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Chirality?  Vorticity??
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Chirality ~ S

B s

Vorticity ~ L

[Wikipedia]

L
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Spin and Mass
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µ =
q~
2m

Magnetic Moment of Spin-1/2 Particles

Spin effect is more suppressed by larger mass



March 31, 2017 @ RIKEN

Spin and Mass
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Quark Model
µp =

4

3
µu � 1

3
µd

µn =
4

3
µd �

1

3
µu

Wave-function →

“Constituent Quark”

µu =
qu
2mq

= �2µd ! mq ⇡ 340 MeV
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Quark Model
Phenomenological Mass Formula

“Constituent Quark”

M
hadron

=
X

i

mi +�M

�M =
X 4⇡↵s

9

�i · �j

mimj
| (0)|2

mu,d ⇡ 360 MeV
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Constituent Quark Mass  
                        from the “QCD Vacuum”

Vacuum 
~ Medium? 
~ Changeable?? 

Quark mass  
 changeable?
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So far, there is NO HIC experimental data  
  that can tell us anything about quark mass changes

Color deconfinement ~ Bulk properties of media

Quark mass (chiral) ~ Excitations

Lattice-QCD:  
     QCD has only one criticality that is “chiral”!

Phenomenology:  
     Hagedorn picture works WITHOUT mass shift!
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Zero-point Oscillation Energy [Peskin-Schroeder]

Not true for QCD! !p =
p
p2 +m2

Dynamical Quantity
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� 2

Z ⇤ d3p

(2⇡)3
p
p2 +M2

' � ⇤4

8⇡2

⇥
2 + ⇠2 +O(⇠4)

⇤
⇠ = M/⇤

Zero-Point Oscillation Energy

(Some) Interaction

M2

2�⇤
=

⇤4

2�̂⇤

⇠2

negative

positive

Dynamical mass  
 generated for �̂⇤ > 2⇡2

Nambu—Jona-Lasinio 1961
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Gµ⌫ + ⇤gµ⌫ = 8⇡GTµ⌫

What is the RHS in the QCD Vacuum?
Chiral condensate, real or illusion?
How to “renormalize” the zero-point energy?

Crucial problem for HIC 
Early Thermalization Puzzle

“Evolution to the quark-gluon plasma” 
K.Fukushima, Rept.Prog.Phys.80 (2017) 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11

B s

How to see the mass?  Magnetic field!

E — work given to charge carriers  
        (screened easily) 

B — no work done to charge 
        (no screening)

B is everywhere in nature!
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Surface of the neutron star

Surface of the magnetar

. 1012 gauss ⇠ 10�2 MeV2

. 1015 gauss ⇠ 10MeV2

Interior of the magnetar
. 1018 gauss ⇠ 104 MeV2 ⇠ m2

⇡

Color superconductivity in a magnetic field  
Mixture of photon and gluon (unscreened B)

[Wikipedia]
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By

z

y x
Ez
Bz

eB0 = (47.6 MeV)2
⇣1 fm

b

⌘2
Z sinhY

eB0

[1 + (t/t0)2]3/2]

t0 =
b

2 sinhY . 1020 gauss ⇠ GeV2

Strongest magnetic field in the (present) Universe
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Vor.UME 28, NUMazR 19 PHYSICAL REVIEW LETTERS 8 Mwv 1972

emission was assumed, and a universal l-nsec
lifetime was taken to allow us to estimate the
fraction of the metastable emitters which decayed
within the distance viewed by our x-ray detector.
We thus have clear and direct experimental evi-
dence that both two- and three-electron chlorine
systems are produced which have lifetimes in the
nanosecond region and which de-excite at least
partially by Ke x-ray emission. We further find
that an appreciable fraction (about 60%%d) of our
metastable x-ray emitters belong to systems of
more than three electrons. The number of x rays
detected from these systems is large because of
the charge-state equilibrium at 45 MeV, in spite
of the small probability per emerging ion for
their production. The appropriate experiment to
detect these species directly in a coincidence ex-
periment is in preparation.
The identification of the charge states of these

x-ray emitters in no way settles the question of
their identity. Sellin et al. ' have attributed their
metastable Auger-electron emitters to quartet
states in three-electron systems whose autoion-
ization is inhibited by spin selection rules. They
further suggest that such systems may also exist
for higher electron number, and present possible
experimental evidence of their detection. Al-
though a more definite statement must await de-
tailed calculations of the lifetimes expected for
such states, we expect that the rapid increase
with Z of the spin-orbit mixing of doublet and
quartet states will mean that analogous states for
Z=17 will have lifetimes much shorter than nano-
seconds and thus are probably not the states we
observe. The consistency of the measured Kn

x-ray energy with that expected from a two- or
three-electron chlorine system, even though
more than half of the associated chlorine ions ap-
pear to survive with four or more electrons,
leads us to suspect that the states seen here may
be better attributed to metastable two-electron
systems which are accompanied by further elec-
trons residing in shells of very high principal
quantum number. Such a system would have to
owe its metastability against Auger processes at
least in part to the poor overlap of the wave func-
tion of the outer-shell electron with that of the in-
ner shells, and to slow radiative progression
from outer to inner shells by soft photon emis-
sion. Experimental observation of the radiation
which should accompany such a progression and
deduction of the overall excitation states of the
outer shells of foil-excited ions would clearly be
of importance in helping such an hypothesis to
emerge from the speculation stage.

*Work partially supported by the U. S. Atomic Energy
Commission under Contract No. AT{11-1)-2120.
I. A. Sellin, D. J. Pegg, M. Brown, %. Vf. Smith,

and B.Donally, Phys. Rev. Lett. 27, 1108 (1971).
~R. Marrus and B.%'. Schmieder, Phys. Lett. 82A,

421 {1970);R. W. Schmieder and R. Marrus, Phys.
Rev. Lett. 25, 1245 (1970); R. Marrus and R. W.
Schmieder, Phys. Rev. Lett. 25, 1689 (1970); R. W.
Schmieder and B.Marrus, Phys. Bev. Lett. 25, 1692
(1970); R. Marrus and R. W. Schmieder, Phys. Rev.
A 5, 1160 (1972).
L. L. House, Astrophys. J., Suppl. Ser. 18, 21

(1969).

Solution of the Dirac Equation for Strong External Fields~

Berndt Muller, Heinrich Peitz, Johann Hafelski, and Walter Greiner
1nstitut futTheoxetische 'Physik des Unieersitlt Frankfurt, Frankfurt am Main, Germany

(Received 14 February 1972)
The 1s bound state of superheavy atoms and molecules reaches a binding energy of-~c at &= 169. It is shown that the X shell is still localized in r space even beyond

this critical proton number and that it has a width & (several keV large) which is a posi-
tron escape width for ionized K shells. The suggestion is made that this effect can be ob-
served in the collision of very heavy ions (superheavy molecules) during the collision.

The discrete energy eigenvalues for an electron
bound to a nucleus, which are obtained from the
Dirac equation, lie between moc' and —m,c',
where mo is the electron's mass. The problem
can be solved analytically in the case of a point

nucleus; the energy eigenvalues are then given by
the well-known Sommerfeld fine-structure formu-
la. In this case the eigenvalues for the 1s state
become imaginary when the nuclear charge 2 be-
comes larger than 137. The problem may be cir-

1235

In the HIC super critical E is realized if Z1+Z2 > Zcr

Later, B effects considered too : PRL36, 517 (1976) 
   (Magnetic splitting predicted as an observable)
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QCD Vacuum Changed by B

15

B
Chiral Condensate 
(scalar - isoscalar)

L = 1 and S = 1 making J = 0  
more favored by strong B

⌃(B) = ⌃(0)

✓
1 +

ln 2

16⇡2f2
⇡

eB + · · ·
◆

Chiral Perturbation Theory  (Shushpanov-Smilga 1997)

Postive coefficient

Magnetic Catalysis Gorbar, Gusynin, Miransky, Shovkovy 
Klimenko, … 1994
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Figure 2: Our simulation points on 243 × 6
lattices (blue crosses) and the lines of constant
magnetic field (red dashed lines).

We measure our observables along a grid of points

in the T − Nb plane, as depicted in figure 2. The simu-

lation points are denoted by the blue crosses, while the

eB = const. curves are shown by the red dashed lines.

To perform the interpolation of the measurements along

these lines in a systematic and effective way, we fit a two-

dimensional spline function to the data points. A similar

approach is described in [56] for the fitting of the gradient

of a two-dimensional function. In figure 3 we show the ob-

servables as functions of T and Nb for our Nt = 6 lattices.

We obtain reliable results with good fit qualities; χ2/dof.

being in the range 1.2− 1.8.

We perform simulations over the same physical temperature and magnetic field range for two

smaller lattice spacings at Nt = 8 and Nt = 10, with very similar χ2/dof. values for the spline fits as

above. We use these three lattice spacings (around Tc(0) they correspond roughly to a = 0.2, 0.15 and

0.12 fm) to extrapolate our results to the continuum limit.

Figure 3: The renormalized up quark condensate (upper left panel), its susceptibility (upper right panel), and
the strange susceptibility (lower panel) as functions of T and Nb on our Nt = 6 lattices (note that viewpoints
are different in order to better show the interesting structures in the particular observables). Measurements are
denoted by the blue points, while the red surface is the spline fit to the data. The corresponding fit qualities
are χ2/dof. ≈ 1.8, 1.5 and 1.2, respectively.

– 9 –

Bali et al.  2011

Magnetic 
   Field

Enhancement 
~ Magnetic Catalysis

Temperature

Steeper and steeper 
Why???

We are such ignorant about QCD even today!
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Fodor et al. 2011

Any impact to HIC?

Yes, if B survives

What happens with B?

(B may survive with  
  backreaction of matter)
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values of µB and T are shown in Fig. 1 as functions of center-of-mass energy
per nucleon pair.

We note that, near 10 GeV center of mass energy, the temperature saturates
with increasing beam energy, reaching an asymptotic value of about 160 MeV,
while the baryon chemical potential decreases smoothly.
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Becattini et al.
Andronic et al.

Fig. 2. The decoupling temperatures and chemical potentials extracted by Statisti-
cal Model fits to experimental data. The freeze-out points are from Refs. [15] and
[22–24]. The open points are obtained from fits to mid-rapidity whereas the full–
points to 4º data. The inverse triangle at T = 0 indicates the position of normal
nuclear matter. The lines are diÆerent model calculations to quantify these points
[21,25,26]. The shaded lines are drawn to indicate diÆerent regimes in this diagram
(see text).

Plotting these temperature-chemical potential pairs for all available energies
results in a phase diagram-like picture as is illustrated in Fig. 2. In the µB

region from 800 to 400 MeV, as T increases from 50 to 150 MeV, the experi-
mental points rise approximately linearly. In contrast, below µB ª 400 MeV,
the temperature is approximately constant, T ' 160 MeV. The highest col-
lision energies studied to date at RHIC are those for which µB ª 25 MeV.
Also shown on this plot are lines of fixed energy per particle and fixed entropy
density per T 3; also shown is a line of hadron percolation (see below).

These experimental results can be compared to phase transition points com-
puted on the lattice [27,28]. Numerical simulations in lattice QCD can be

3

E : internal energy

N : particles + antiparticles

E/N ⇠ 1GeV

Andronic et al. (2010)

Cleymans-Redlich  
PRL81, 5284 (1998)
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Chemical Freezeout
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KF-Hidaka 
PRL 2016

Slant lines
With conservation 
      of S and Q

Shaded regions
Without conserv. 
      of S and Q

E/N = 0.9 ⇠ 1.0GeV

Inverse Magnetic Catalysis naturally reproduced
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Electric Charge  
    Conservation Significant  

enhancement

Charged hadrons  
favored by B

KF-Hidaka PRL (2016)

Protons are lighter with B
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Chiral Magnetic Effect
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j =
q2eµ5

2⇡2
B

‘Historical’ overview : 1209.5064 [hep-ph]
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Chiral Magnetic Effect
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B. Muller

STAR PRL 2009
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jiA = h ̄�i�5 i = �†R�
i�R + �†L�

i�L
  M

ag
ne

tic
 F

ie
ld

qeB

2⇡
⇥ qe

µq

⇡
Density of states 1D charge density

LLL

m

 2eB

Axial Current ~ Magnetization ~ B
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Right-handed particles 
Momentum parallel to Spin

Left-handed particles 
Momentum anti-parallel to Spin

Topological Current ~ B (energy from chirality)
“Chiral Battery”
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Chiral Magnetic Effect
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By

z

y x
Ez
Bz

CGC ~ Local Parity Violation



March 31, 2017 @ RIKEN

Caveats

26

B decays very quickly t0 =
b

2 sinhY

B is not an intrinsic property of matter 
   but created by passing spectators

IF the electric conductivity is large, B could survive 
Conductivity at strong B and finite density 
(with Y. Hidaka — very hard theoretical calculation)

CGC simulation in B needed
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Better Alternative!?

27

Not B but L ?

L is everywhere 
 in nature!
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L is an intrinsic property of matter
4

tuations for vorticity at the edge of the system (the inter-
face between cells with a few particles and vacant cells).
Such fluctuations are suppressed when computing the av-
erage vorticity because we adopt the energy density as
the averaging weight as in Eq.(4). In our calculation we
chose the whole volume as 20fm×20fm on the transverse
plane over a spatial rapidity span of 8 units. Each cell’s
size is 0.8fm × 0.8fm on the transverse plane over a ra-
pidity slice of 0.4 unit. We have chosen the time step
to be 0.2 fm/c for the vorticity analysis, and we ana-
lyze the parton matter up to the time of 9 fm/c in the
center-of-mass frame.

B. Angular Momentum of the QGP: Its
Dependence on Time, Energy and Centrality

We now present the results from AMPT for the angu-
lar momentum carried by the QGP fireball with detailed
information on its time evolution as well as beam energy
and collision centrality dependence. Again the sign of
Jy depends on the specific setup of coordinate axes and
carries no specific meaning: while the raw results from
AMPT (due to its particular choice in the code) have
negative sign, for simplicity we will just show results for
the magnitude of Jy.
Let us first examine the time dependence of all the

angular momentum components Jx,y,z for given collision
energy and centrality: see Fig. 2. The results confirm
the intuitive picture that the dominant component is Jy
(which is larger by orders of magnitude than Jx,z), i.e.
the QGP global rotation is indeed around the out-of-
plane axis. We also note that the Jy carried by the QGP
fireball is about 10 ∼ 20% of the total angular momentum
of the whole colliding system J = Ab

√
sNN/2. Lastly,

Jy is essentially a constant in time as it should be, which
serves as a check of the simulation’s precision. These
features are found to be the case for all other centralities
as well as beam energies in our calculations.
We next take a look at the dependence of Jy on the col-

lision energy and impact parameter in comparison with
the results from the simple hard sphere model. Fig. 3
shows a non-monotonic dependence of Jy on b as ex-
pected, with a maximum around b ∼ 4 fm. Fig. 4 shows
an approximately linear growth of Jy with increasing√
sNN , again as expected. In both figures, the Jy from

AMPT is about 2 ∼ 3 times that from the hard sphere
model. Also note that the b value corresponding to the
peak in Jy is also bigger from the AMPT model. This
can be understood from two factors. Firstly compared
with the hard sphere model with sharp edges, the ac-
tual incident nuclear profile (Woods-Saxon in AMPT) is
more extensive thus making the overlapping zone (where
fireball is created) bigger, with more momentum carri-
ers further away from the rotational axis at the center.
Secondly, in the hard sphere model the momentum car-
ried outside the overlapping zone is not counted, while
in actual collision (as captured by AMPT) the nucleons

FIG. 2: Angular momentum from the AMPT model at b = 7
fm and

√
sNN = 200 GeV.

FIG. 3: Angular momentum Jy as a function of b from the
AMPT model and the hard sphere model at

√
sNN = 200

GeV.

outside the geometric overlapping zone would still have
probability to experience collision and become part of
the fireball thus contributing more to the angular mo-
mentum.

IV. VORTICITY FROM THE AMPT MODEL

A. Local Vorticity Distribution

Once the velocity distribution is obtained as described
above, we can then use the finite differential method to
calculate the vorticity numerically. We will focus on the

Jiang-Lin-Liao 2016
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expectation values of the angular momentum as functions of the rotational frequency for C

isotopes from A = 12 to A = 20. One can easily classify these isotopes into three groups

according to the behavior of their angular momenta. The first group contains 12,13,14C

whose angular momenta are very close to each other. It reveals from the linearly increasing

tendency of the angular momenta that the moments of inertia are nearly constant; the slope

FIG. 2. (color online) Proton density distributions in the y-z plane (x direction is integrated)

calculated by using the cranking covariant density functional theory for 12C, 15C, and 20C at the

rotational frequencies !ω = 0.0 MeV (a), (c), (e) and !ω = 3.0 MeV (b), (d), (f).

FIG. 3. (color online) Single-proton energies (in rotating frame) as functions of the rotational

frequency for 12C, 15C, and 20C. Each orbital is labeled by the corresponding Nilsson quantum

number of its maximal component. The solid and dashed lines denote the single-particle states

with positive and negative parity, respectively. The solid circles denote the occupied orbitals.

5

FIG. 1. (color online) Angular momenta as functions of the rotational frequency for C isotopes

from A = 12 to A = 20.

carried out in the intrinsic frame rotating with a constant angular velocity vector ω, which,

in this work, points in a direction perpendicular to the symmetry axis z:

[α · (p− V ) + β(m+ S) + V − ω · Ĵ ]ψk = ϵkψk. (1)

Here Ĵ = L̂ + 1
2
Σ̂ is the total angular momentum of the nucleon spinors, and the fields

S and V µ are connected in a self-consistent way to the densities and current distributions;

for details, see Refs. [35, 36]. The iterative solution of these equations yields single-particle

energies, expectation values of the angular momentum, energy, quadrupole moments, etc.

In this work, the energy density functional DD-ME2 [41] is adopted. Since the level den-

sity of the single-particle levels for the present rod-shaped states is rather low, the cranking

relativistic-Hartree-Bogoliubov calculations show that the pairing correlations could be ne-

glected safely. The calculations are free of additional parameters. Equation (1) is solved in

a 3D Cartesian harmonic oscillator basis [42] with N = 12 major shells to provide converged

results.

In the present calculations, we first solve Eq. (1) for 12C without rotation iteratively by

assuming the initial fields S and V with a very large prolate deformation. In this way, one

self-consistent solution with 3α linear-chain configuration for 12C has been obtained. By

taking the obtained potential as the initial potential, self-consistent calculations have been

performed for C isotopes at various rotational frequencies. With the increase of spin and

isospin, both the protons and neutrons are treated self-consistently by filling the orbitals

according to their energy from the bottom of the well. As a result, Fig. 1 shows the obtained

4

Rod-shaped Nuclei at Extreme Spin and Isospin 
P.W. Zhao, N. Itagaki, J. Meng, PRL 2015
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4

We take the expectation value in the rotating vacuum,

J = ⟨Ĵ⟩Ω̸=0, (19)

of the angular momentum density operator

Ĵ ≡
∂L
∂Ω

∣

∣

∣

∣

Ω=0

, (20)

where L is the Lagrangian density. This angular mo-
mentum density operator coincides with the conserved
Noether current in the flat space-time. The gluon angu-
lar momentum density is

JG =

〈

1

g2YM

tr[2yFxyFyτ − 2xFyxFxτ

+ 2yFxzFzτ − 2xFyzFzτ ]

〉

.

(21)

The fermion angular momentum density is decomposed
into the orbital and spin angular momentum densities,

JF = JFL + JFS , (22)

JFL =
〈

ψ̄γτ (xDy − yDx)ψ
〉

, (23)

JFS =

〈

iψ̄γτ
σ12

2
ψ

〉

. (24)

We discretize these operators in the same way as the
lattice actions (15) and (18).
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FIG. 2: Angular momentum density J along the x axis with
the angular velocity aΩ = 0.06. The solid curves are quadratic
fitting functions.

In Fig. 2, we show the angular momentum density
along the x axis (y = 0). The angular velocity is fixed at a
nonzero value aΩ = 0.06. As for JG and JFL, the angular
momentum density is a quadratic function of the distance
from the rotation axis. The spin angular momentum den-
sity JFS is small but nonzero, and it is independent of
the distance. In Fig. 3, we show the angular momentum

 0

 0.1

 0.2

 0.3

 0.4

 0  0.02  0.04  0.06  0.08  0.1

- J
  [

a-3
]

Ω  [a-1]

JG 
JFLJFS

FIG. 3: Angular momentum density J at (x, y) = (2a, 0) as a
function of the angular velocity Ω. The solid curves are linear
fitting functions.

density measured at a certain point, (x, y) = (2a, 0), as a
function of the angular velocity Ω. The angular momen-
tum density increases linearly. From fitting the data,

JG = −(0.94± 0.01)a−4 × r2Ω, (25)

JFL = −(0.60± 0.01)a−4 × r2Ω, (26)

JFS = −(0.17± 0.01)a−2 × Ω. (27)

The coefficient in front of Ω is interpreted as the mo-
ment of inertia of the constituent in the QCD vacuum.
The functional form of JG and JFL can be intuitively
understood from the angular momentum of a classical
particle, J = −mr2Ω. The numerical coefficients of JG
and JFL are interpreted as the inertial mass densities of
glueballs and quark-antiquark pairs, respectively. The r-
independence of JFS is a plausible result since the spin is
an intrinsic angular momentum. Note that these coeffi-
cients are unrenormalized and they depend on the renor-
malization scale and the quark mass.
Summary.—We have formulated lattice QCD in rotat-

ing frames. We have carried out its first Monte Carlo
simulation to analyze the angular momentum of the ro-
tating QCD vacuum. At least in the case of the Euclidean
rotation, we can implement this framework without tech-
nical difficulty. By using this framework, we can study
the rotating matter from first principles. There are many
possible applications for QCD phenomenology, e.g., ro-
tating hadrons, heavy-ion collisions, and rapidly rotating
compact stars. Moreover, this kind of simulation will be
possible not only in QCD but also in other field theories.
A. Y. is supported by the Special Postdoctoral Re-

search Program of RIKEN. Y. H. is supported by the
Japan Society for the Promotion of Science for Young
Scientists and by JSPS Strategic Young Researcher Over-
seas Visits Program for Accelerating Brain Circulation.

Lattice QCD in rotating frames  
A. Yamamoto, Y. Hirono, PRL 2013



March 31, 2017 @ RIKEN

Physics with Large L

31

Cranking model H
rot

= H � !Jz

Theoretical treatment for deformed nuclei

Chemical Potential?

Angular Momentum ~ Magnetic Field  
     (Topological Current expected)

Angular Momentum ~ Finite Density  
     (“Critical Point”???)

J
B
µ
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Jiang-Liao, PRL 2016

3

coordinate — specifically dependent only on r by virtue
of symmetry. Using the mean-field propagator one can
compute the grand potential of the system:

⌦ =

Z
d3~r

⇢
(M �m)2

4G
� NfNc

16⇡2

X

n

Z
dk2t

Z
dkz

⇥ [Jn(ktr)
2 + Jn(ktr)

2]

⇥T


ln

⇣
1 + e(✏n�µ)/T

⌘
+ ln

⇣
1 + e�(✏n�µ)/T

⌘

+ ln
⇣
1 + e(✏n+µ)/T

⌘
+ ln

⇣
1 + e�(✏n+µ)/T

⌘� �
(8)

In the above the mean-field quasiparticle dispersion ✏n is
given by ✏n =

p
k2z + k2t +M2 � (n + 1

2 )!. The mean-
field chiral condensate (or equivalently the mass gap M)
at given values of temperature T , chemical potential µ
and rotation !, can then be determined from the usual
gap equation through variation of the order parameter:

�⌦
�M(r) = 0 and �2⌦

�M(r)2 > 0. We will numerically solve
the gap equation for the case of Nf = 2 and Nc = 3 and
present the results below. For the parameters G, Gd and
a cuto↵ scale ⇤ of this model, we choose the standard
values (see e.g. [36]).
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FIG. 1: The mean-field mass gapM (at radius r = 0.1GeV�1)
as a function of ! for various fixed value of T .

Let us focus on the zero density case (i.e. µ = 0) and
study how the mass gap changes with T and !. As al-
ready pointed out, the condensate will depend on the
transverse radius r: we have found that the mass gap M
smoothly decreases with r . In the following we will show
results for a particular value of r for simplicity. In Fig. 1
we show M (at radius r = 0.1GeV�1) as a function of
! for various fixed value of T . At all values of temper-
ature, the mass gap decreases with increasing values of
!: this clearly confirms the rotational suppression e↵ect
on the quark-anti-quark pairing in the chiral condensate.
We also see that at low temperature the chiral conden-
sate experiences a first-order transition when ! exceeds
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FIG. 2: The mean-field mass gap M (at radius r =
0.1GeV�1) as a function of T for various fixed value of !.

a critical value !c, while at high temperature the chi-
ral condensate vanishes with increasing ! via a smooth
crossover. The !c decreases with increasing temperature.
In Fig. 2 we show M (at radius r = 0.1GeV�1) as a func-
tion of T for various fixed value of !. At very small !, the
mass gap decreases smoothly toward zero with increasing
temperature, indicating a smooth crossover transition as
expected. However when ! becomes large, the transition
becomes stronger and stronger, eventually becoming a
first-order transition as signaled by a sudden jump. The
transition temperature Tc becomes smaller at larger !.
These results could be understood by considering ! as
a sort of “chemical potential” for angular momentum.

Indeed this is evident from Eq.(4): the term ~! · ~̂J is in
direct analogy to a term µ · Q̂ for a conserved charge Q̂.
It is therefore not surprising that the phase transition
behavior at finite ! is very similar to that at finite µ in
the same model.
With the above observation, it is tempting to envi-

sion a new phase diagram of the chiral phase transition
on the T � ! parameter space: see Fig. 3 (as computed
from the present model). It features a chiral-symmetry-
broken phase at low temperature and slow rotation while
a chiral-symmetry-restored phase at high temperature
and/or rapid rotation. A smooth crossover transition
region at high T and low T and a first-order transi-
tion line at low T and high ! are connected by a new
critical end point. Given the present model parameters,
this critical point is located at TCEP = 0.020GeV and
!CEP = 0.644GeV. As already discussed previously,
the “rotational suppression” of the scalar condensate is a
quite generic e↵ect. It is conceivable that similar phase
transition behaviors under rotation would also occur in
other dynamical models for studying chiral condensate.
Superconducting Pairing in Rotating Matter.— To

demonstrate that the “rotational suppression” of the
scalar condensate is a generic e↵ect, we also study an-
other quite di↵erent type of pairing: the fermion-fermion
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FIG. 3: The phase diagram on T -! plane (see text).

(rather than the fermion-anti-fermion) superconducting
pairing phenomenon in the presence of rotation. In the
QCD context, this is the color superconductivity at high
density and low temperature (see e.g. [37] for a recent
review). Quite di↵erent from the chiral condensate, the
diquark pairing state has the spatial angular momentum
(for the relative orbital motion) L = 0 while the total
spin S = 0 (i.e. antisymmetric combination of the two
individual quark spins), again with the total angular mo-
mentum J = 0 for the pair. We use the same NJL model
and for simplicity we focus on the low-temperature high-
density region where the chiral symmetry is already re-
stored. Assuming a mean-field 2SC diquark condensate
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In the above the mean-field quasiparticle dispersion ✏±n
and ✏�±

n is given by ✏±n = (
p
k2z + k2t +m2±µ)�(n+ 1

2 )!

and ✏�±
n = [(

p
k2z + k2t +m2 ± µ)2 +�2]

1
2 � (n+ 1

2 )!.
The mean-field diquark condensate � at given values of
temperature T , chemical potential µ and rotation !, can
then be determined from the self-consistency equation
through variation of the order parameter: �⌦

��(r) = 0 and
�2⌦

��(r)2 > 0. By numerically solving the equation, we show

in Fig. 4 the � (at radius r = 0.1GeV�1) as a function of

! for several values of T and fixed µ = 400MeV. One can
see that with increasing !, the diquark condensate always
decreases toward zero, through a 1st-order transition at
low T while a smooth crossover at higher T . This result
again confirms the generic rotational suppression e↵ect
on the scalar diquark pairing.
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FIG. 4: The mean-field diquark condensate � (at radius r =
0.1GeV�1) as a function of ! for several values of T and fixed
value of µ = 400MeV.

Summary and Discussions.— In summary, we have
found a generic rotational suppression e↵ect on the
fermion pairing state with zero angular momentum. This
e↵ect is demonstrated for two well-known pairing phe-
nomena in QCD matter, namely the chiral condensate
and the color superconductivity. The scalar pairing
states in these two examples, while di↵erent in many
aspects, are both found to be reduced with increasing
rotation of the system. In the case of chiral phase transi-
tion, we have identified the phase boundary with a criti-
cal point on the T � ! parameter space.
The rotational e↵ects on pairing phase transitions may

bear interesting implications for a number of physics sys-
tems. The phase diagram of QCD matter on T �! plane
could be quantitatively explored by ab initio lattice sim-
ulations which has recently become feasible [8]. In heavy
ion collisions there is sizable global angular momentum
carried by the hot dense matter (as recently computed
in e.g. [6]): such rotational motion may cause the chiral
restoration to occur at lower temperature as our results
imply, and may bear measurable consequences (e.g. for
dilepton emissions). In the case of neutron stars, the
dense QCD matter is under global rotation which may
reduce the chiral as well as diquark or nucleon-nucleon
pairings and may a↵ect the moment of inertia for such
stars [27, 28]. In the non-relativistic domain, the cold
fermionic gas is an ideal place to study the rotational
suppression e↵ect on the fermion pairing and the very
interesting BCS-BEC crossover phenomenon [38–41]. Fi-
nally, while in this paper we limit ourselves to the study
of slow rotation e↵ects, it is worth commenting that

Rotating Quark Matter has Stronger 1st-order PT
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portional to y ~ p in S,'"'(p, g, ) vanishes upon integration over p and that terms independent of y'
drop out after taking the trace. Omitting a11 these terms we get

0 g(0)) =-(2p-'(2n) '+exp(eg, ) I d'p Tr/0 Z~ exp(-0 ~ Zs/8$, )]g,(f,'-p') ',
where I have used that Z =y yy'.
Since 0 ~ Z =QZ, and Z, =diag(1, -1,1,—1), we easily find

Tr(Q ~ Z exp(-,' 0 Zs/sg, )].=20[exp(-,'Qs/eg, ) —exp(——,Qs/sg, )].
Using the relation

exp(nd/dx) f(x) =f(x+n),
we can now rewrite Eq. (Dl) as

0 ~ (J(0)) =—QP '(2n) 'g exp(qg, ) d'P((g, +0/2)[(f, +0/2)'-P'] '-(g, —0/2)[(g, —0/2)' p']-'].
l

(D2)

(D8)

(D4)

Using the same device as in Sec. IV to replace the
sum over l by an integral, we find

0 g(o))

=0(2P&') ')) dPP'[f, (P+0/2) f,(P- 0/-)2]
0

where g =QP/2. The integral in Eq. (D5) can be
evaluated, '

f 00
(coshx+ cosh)) 'x'dx = $(m'+ g') /8 sinh$

(De)

= —(2n'p') ' sinhg)) (coshx+coshg) 'x'dx,
0

and we obtain

( J(0) ) =—0(T '/12+0'/48m'),
in agreement with Ref. 3.

(D7)

~For a review see, e.g., A. A. Abrikosov, L. P. Gorkov,
and 1. K. Dzyaloshinski, Methods of Quantum Field
Theory in Statistical Physics, translated and edited
by B. Silverman (Prentice-Hall, Englewood Cliffs,
N. Y., 1963).
C. W. 33ernard, Phys. Bev. D 9, 3312 (1974); L. Dolan
and R. Jackiw, ibid. 9, 3320 (1974); S. Weinberg, ibid.
9, 3357 (1974). Other references can be found in
B.Hakim, Biv. Nuovo Cimento 1, No. 6 (1S78).
A. Vilenkin, Phys. Rev. D 20, 1807 (1979); Phys. Lett.
80B, 150 (1978).
L. D. Landau and E.M. Lifshitz, Statistical Physics
(Pergamon, London, 1969).

~Note that n„has a singularity at&= mQ. This singu-
larity, however, is unphysical. A rotating system
cannot have size greater than Q (otherwise the velo-
city at the boundary would exceed the velocity of light),
and in a finite system the energy is quantized in such
a way that u is always greater than mQ. (There are
some exceptions in which the field has exponentially
growing modes. See Bef. 6.) As an example, consider
an infinite cylinder of radius R rotating around its ax-
is. Requiring that 4 vanishes at the boundary, we find
the energy levels ~nmp = @ +p + gmz R )~, where ~mn
is the nth root of J~(x). It can be shown (Bef. 7) that
$~„&m. Thus, „~p& $~„R & mQ. In the present
paper we shall assume that the lowest energy modes
are unimportant and thus the infinite-space solutions
(17) can be used.
Ya. B. Zeldovich, Pis'ma Zh. Eksp. Teor. Fiz. 14, 270

(1971) [JETP Lett. 14, 180 (1971)];W. M. Press and
S. A. Teukolsky, Nature 238, 211 (1972); A. Vilenkin,
Phys. Lett. 788, 301 (1978).
I. S. Gradshteyn and I.M. Byzhik, Table of Integrals,
Series and Products (Academic, New York, 1S65).
In fact, Eq. (24) follows directly from the definition of
the temperature Green's function (see Bef. 2) and holds
for interacting as well as for free fields.
In this paper I use physical, not coordinate components
of vectors, so that A&=A @, where e&, e&, e3 are unit
vectors parallel to the local coordinate axes.

~ The matrices y ~ and y are taken in the representation
of J.D. Bjorken and S. D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, New York, 1964).
In Bef. 3, the matrix y and the argular quantum num-
ber m were taken with a wrong sign. The correct equa-
tions are obtained by changing L -L and m -m in
Eqs. (15), (19), and (20) of Bef. 3. All the following
equations, including the final results, do not change.

~2See, e.g. , S. S. Schweber, An Introduction to Relativis-
tic Quantum Field Theory (Bow, Peterson, Evanston,
Illinois, 1961).

~3A nonvanishing zero-temperature value of (J (0)) in Eq.
(83) is due. to the fact that the Fermi distribution func-
tion

f~~= {exp[P(~—~Q)i +1)
does not vanish for ~& mQ, even at T = 0. It seems
reasonable to assume that the finite size of the system
modifies the particle spectrum in such a way that co is
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Here,
—(es(&o-mo ~ 1)-& (23)

A =(4n'R) ' sinP, R,
where

is the Bose-Einstein distribution for a rotating
system, ' 7 =v, —v'„ the upper and lower lines in
parentheses correspond to r, &v2 and 7; & T„re-
spectively, and I have used the fact that

(a„' „a„., „,), =n„„6„„.6(P -P')6((o —(o'),
(a„«„a',«. ,), = (n„+1)6„„,6(p —p' )6 (&o —~ ' ),

It is easily seen from Eq. (22) that' for -p& v &0,
D(&+0) =D(&) (24)

and thus the function D in the interval —P& 7.&P ca.n
be expanded in a Fourier series as

D(x„r„.x„v,) =g ' g e '"'D(x„x„v„), (25)

R
I
x x

I
(r +x,' —2r, x, cos(&f&, —(f),)
+(e, -e.)'l'".

Another representation for the Green's func-
tion D can be obtained if we note that Eq. (28) can
be rewritten in the form

D(x„x„v„)=g (k. ) ' —iQ «D, (x„x„v„)8 v„9&]&,

8 8=exp —iO, Do x] x2 pev„e,
(31)

Here, D, is the scalar Green's function for a non-
rotating system which is given by the well-known
expression'

where v„=2minP '. The function D(x„x„v„)can
be found from

D,(x„x„v„)= —(2m) 'J d'pe"'"' *"

8
D(x„x„v„)=—,

' e'"'D(x„r; x„0)dr
«g

8
e"~' D(x „v;x „0)dr . (26)

Noticing tha. t
Qs/sy, =Q (x, x v, ),

we obtain finally

x(v„P —P ) -(32)

(33)

Substituting Eq. (22) in Eq. (26) and integrating
over v, we obtain

D(x~~x~~ „)

dp i«~pm & Ql pm 2
p —co +m(3ft

4*.,.(x,) 4., (x.)
~ (27)v„+co —mQ

In most physical situations, Q«T and one can
be interested in calculating the first few terms in
the expansions of physical quantities in powers
of PQ =(O'Q/k T). Expanding (v„—u+mQ) ' and
(v„+v —mQ) ' in powers of Q, we obtain

f" dw g(iQ 8),

D(x„x„v„)=exp —iQ ~ (x, x V, ) 8 v~

&&D,(x„x„v„).
B. Spinor field

The spinor field equation in cylindrical co-
ordinates is'

where'"

(35)

d(d ~ zQ 8
vn+~ «=u vn+~ sfx

(28)

r, =—2 O'3

2 0

0 (37)

where

dP „, x, *„x,.
-po m

(29)

The quantity A can be calculated directly from Eq.
(29) using the cylindrical wave functions (17). This
is done in Appendix B. The result is

(I+y')e'(x, i) =O. (38)
The primes in Eqs. (35), (36), and (38) indicate
that the corresponding quantities are taken in
cylindrical coordinates. Unprimed quantities
correspond to Cartesian coordinates.

For neutrinos p, =0, and Eq. (35) is supplemented
by the condition"
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the highest angular momentum modes in F⌦ contributes
nonvanishingly. In contrast, the step function in F

µ

given
in Eq. (25) indicates that all N modes simultaneously
start contributing for µ > m, while for µ < m nothing
happens.

(II) Another way to investigate the di↵erence between
the red and the blue lines in Fig. 2 is to approximate the
`-sum. Suppose that ⌦ is small so that we can treat ⌦j
as a continuous variable. Also we assume a su�ciently
large integer N . Then, we can approximate the `-sum in
F⌦ by an integration as

N�n
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(32)

For our parameter choiceN ⇠ O(104) is large enough and
the above approximation is justified. Then the rotational
contribution to the gap equation (21) is reduced to

F⌦ = F
µ

(µ = µ
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(33)
It is obvious that a density-like e↵ect induced by rotation
is certainly contained in the first term F

µ

. The second is
a negative term that makes a di↵erence from the finite-
density case. This extra term plays a role to weaken
chiral restoration by rotation as compared to that by
high density. Therefore, the suppression of the dynam-
ical mass in the rotating frame occurs more gradually
than that with the finite chemical potential. Moreover,
Eq. (33) implies F⌦ < F

µ

for a fixed µ
N

, and thus, chiral
restoration by rotation would need larger µ

N

than that
by finite density (see Fig. 1).

(III) For mcurrent = T = 0 and large eB we can an-
alytically investigate the eB-dependence of ⌦

c

. In our
analysis we adopted the näıve cuto↵ regularization with
Eq. (20), but the regularization scheme should be irrel-
evant for a large system with S � 1/eB. If we utilized
the proper time regularization for F0, the gap equation
with rotation and strong magnetic field would be [54]
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(34)

where �E is the Euler-Mascheroni constant, �(z) denotes
the gamma function, and ⇤PT stands for the cuto↵ pa-
rameter in the proper-time regularization. In this gap
equation (34), the terms in the third line result from the

FIG. 4. 3D plot for the dynamical mass as a function of ⌦
and eB at strong coupling. For large ⌦, chiral symmetry is
restored by eB, which manifests the inverse magnetic catalysis
or the rotational magnetic inhibition.

n = 0 mode in Eq. (33). We can find ⌦
c

from the above
gap equation with m ! 0 substituted, and the analytical
result is

⌦
c

(eB) =

p
⇡

S
p
eB

exp
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(35)

where G
c

= 4⇡/⇤2
PT is the critical coupling for ⌦ =p

eB = 0 that is found in the proper-time regularization.
In the second line in Eq. (35), we utilized the parameters
of Eqs. (26), (29) and (28). On the other hand, we can
numerically evaluate ⌦

c

as a function of eB as displayed
in Fig. 3. From the linearity in Fig. 3 the numerical fit
leads to

⌦
c

(eB) ' 1.58⇥ 10�6

p
eB

exp

✓

�0.609⇤2

eB

◆

. (36)

This fitting result ensures that Eq. (32) is a good approx-
imation for the parameters in Eq. (28).

B. Dynamical mass at strong coupling (G > Gc)

We shall next focus on the following strong region:

G = 1.11G
c

. (37)

We note that dynamically determined m with the above
strong-coupling is about 20 times larger than mdyn at
weak coupling. We show the numerical results in Fig. 4.
Below are several remarks on the results.

(I) For small angular velocity, the dynamical mass is
almost independent of ⌦ and eB. With increasing ⌦ the

Rotation + B

36

Chen-KF-Huang-Mameda (2015) 
Chen-KF-Huang-Mameda in progress

Finite Density really induced:

n = �@⌦

@µ

����
µ=0

=
eB!

4⇡2

interpreted as anomaly (Hattori-Yin 2016)

Rotating Quark Matter (in HIC) has larger baryon density! 
                  (detectable in the thermal model fit)
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Rotation + µ (Chiral Vortical Effect)
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Barnett Effect Magnetization

“uncharged” 
     object

Axial Current ~ Magnetization ~ µ 2 w

Matsuo-Ieda-Maekawa 2015



March 31, 2017 @ RIKEN

Rotation + B + µ (in HIC)
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Rotating Quark Matter has  
  higher density induced by the chiral pumping 
  larger magnetic field induced by the Barnett effect  
  higher density … larger magnetic field … 

HIC

NS Origin of strong magnetic field (magnetar) 
Equation of state (more stiff?) 
Vortex structures (especially in a superfluid)

Quark matter magnetized (hadron polarized)  
(STAR: Lambda “global” polarization ~ 0.02) 
More chance to see a 1st-order phase transition  
Finite temperature?
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Rotation + B + µ (in HIC)
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Global Polarization of L
P
Vortical
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Figure 4: The average polarization PH (where H=L or L) from 20-50% central Au+Au collisions

is plotted as a function of collision energy. The results of the present study (
p

sNN < 40 GeV)

are shown together with those reported earlier6 for 62.4 and 200 GeV collisions, for which only

statistical errors are plotted. Boxes indicate systematic uncertainties.

(⇠ 3.5%).

The fluid vorticity may be estimated from the data using the hydrodynamic relation22

w = k

B

T

�
P L0 +P L0

�
/~, (3)

where T is the temperature of the fluid at the moment when particles are emitted from it. The

subscripts (L0 and L0) in equation 3 indicate that these polarizations are for “primary” hyperons

emitted directly from the fluid. However, most of the L and L hyperons at these collision ener-

9

At high energies L >> B

At low energies B larger?

STAR: 2016

Becattini, Csernai, Wang, …
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Rotation + T
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Vilenkin (1980)

T � R�1 Boundary can be neglected (Debye screening)

µ ! T

hjAi =
T 2

12
!
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Contradicting General Relativity?
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x

0
= x cos(!t)� y sin(!t)

y

0
= y cos(!t) + x sin(!t)

jz0 = jz = 0 (???)

This axial current is NOT a vector!

Xµ⌫ ! Xµ0⌫0 =
@x

µ

@x

0µ0
@x

⌫

@x

0⌫0 Xµ⌫
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Contradicting General Relativity?
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Christoffel symbol is NOT a tensor

d

2
x�

d�

2
= ��↵�

� · dx↵

d�

· dx�

d�

cf. Geodesic equation

Fictitious forces  
(centrifugal, Coriolis)

Chiral Vortical Effect is as fictitious as Coriolis force  
                                 (or as real as Coriolis force)
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Gravitational CS Current
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Jµ
A = 4CR✏

µ⌫⇢��↵
⌫�

⇣
@⇢�

�
↵� +

2

3
��
⇢��

�
↵�

⌘

~ w ~ R
leading to the Chiral Vortical Effect

Fukushima-Flachi 2017

Rotation + T  ~  Rotation + R
Topological Axial Current
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Gravitational CS Current
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@ University of Wisconsin-Madison
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Gravitational CS Current
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Fukushima-Flachi 2017

Neutrino Flux with Jet + Disk structures
Is this also relevant for the HIC at low energies?
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Summary

Rotating quark matter 
□Better experimental chance than B 
♦ Beam energy scan ~ hot astrophysics simulator 
♦ Lambda global polarization in HIC 
♦ Astrophysical jet counterpart? 

□More rich structures in theory 
♦ Technically complicated than B 

□ Topologically induced density and current 
♦ Finite-T induced quantum anomaly 

CS current and Barnett effect 
□Rotation + R  ~  Origin of Astrophysical jet?
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