ILCのハドロン物理 (Hadron Physics at ILC)

Shunzo Kumano

High Energy Accelerator Research Organization (KEK) J-PARC Center (J-PARC) Graduate University for Advanced Studies (SOKENDAI) http://research.kek.jp/people/kumanos/

第11回高エネルギーQCD・構造関数勉強会 山形大学、2017年3月24日(金) https://indico2.riken.jp/indico/conferenceDisplay.py?confId=2463

March 24, 2017

Hadron physics with fixed targets at ILC

ILC-N: Electron-hadron deep inelastic scattering with fixed targets

There is a possible physics report for the TESLA project (2001) at http://tesla.desy.de/new_pages/TDR_CD/start.html.

TESLA-N: Physics at the stage of 2001

3 TESLA-N: Electron Scattering with Polarised Targets

The TESLA-N Study Group

M. Anselmino¹², E.C. Aschenauer⁴, S. Belostotski¹⁰, W. Bialowons⁴, J. Blümlein⁴,

V. Braun¹¹, R. Brinkmann A. Gute⁵, J. Harmsen³, R P. Kroll¹⁴, E. Leader⁷, B. W. Meyer³, N. Meyners⁴, L. Niedermeier¹¹, K. Ogar K. Rith⁵, D. Ryckbosch⁶, der Steenhoven⁹. D. von F

TES	SLA-N:	Electron Scattering with Polarised Targets at TESLA	161
3.1	Introd	luction	165
3.2	Physic	cs Prospects	167
	3.2.1	Transversity Distributions	167
	3.2.2	Helicity Distributions	171
	3.2.3	Polarized Gluon Distribution	174
	3.2.4	Higher Twist	176
	3.2.5	Fragmentation Functions	177
	3.2.6	Specific Deuteron Structure Functions	177
3.3	Layou	t of the Experiment	177
	3.3.1	Polarized Target	177
	3.3.2	Polarized Electron Beam	178
	3.3.3	Overview of the Apparatus	180
	3.3.4	Luminosity and Acceptance	182
	3.3.5	Resolution in Kinematic Variables	185
	3.3.6	Civil Engineering	186
3.4	Summ	nary	186
Bibl	liograph	Ŋ	188

Electron-ion collider projects and ILC

CERN

The EIC Science case: a report on the joint BNL/INT/JLab program

Gluons and the quark sea at high energies: distributions, polarization, tomography

arXiv:1108.1713 (551 pages)

BNL JLab

arXiv:1212.1701 (180 pages)

J. Phys. G: Nucl. Part. Phys. 39 (2012) 075001(632 pages)

CERN-OPEN-2012-015 LHeC-Note-2012-002 GEN Geneva, June 13, 2012

A Large Hadron Electron Collider at CERN

Report on the Physics and Design Concepts for Machine and Detector

LHeC Study Group

High Intensity Heavy Ion Accelerator Facility (HIAF)

Possible ILC-N projects should be investigated beyond the line of TESLA-N and also beyond the COMPASS project.

Possible ILC-N projects should be investigated beyond the line of TESLA-N and also beyond the COMPASS project.

 \rightarrow under investigations •••

Note: The field of 3D structure functions of hadrons has been developed after the TESLA-N project. Please look at Miyachi's talk files (previous talk in this workshop) for the details.

e⁺*e*⁻ hadron physics at ILC

Hadron structure functions, Fragmentations functions at KEKB

The Physics of the B Factories, A. V. Bevan *et al.* (S. Kumano 47th author) Eur. Phys. J. C 74 (2014) 3026 (928 pages).

Eur. Phys. J. C (2014) 74:3026
DOI 10.1140/epjc/s10052-014-3026-9

The European Physical Journal C

Review

The Physics of the *B* Factories

Received: 29 July 2014 / Accepted: 29 July 2014 \circledcirc The Author(s) 2014. This article is published with open access at Springerlink.com

$\mathbf{KEKB} \rightarrow \mathbf{ILC}$

- Form factors in the asymptotic region
- Fragmentation functions at large Q²
- Two-photon physics for hadron tomography
- Photon structure functions

Form factors in the asymptotic region

Belle collaboration (S. Uehara et al.), PRD 86 (2012) 092007.

 $\gamma + \gamma^* \to \pi^0$

$$F(Q^2) = \frac{\sqrt{2}f_{\pi}}{3} \int_0^1 dx \frac{\phi_{\pi}(x)}{xQ^2} + \mathcal{O}(1/Q^4)$$

ILC • Investigate the form factor in the asymptotic region • Discrepancies between Belle and BaBar • $\frac{0.35}{0.3}$

Fragmentation functions at large Q² @ILC

Fragmentation: hadron production from a quark, antiquark, or gluon

Fragmentation function is defined by

 $F^{h}(z,Q^{2}) = \frac{1}{\sigma_{tot}} \frac{d\sigma(e^{+}e^{-} \to hX)}{dz} \qquad z \equiv \frac{E_{h}}{\sqrt{s/2}} = \frac{2E_{h}}{Q} \quad (\text{Energy fraction} = \text{hadron energy scaled})$ σ_{tot} = total hadronic cross section $=\sum_{a}\sigma_{0}^{q}(s)\left[1+\frac{\alpha_{s}(s)}{\pi}\right]$ $\sigma_0^{q}(s) = \frac{4\pi\alpha^2}{s} \left[e_q^2 + (\gamma - Z \text{ interference}) + (Z \text{ term}) \right]$ Theoretically $F^{h}(z,Q^{2}) = \sum_{i} \int_{z}^{1} \frac{dy}{v} C_{i}\left(\frac{z}{v},Q^{2}\right) D_{i}^{h}(y,Q^{2})$

to the beam energy)

Recent progress

M. Hirai et al., PTEP 2016 (2016) 113B04

Prog. Theor. Exp. Phys. **2016**, 00000 (19 pages) DOI: 10.1093/ptep/0000000000

Impacts of B-factory measurements on determination of fragmentation functions from electron-positron annihilation data

M. Hirai^{1,2}, H. Kawamura^{3,4}, S. Kumano^{4,5}, and K. Saito²

N. Sato et al., PRD 94 (2016) 114004

First Monte Carlo analysis of fragmentation functions

from single-inclusive e^+e^- annihilation

N. Sato,¹ J. J. Ethier,² W. Melnitchouk,¹ M. Hirai,³ S. Kumano,^{4,5} and A. Accardi^{1,6}

Two-photon physics for hadron tomography

- H. Kawamura and S. Kumano, Phys. Rev. D 89 (2014) 054007.
- S. Kumano and Q.-T. Song, Research in progress.

Recent progress on origin of nucleon spin

"old" standard model

 $A_{\alpha}(x) = \alpha_{\alpha}(x) \quad \alpha_{\alpha}(x)$

BREAKING NEWS RHIC sees first evidence for non zero Δg

major contributor to proton spin - - - perhaps little room left for OAN

$$p_{\uparrow} = \frac{1}{3\sqrt{2}} \left(uud \left[2 \uparrow \uparrow \downarrow - \uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow \right] + \text{permutations} \right)$$

$$\Delta \overline{q}(x) = \overline{q}_{\uparrow}(x) - \overline{q}_{\downarrow}(x)$$
$$\Delta \overline{\Sigma} = \sum_{i} \int dx \left[\Delta q_{i}(x) + \Delta \overline{q}_{i}(x) \right] \rightarrow 1 \ (100\%)$$

20

p_T [GeV]

30

angular momentum next pages $\int_{0.01}^{0.05} dx \, \Delta g(x)$ NEW FIT 90% C.L. regio DSSV* 90% C.L. region DSSV 0.5 $Q^2 = 10 \text{ GeV}^2$ -0.5 -0.2 -0.1 -0 0.1 0.2 0.3 $\int_{0.05} dx \, \Delta g(x)$

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + L_{q,g}$

CNN (2014) Scientific American (2014)

A^{jet}

10

Wigner distribution and various structure functions

xf(x,Q²)

0.8

 $Q^2 = 10 \text{ GeV}^2$

Generalized Parton Distributions (GPDs)

$$\frac{p+p'}{2}, \ \Delta = p'-p$$

Bjorken variable $x = \frac{Q^2}{2p \cdot q}$
Momentum transfer squared $t = \Delta^2$
Skewdness parameter $\xi = \frac{p^+ - p'^+}{p^+ + p'^+} = -\frac{\Delta^+}{2P^+}$

GPDs are defined as correlation of off-forward matrix:

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p' \left| \overline{\psi}(-z/2)\gamma^{+}\psi(z/2) \right| p \right\rangle \Big|_{z^{+}=0, \overline{z}_{\perp}=0} = \frac{1}{2P^{+}} \left[H(x,\xi,t)\overline{u}(p')\gamma^{+}u(p) + E(x,\xi,t)\overline{u}(p')\frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2M}u(p) \right]$$
$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p' \left| \overline{\psi}(-z/2)\gamma^{+}\gamma_{5}\psi(z/2) \right| p \right\rangle \Big|_{z^{+}=0, \overline{z}_{\perp}=0} = \frac{1}{2P^{+}} \left[\tilde{H}(x,\xi,t)\overline{u}(p')\gamma^{+}\gamma_{5}u(p) + \tilde{E}(x,\xi,t)\overline{u}(p')\frac{\gamma_{5}\Delta^{+}}{2M}u(p) \right]$$

Forward limit: PDFs $H(x,\xi,t)|_{\xi=t=0} = f(x), \tilde{H}(x,\xi,t)|_{\xi=t=0} = \Delta f(x),$ **First moments:** Form factors

Dirac and Pauli form factors F_{1,F_2} Axial and Pseudoscalar form factors G_A, G_P Second moments: Angular momenta $\int_{-1}^{1} dx H(x,\xi,t) = F_1(t), \quad \int_{-1}^{1} dx E(x,\xi,t) = F_2(t)$ $\int_{-1}^{1} dx \tilde{H}(x,\xi,t) = g_A(t), \quad \int_{-1}^{1} dx \tilde{E}(x,\xi,t) = g_P(t)$

Sum rule:
$$J_q = \frac{1}{2} \int_{-1}^{1} dx x \Big[H_q(x,\xi,t=0) + E_q(x,\xi,t=0) \Big], \quad J_q = \frac{1}{2} \Delta q + L_q$$

Progress in exotic hadrons

qqMesonq³Baryon

q²q² q⁴q Tetraquark q⁴q Pentaquark q⁶ Dibaryon

q¹⁰q
e.g. Strange tribaryon

gg Glueball

- Θ⁺(1540)???: LEPS Pentaquark?
- Kaonic nuclei?: KEK-PS, ... Strange tribaryons, ...
- X (3872), Y(3940): Belle Tetraquark, DD molecule $\begin{vmatrix} c\overline{c} \\ D^0(c\overline{u})\overline{D}^0(\overline{c}u) \\ D^+(c\overline{d})D^-(\overline{c}d)? \end{vmatrix}$
- $D_{sJ}(2317), D_{sJ}(2460)$: BaBar, CLEO, Belle Tetraquark, DK molecule $\begin{bmatrix} c\overline{s} \\ D^0(c\overline{u})K^+(u\overline{s}) \end{bmatrix}$
- Z (4430): Belle
 - Tetraquark,...
- P_c (4380), P_c (4450): LHCb
 - $u\overline{c}udc, \overline{D}(u\overline{c})\Sigma_{c}^{*}(udc), \overline{D}^{*}(u\overline{c})\Sigma_{c}(udc)$ molecule?

uudds?

 K^-pnn, K^-ppn ?

 $D^+(c\overline{d})K^0(d\overline{s})$?

 $c\overline{c}u\overline{d}$, D molecule?

 K^-pp ?

Constituent-counting rule in perturbative QCD: Form factor

Consider the magnetic form factor of the proton

 $\langle p' | J^{\mu} | p \rangle \simeq \overline{u}(p') \gamma^{\mu} G_{\mu}(Q^2) u(p)$ at $Q^2 = -q^2 \gg m_{\mu}^2$ $G_{M}(Q^{2}) = \int d[x]d[y]\phi_{p}([y])H_{M}([x],[y],Q^{2})\phi_{p}([x])$ ϕ_p = proton distribution amplitude, H_M = hard amplitude (calculated in pQCD) In the Breit frame with $q = (0, \vec{q}), |\vec{p}| = |\vec{p}'| \equiv P \sim O(Q).$ $\phi([y],Q^2)$ $u^{\dagger}u = 2E \implies$ External quark line: $u \sim \sqrt{P} \sim \sqrt{Q}$ 0000 \boldsymbol{q} $\langle p' | J^{\mu} | p \rangle \simeq \overline{u}(p') \gamma^{\mu} G_{M}(Q^{2}) u(p) \sim (\sqrt{Q})^{2} G_{M}(Q^{2})$ 00000 q • Two quark propagators: $\frac{1}{O^2}$ $H([x], [y], Q^2)$ • Two gluon propagators: $\frac{1}{(Q^2)^2}$ $\phi([x],Q^2)$ p• Six external quark lines: $(\sqrt{Q})^6$ $\langle p' | J^{\mu} | p \rangle \sim \frac{1}{Q^2} \frac{\alpha_s(Q^2)}{(Q^2)^2} (\sqrt{Q})^6 = \frac{\alpha_s(Q^2)}{(Q^2)^{3/2}}$ $\Rightarrow G_M(Q^2) \sim \frac{1}{(\sqrt{Q})^2} \langle p' | J^{\mu} | p \rangle \sim \frac{1}{(Q^2)^{1/2}} \frac{\alpha_s(Q^2)}{(Q^2)^{3/2}} = \frac{\alpha_s(Q^2)}{(Q^2)^2} \sim \frac{1}{t^{n_N-1}}, \ n_N = 3, \ -t = Q^2$ Counting rule for the form factor: $G_M(Q^2) \sim \frac{1}{t^{n_N-1}}, n_N = 3$

Experimental studies of GDAs in future

 $\gamma\gamma \rightarrow h\overline{h}$ for internal structure of exotic hadron candidate h

Cross section: form factor dependence

 $\Phi_q^{h\bar{h}(I=0)}(z,\zeta,W^2) \propto F_h(W^2)$

Constituent-counting rule n = 2: ordinary meson n = 4: molecule or tetra-quark

KEKB-Belle measurement (2016)

M. Masuda et al., Phys. Rev. D 93 (2016) 032003 (arXiv:1508.06757).

Photon structure functions

Summary

e⁺e⁺ hadron physics → unique opportunities to hadron-structure physics in the perturbative region, hadron tomography, exotic hadron structure, fragmentation functions, …

 ILC-N hadron physics → still investigate uniqueness beyond the TESLA-N and COMPASS projects, although more precisions are expected than COMPASS measurements.

The End

The End