14 Feb., 2017 RIBF Seminar @ RIBF hall

High-resolution Exotic Atom x-ray spectroscopy with TES microcalorimeters

Shinji Okada (RIKEN, AMO physics lab.) for the HEATES collaboration

14 Feb., 2017 RIBF Seminar @ RIBF hall

High-resolution Exotic Atom x-ray spectroscopy with TES microcalorimeters

Shinji Okada (RIKEN, AMO physics lab.) for the HEATES collaboration

Collaboration list

~55 researchers

M. Bazzi¹, D.A. Bennett², C. Berucci³, D. Bosnar⁴, A. Butt⁵, C. Curceanu¹, W.B.Doriese², Y. Ezoe⁶, J.W.Fowler², H. Fujioka⁷, C. Guaraldo¹, F.P.Gustafsson⁸, T. Hashimoto⁹, R. Hayakawa⁶, R.S.Hayano¹⁰, J.P.Hays-Wehle², G.C.Hilton², T. Hiraiwa¹¹, Y. Ichinohe⁶, M. Iio¹², M. Iliescu¹, S. Ishimoto¹², Y. Ishisaki⁶, K. Itahashi⁹, M. Iwasaki⁹, S. Kitazawa⁶, Y. Ma⁹, H. Noda¹³, H. Noumi¹¹, G.C.O'Neil², T. Ohashi⁶, H. Ohnishi⁹, S. Okada⁹, H. Outa⁹, K. Piscicchia¹, C.D.Reintsema², Y. Sada¹¹, F. Sakuma⁹, M. Sato⁹, D.R.Schmidt², A. Scordo¹, M. Sekimoto¹², H. Shi¹, D. Sirghi¹, F. Sirghi¹, K. Suzuki³, S. Suzuki⁶, D.S.Swetz², K. Tanida¹⁴, H. Tatsuno⁸, J. Uhlig⁸, J.N.Ullom², S. Yamada⁶, T. Yamazaki¹⁰, J. Zmeskal³

¹ INFN-LNF, ² NIST, ³ SMI, ⁴ Univ. of Zagreb, ⁵ Politecnico di Milano, ⁶ TMU, ⁷ Kyoto Univ., ⁸ Lund Univ., ⁹ RIKEN, ¹⁰ UT, ¹¹ RCNP, ¹² KEK, ¹³ Tohoku U., ¹⁴ JAEA

Nuclear physicists + TES experts + Astro physicists (NIST , LundU) (TMU , TohokuU)

Contents

Introduction

K - nucleus interaction

- → Depends on how much of K-nucleus potential depth
- → However the potential depth is still unknown...

Hot topic in Hadron Physics

Two experimental approaches

Kaonic atom

Strong-interaction shift & width

K-atom data → scattering length

Status of K-atom study

Data :

- K-p : SIDDHARTA (2011)
- K-d : no data
- Z=2(He)~92(U) : exists, but those measurements in 70's - 80's are not so good quality.

Theories :

deep (~180 MeV) or shallow (~40 MeV)?

Global analysis prefer a deep potential ?

Phenomenological density dependent optical potential Batty, Friedman, Gal, Phys. Rep., 287 (1997) 385.

 Chiral potential (~50 MeV) Ramos, Oset, NPA671(00)481
 + Phen. multi nucleon terms.

A. Cieply[´], et al., Phys. Rev. C 84 (2011) 045206. Friedman, Gal, NPA 899 (2013) 60.

Status of K-atom study

K-He atom 2p level shift

a recent theoretical calculation

- J. Yamagata-Sekihara, S. Hirenzaki :
- Strong-intaction Shift & Width calc.
- **E. Hiyama :** (Gauss expansion method)
- Charge-density dist calc. for ⁴He&³He

Choosing the following two typical models :	deep	shallow	
[Pheno.] Mares, Friedman, Gal, NPA770(06)84 [Chiral] Ramos, Oset, NPA671(00)481	Phenomenological V _{opt} (r=0) ~ - (180 + 73i) MeV	Chiral V _{opt} (r=0) ~ - (40 + 55i) MeV	
K-4He	-0.41 eV	-0.09 eV	
K- ³ He	0.23 eV	-0.10 eV	
Isotope shift (K-4He - K-3He)	-0.64 eV 🔶	→ 0.01 eV	

Dominant systematic error (~0.15 eV) due to kaon-mass uncertainty will be cancelled.

Width : 2 ~ 4 eV

Experimental accuracy

Experimental accuracy

Past measurements & precision goal

X-ray detector : TES

Transition-Edge-Sensor microcalorimeter

NIST's TES array system

Adiabatic Demagnetization Refrigerator

50 mK cryostat (model : HPD 102 DENALI) (double-stage salt pills : GGG 1K, FAA 50mK) ADR hold time > 1 day

two-stage pulse tube

(60K, 3K)

33 cm

✓ Compact and portable

 \checkmark Large effective area w/multiplexing tech.

Status of HEATES project

_	2012	Collaborate with astro-physics guys developing TES
	2013	get started the collaboration with NIST
$\left(\right)$	2014	Demonstration study (π- beam) @ PSI
	2015	stage-2 approval by J-PARC PAC
$\left(\right)$	2016	Commissioning run (K- beam) @ J-PARC
	2017 or later	J-PARC E62 physics run

Two performance evaluations

	(1)	(2)
location	PSI (Switzerland)	J-PARC (Japan)
beam line	πM1	K1.8BR
particle	Π-	K-
purity	~ 0.4	~ 0.3
momentum	170 MeV/c	900 MeV/c
intensity (sum of all particles)	1.4 ~ 2.8 x 10 ⁶ cps	8 x 10 ⁵ / spill
hadronic atom x-rays	π ¹² C 4-3 (6.4 keV)	K- ³ He 3-2 (6.2 keV) _{to be} K- ⁴ He 3-2 (6.4 keV) ^{measured}
science X-ray rate	~ 200 / hour	~ 200 / week

D π⁻ beam

π atom expt @ PSI πM1 beamline

Resolution

In-beam performance

High-energy particle beam degrades resolution a bit.
 (Hit rate ~ incident beam intensity)

NOTE : Energy scale is well controlled by in-situ calibration.

A typical thermal crosstalk event

High-energy charged particles deposit energy in Si frame of TES chip
Resulting thermal-crosstalk pulses degrade the energy resolution

Example : beam + Mn x-rays

Example : beam + Mn x-rays

Pulse height vs. distance from hit position

Calibration

X-ray tube for energy calib.

1. need intense x-rays for energy calib. of TES

2. use secondary x-ray (Cr Kα, Co Kα line ...) which is **unavailable with radioactive source**

In-situ energy calibration

useful to estimate the accuracy of energy calibration

J Low Temp Phys 184 (2016) 930-937

Successful demonstration w/ π- atom

Comparison with SDD spectrum

Published

Sept, 2016

PTEP

Prog. Theor. Exp. Phys. **2016**, 091D01 (9 pages) DOI: 10.1093/ptep/ptw130

Letter

First application of superconducting transition-edge sensor microcalorimeters to hadronic atom X-ray spectroscopy

HEATES Collaboration

S. Okada^{†,1,*}, D. A. Bennett², C. Curceanu³, W. B. Doriese², J. W. Fowler², J. D. Gard²,
F. P. Gustafsson⁴, T. Hashimoto¹, R. S. Hayano⁵, S. Hirenzaki⁶, J. P. Hays-Wehle²,
G. C. Hilton², N. Ikeno⁷, M. Iliescu³, S. Ishimoto⁸, K. Itahashi¹, M. Iwasaki¹, T. Koike⁹,
K. Kuwabara¹⁰, Y. Ma¹, J. Marton¹¹, H. Noda^{‡,1}, G. C. O'Neil², H. Outa¹, C. D. Reintsema²,
M. Sato¹, D. R. Schmidt², H. Shi³, K. Suzuki¹¹, T. Suzuki⁵, D. S. Swetz², H. Tatsuno^{§,8,2},
J. Uhlig⁴, J. N. Ullom², E. Widmann¹¹, S. Yamada¹⁰, J. Yamagata-Sekihara¹², and J. Zmeskal¹¹

Fit results

Fe $K_{\alpha 11}$ line (confirmation of energy calib.): —

 $6404.07 \pm 0.10(\text{stat.})^{+0.06}_{-0.04}(\text{syst.}) \text{ eV}$

⇒ good agreement with the reference value : 6464.148(2) eV [G. Holzer et al., PRA56(1997)4554]

Pionic atom lines :

$$\begin{split} E(4f \to 3d) &= 6428.39 \pm 0.13(\text{stat.}) \pm 0.09(\text{syst.}) \text{ eV} \\ E(4d \to 3p) &= 6435.76 \pm 0.30(\text{stat.})^{+0.11}_{-0.07}(\text{syst.}) \text{ eV} \\ I(4d \to 3p)/I(4f \to 3d) &= 0.30 \pm 0.03(\text{stat.}) \pm 0.02(\text{syst.}) \\ \Rightarrow \text{ comparison with EM calc?} \end{split}$$

EM values & strong-int calc.

EM calc. (T. Koike)

	Γ						
State	K.G.	Vacuum polarization		Nuclear	Relativistic	Strong	Total
	energy	$\alpha(Z\alpha)$	$\alpha^2(Z\alpha)$	finite size	recoil effect	interaction	energy
	(eV)	(eV)	(eV)	effect (eV)	(eV)	effect (eV)	(eV)
$\overline{3p}$	-14685.15	-11.56	-0.08	+ 0.01	-0.02	-0.78	-14697.58
3d	-14682.65	-5.39	-0.04	+ 0.0005	-0.02	$< 10^{-4}$	-14688.10
4d	-8259.04	-2.10	-0.02	+0.0003	-0.01	$< 10^{-4}$	-8261.17
4f	-8258.59	-0.72	-0.004	+0.0003	-0.01	$< 10^{-4}$	-8259.32

Itani notentia

Strong int calc. via Seki-Matsutani potential (N. Ikeno, J. Yamagata-Sekihara, S. Hirenzaki)

 \Rightarrow Non-negligible contribution from 3p level

Electron screening effects

calc. by T. Koike

=						=
	Transitions	Electron	screening effect	ct (eV)	Transition	
		Configuration	K-shell	L-shell	energy	
one e-	in K-shell		contribution	contribution	(eV)	
10000		no electron	-	-	6428.78	-
2	$4f \rightarrow 3d$	$1s^1 2s^2 2p^1$	-0.19	-0.02	6428.57	
		$\searrow_{1s^2} 2s^2 \ 2p^1$	-0.31	-0.01	6428.46 <	
	Expe	erimental result	t (this work) :	$6428.39 \pm 0.13 \pm 0.09$		
	$4d \rightarrow 3p$	no electron	-	-	6436.41	aareement
		$1s^1 \ 2s^2 \ 2p^1$	-0.25	-0.02	6436.14	within error
		$1s^2 \ 2s^2 \ 2p^1$	-0.42	-0.01	6435.98 <	_
		Expe	erimental result	t (this work) :	$6435.76 \pm 0.30 \stackrel{+0.11}{_{-0.07}} \leftarrow$	

Conclusion : -

- ✓ favor two 1s electrons in the K-shell
- ✓ energy shift of measured parallel-transition is consistent with strong-int effect <u>assessed via</u> Seki-Matsutani potential

2 K⁻ beam

4-days beamtime in June 2016

J-PARC

J-PARC

J-PARC

Experimental hall (K1.8BR)

Kaon-stop tuning setup

K- stop tuning

Setup from upstream

installed TES to be located at the position expected in E62 physics run

TESs

installed Lead blocks to shield TES from direct hits of charged particles 47

Beam structure

Mn Ka spectrum

- Clear gap between Ka1 & Ka2 -> excellent resolution
- High-energy particle beam degrades resolution a bit.
- If no lead shield, $\Delta E > 10 \text{ eV}$. \Rightarrow Lead shield was quite effective.

Energy resolution vs. charged-particle hit rate

VSBinilar correlation in the heating of the second second

V/Promisingtoadoeverouragetal-BARCPARC

- 1. Room Room prompr the preseases relation on
- 2. More protimal setup (spielding, c); further suppress changed particle hit atete

Charged particle background

Energetic charged particle deposits several keV energy on 4 um thick Bi absorber

We understand the beam-induced background ✓ explained PSP spectron weip by Smeltined by Smeltind by Smeltined by Smeltined by Smeltined by Smeltined by Smeltin

J-PARC E62 : K-He atom exp.

- To do :
 - Increase the number of working pixels (now ~190/240)
 - Detailed study with an X-ray tube and radioactive sources
 - Combine the TES spectrometer with the liquid helium target

E62 preparation status

TES + He target

X-ray tube for energy calib.

Summary

Summary

- High-precision K-atom x-ray spectroscopy with TES
- TES performance evaluation with hadron beams

(1) π - **beam** : successfully demonstrated π atom expt.

- energy resolution ~ 6 eV (FWHM @ 6 keV)
- ▶ timing resolution ~ 1 µs (FWHM)
- ▶ accurate energy calibration : less than 0.1 eV

② K⁻ beam : good performance at actual beamline as well

● J-PARC E62 (K-He atom x-ray) physics run in 2018?

Appendix

New application at RIKEN RICE-ring

Cryogenic electrostatic ion strage ring

