

COMPASS 実験概要

- (一般的な)セットアップ
- ・年表

偏極 ドレル・ヤン (DY) 実験

- ・ パートンの横方向運動量に依存した (TMD) パートン分布関数 (PDF)
 - ▶ 偏極 DY を介した TMD-PDF の抽出
 - ▶ Semi-inclusive な深非弾性散乱 (SIDIS) を介した TMD-PDF の抽出
 - ▶ 偏極 DY vs SIDIS
 - ▶ SIDIS を介した Sivers, Boer-Mulders 関数の測定結果
 - COMPASS 偏極 DY 実験
 - ▶ セットアップ
 - ▶ タイムライン
 - ▶ 暫定的な結果

いた COMPASS 実験概要

核子構造とハドロンスペクトロスコピー

- CERN SPS の 2 次粒子ビーム(μ, ハドロン) と固定標的を用いた実験
- 12 カ国 約 250 人 + 学生

•

•

第11回高エネルギーQCD・核子構造勉強会

•

COMPAS

۲

COmmon Muon Proton Apparatus for Structure and Spectroscopy

2002 年からデータ収集開始 2012 年から Phase II 開始

山大理 糠塚元気 3 /31

スペクトロメータ

- ・Large angle (LAS, 35 180 mrad) と Small angle (SAS, 18 35 mrad) の 2 ステージ
- ・約 350 トラッキング面, ハドロン・電磁カロリーメータ, RICH, μ wall, ビーム PID

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

COMPASS 実験概要:年表

	年	物理	ビーム (GeV/c)		標的		
	2002-4	SIDIS	160,	μ	偏極重陽子	(縦&横)	
	2006	SIDIS	160,	μ	偏極重陽子	(縦)	
	2007	SIDIS	160,	μ	偏極陽子	(縦&横)	
	2008-9	ハドロンスペクトロスコピー					
	2010	SIDIS	160,	μ	偏極陽子	(横)	
	2011	SIDIS	190,	μ	偏極陽子	(縦)	
	2012	Primakoff, DVCS のテスト					
	2014-5	偏極 DY	190,	h	偏極陽子	(横)	€
	2016-7	DVCS	160,	μ	陽子		
	2018	偏極 DY	190,	h	偏極陽子	(横)	

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

COMPASS 実験概要

- · (一般的な) セットアップ
- 年表

偏極 ドレル・ヤン (DY) 実験

- ・ パートンの横方向運動量に依存した (TMD) パートン分布関数 (PDF)
 - ▶ 偏極 DY を介した TMD-PDF の抽出
 - ▶ Semi-inclusive な深非弾性散乱 (SIDIS) を介した TMD-PDF の抽出
 - ▶ 偏極 DY vs SIDIS
 - ▶ SIDIS を介した Sivers, Boer-Mulders 関数の測定結果
 - COMPASS 偏極 DY 実験
 - ▶ セットアップ
 - ▶ タイムライン
 - ▶ 暫定的な結果

Sivers 関数:

核子の横方向スピンと kr の相関を記述す る。値が0でないときパートンの軌道角運 動量の存在を示唆する。

Boer-Mulders 関数: 核子中のパートンの横方向スピン と kr の相関を記述する。

※ kT: パートンの横方向運動量

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

山大理 糠塚元気 8 / 31

「「偏極 DY を介した TMP-PDF の抽出」

leading order における無偏極ビームと横偏極標的を用いたときの断面積

Genki Nukazuka 11/29

「「「偏極 DY を介した TMP-PDF の抽出

leading order における無偏極ビームと横偏極標的を用いたときの断面積

Semi-inclusive な深非弾性散乱 (SIDIS) を介した TMD-PDF

Semi-inclusive な深非弾性散乱 (SIDIS) を介した TMD-PDF

SIDIS を介した TMD-PDF の抽出

縦極ビームと横偏極標的を用いたときの断面積

 $\overline{dxdydzdp_T^2darphi_hd\psi}$

 $d\sigma^{LO}_{SIDIS}$

$$= \begin{bmatrix} \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1+\frac{\gamma^2}{2x}\right) \times (F_{UU,T}+\varepsilon F_{UU,L}) \\ 1+\cos 2\phi_h(\varepsilon A_{UU}^{\cos 2\phi_h}) \\ +\sin(\phi_h-\phi_S)A_{UT}^{\sin(\phi_h-\phi_S)} \\ +\sin(\phi_h+\phi_S)\varepsilon A_{UT}^{\sin(\phi_h+\phi_S)} \\ +\sin(3\phi_h-\phi_S)\varepsilon A_{UT}^{\sin(3\phi_h-\phi_S)} \\ +S_T\lambda \left[\cos(\phi_h-\phi_S)\sqrt{1-\varepsilon^2}A_{LT}^{\cos(\phi_h-\phi_S)}\right] \\ +S_T\lambda \left[\cos(\phi_h-\phi_S)\sqrt{1-\varepsilon^2}A_{LT}^{\cos(\phi_h-\phi_S)}\right] \\ \varphi_h \left(\frac{\phi_h}{\phi_s}\right) \\ \varepsilon = \frac{1-y-\frac{1}{4}\gamma^2y^2}{1-y+\frac{1}{2}y^2+\frac{1}{4}\gamma^2y^2} \\ \varepsilon = \frac{1-y-\frac{1}{4}\gamma^2y^2}{1-y+\frac{1}{2}y^2+\frac{1}{4}\gamma^2y^2} \\ \varepsilon = \frac{1-y-\frac{1}{4}\gamma^2y^2}{1-y+\frac{1}{2}y^2+\frac{1}{4}\gamma^2y^2} \\ \varepsilon = \frac{1-y-\frac{1}{4}\gamma^2y^2}{1-y+\frac{1}{4}\gamma^2y^2} \\ \varepsilon = \frac{1-y-\frac{1}{4}\gamma^2y^$$

偏極 DY@COMPASS

- ・測定量:PDF⊗PDF
 - → 破砕関数が関与しない
- ・偏極標的を用いた世界初の偏極 DY
- ・valence u ,valence ūの DY が支配的

偏極 SIDIS

- 測定量:PDF⊗破砕関数
- すでに測定が行われている

偏極 DY@COMPASS

- ・測定量:PDF⊗PDF
 - → 破砕関数が関与しない
- ・偏極標的を用いた世界初の偏極 DY
- ・valence u ,valence ū の DY が支配的

- 測定量:PDF⊗破砕関数
- すでに測定が行われている

→ COMPASS における偏極 DY の測定は破砕関数を用いずに valence u の PDF にアクセスできる

偏極 DY@COMPASS

- ・測定量:PDF⊗PDF
 - → 破砕関数が関与しない
- ・偏極標的を用いた世界初の偏極 DY
- ・valence u ,valence ūの DY が支配的

Collins による予言 (PLB536(2002)43):

 $f_{1T}^{\perp}|_{DY} = -f_{1T}^{\perp}|_{SIDIS}$ (Sivers) $h_1^{\perp}|_{DY} = -h_1^{\perp}|_{SIDIS}$ (Boer-Mulders)

⇒ TMD アプローチの重要なテスト

偏極 SIDIS

- 測定量:PDF⊗破砕関数
- ・ すでに測定が行われている

偏極 DY, SIDIS の両方で TMD-PDF を

同じ運動学領域で測定できるのは COMPASS だけ!!!

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

COMP AS

🎧 SIDIS を介した Sivers, Boer-Mulders 関数の測定結果 🏸

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

COMPASS 実験概要

- (一般的な)セットアップ
- 年表

偏極 ドレル・ヤン (DY) 実験

- パートンの横方向運動量に依存した (TMD) パートン分布関数 (PDF)
 - ▶ 偏極 DY を介した TMD-PDF の抽出
 - ▶ Semi-inclusive な深非弾性散乱 (SIDIS) を介した TMD-PDF の抽出
 - ▶ 偏極 DY vs SIDIS
 - ▶ SIDIS を介した Sivers, Boer-Mulders 関数の測定結果
 - COMPASS 偏極 DY 実験
 - ▶ セットアップ
 - ▶ タイムライン
 - 暫定的な結果

- 固体アンモニア(NH₃) 中の水素核
- ターゲットセル 55 × φ4 cm
- NH3 をセル2つに格納し、20 cm 間隔を開けて、ビームライン上に設置
- 最大偏極度 ± 85% 程度, 典型的には ± 75%

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

2014: 試験ラン(3週間) ハドロンアブソーバ, vertex detector 使用 偏極標的未使用

2015:データ収集(4ヶ月) 現在: 結果公開に向けて鋭意準備中 2017:DIS(4/3-4/7)にて公開予定 2018:データ収集予定

偏極標的 (NH₃) : 55 × φ4 cm × 2 セル

アルミニウム標的 (Al) :7× φ 9.4 cm

タングステンビームプラグ (W) : 120 × φ 9 cm

の解析の現状:反応点

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

山大理 糠塚元気 26 / 31

- DY が支配的,クリーンだが統計が少ない
- $2.5 < M_{\mu\mu} < 4$ GeV/c²: J/ ψ , ψ ' 領域
- 2 < M_{µµ} < 2.5 GeV/c²: Low Mass DY 領域 高統計だがバックグラウンド(物理:D→μ[±]X, J/ψ, 組み合わせ:π or K → µv)がある

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

山大理 糠塚元気 27 / 31

支配的な物理過程

 $M_{\mu\mu} > 4$ GeV/c² : High Mass DY 領域

DY が支配的, クリーンだが統計が少ない

- 2.5 < M_{μμ} < 4 GeV/c²: J/ψ, ψ' 領域
- 2 < M_{µµ} < 2.5 GeV/c²: Low Mass DY 領域 高統計だがバックグラウンド(物理:D→μ[±]X, J/ψ, 組み合わせ:π or K → µv)がある

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

山大理 糠塚元気 28 / 31

第11回高エネルギーQCD・核子構造勉強会

COMPASS実験の状況

山大理 糠塚元気 29 / 31

2015 年全統計 + 2018 年全統計(予想)

COMPASS 国際共同研究

・ COMPASS は 12 カ国から 200 人以上の研究者が参加する国際共同研究 グループで、核子構造とハドロンスペクトロスコピーの研究を行い、2002 年からデータ収集を続けている。

偏極 DY 実験

- COMPASS は同じ運動学的領域で、偏極 DY と偏極 SIDIS による TMD-PDF 測定ができる。
- ・2015年にデータ収集約4ヶ月間を行った。
- ・ 全統計の 3 割を用いた解析結果
 - ▶ NH₃ セルを分離するのに十分な位置分解能が得られた。
 - ▶ High Mass DY 領域(4~9 GeV/c²), Low Mass DY 領域(2~2.5 GeV/c²) で DY の解析を行う。
 - XN, Xπ, XF, QT 分布, 予想される統計/系統誤差を報告した。
- ・プレリミナリーな非対称度の結果を DIS 2017 で公開することを目標に, 鋭意解析中。