Collaboration], PTEP., 01A105 (2012).

$$G_{\Lambda_c N}(\vec{r}, t - t_0) = \sum_{\vec{x}} \langle 0 | \Lambda_c(\vec{r} + \vec{x}, t) N(\vec{x}, t) \overline{\mathcal{J}_{\Lambda_c N}}(t_0) | 0 \rangle$$

Difficulty of ground state saturation
$$\underbrace{\downarrow \to \infty}_{A_0} \psi_{\Lambda_c N}^{(W_0)}(\vec{r}) \ e^{-W_0(t-t_0)} + \mathcal{O}\left(e^{-W_1(t-t_0)}\right)$$

(1) Bad S/N at large t $S/N \sim \exp[-\mathbf{A} \times (\mathbf{m_N} - 3/2\mathbf{m_\pi}) \times t]$

In general, bad S/N occurs at large t-to separation.

(2) Small ΔE at large volume

At large volume, excited state contaminations remain even at a large t due to small ΔE .

$$\Delta E \simeq \frac{1}{m_N} \frac{(2\pi)^2}{L^2}$$

To avoid this problem, we use time-dependent HAL QCD method.

time-dependent HAL QCD method

N. Ishii et al [HAL QCD Coll.], PLB712 (2012) 437.

Normalized 4pt-correlation function (**R-correlator**)

 $R_{\Lambda_c N}(ec{r},t) \equiv rac{G_{\Lambda_c N}(ec{r},t)}{\mathrm{e}^{-m_{\Lambda_c} t}\mathrm{e}^{-m_N t}} \hspace{1.5cm} \Delta W_n \equiv \sqrt{k_n^2 + m_{\Lambda_c}^2} + \sqrt{k_n^2 + m_N^2} - (m_{\Lambda_c} + m_N)$

$$=\sum_n A_n \; \psi^{(W_n)}_{\Lambda_c N}(ec{r}) \; e^{-\Delta W_n t} + \cdots$$

$$(E_{0} - H_{0})\psi_{0}(\vec{r}) = \int d^{3}r'U(\vec{r},\vec{r}\,')\psi_{0}(\vec{r}\,')$$

$$(E_{1} - H_{0})\psi_{1}(\vec{r}) = \int d^{3}r'U(\vec{r},\vec{r}\,')\psi_{1}(\vec{r}\,')$$

$$(E_{2} - H_{0})\psi_{2}(\vec{r}) = \int d^{3}r'U(\vec{r},\vec{r}\,')\psi_{2}(\vec{r}\,')$$

$$E_n = (\Delta W_n) + \frac{1+\delta^2}{8\mu} \left(\Delta W_n\right)^2 + \mathcal{O}\left[\left(\Delta W_n\right)^3\right]$$

$$\mu \equiv rac{m_{\Lambda_c}m_N}{m_{\Lambda_c}+m_N} \qquad \delta \equiv rac{m_{\Lambda_c}-m_N}{m_{\Lambda_c}+m_N}$$

The ground state saturation is not necessary.

We can obtain the signals at small t as long as the contributions of inelastic scatterings are negligible.

Within the approximation up to $(\Delta W)^2$.

$$\left(-rac{\partial}{\partial t}+\left[rac{1+\delta^2}{8\mu}
ight]rac{\partial^2}{\partial t^2}-H_0
ight)R_{\Lambda_cN}(ec{r},t)=\int d^3r' U_{\Lambda_cN}(ec{r},ec{r}')R_{\Lambda_cN}(ec{r}',t)$$

Structures and Interactions of Heavy Quark Hadrons @ J-PARC, 02 March. 2017

Summary of ΛcN interaction

- Although ΛcN effective central potentials are attractive, the strength is weaker than that of ΛN potentials
- The effective central potentials for ΛcN (J^P=0⁺) state and ΛcN (J^P=1⁺) state are almost same
- We found the spin-spin force and tensor force of ΛcN potentials are almost negligible

 $V_{\Lambda_c N}(\vec{r}) = V_0(\vec{r}) + V_{\sigma}(\vec{r})(\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r})S_{12} + \cdots$

- Weak spin-spin force
 - -> Consequence of HQ spin sym.
- Weak tensor force
 - -> Because the coupling became smaller due to spreading of $\Lambda cN-\Sigma cN$ threshold

Our results suggest that ΛcN interactions are spin-independent and Λ c-nuclei spectrum could be simple