Borel resummation and Exact results in supersymmetric gauge theories Masazumi Honda (本多正純) כוז ויצביז WEIZMANN INSTITUTE OF SCIENCI

References:

- [1] M.H., "Borel Summability of Perturbative Series in 4D N=2 and 5D N=1 Supersymmetric Theories", PRL116, 211601(2016) (arXiv: 1603.06207 [hep-th])
- [2] M.H., "How to resum perturbative series in 3d N=2 Chern-Simons matter theories", PRD94, 025039 (2016) (arXiv:1604.08653 [hep-th])
- [3] M.H., arXiv:1709.nnnnn

7th, Sep.(=my birthday) RIMS-iTHEMS International Workshop on Resurgence Theory

In the last decade,

[thanks to localization method: '07 Pestun]

[∃]Many exact results in SUSY QFT

In the last decade,

³ Many exact results in SUSY QFT

Typically, for supersymmetric quantities,

(path integral) $\longrightarrow \int d^{|G|}x f(x)$

(|G|: rank of gauge group G)

In the last decade,

[∃]Many exact results in SUSY QFT

Typically, for supersymmetric quantities,

(path integral)
$$\longrightarrow \int d^{|G|}x f(x)$$

(|G|: rank of gauge group G)

In this talk, I will demonstrate

these exact results are useful for understanding properties of perturbative series in QFT

Perturbative series of exact results in QFT

Motivaitons:

- 1. We can practically get much perturbative information
- 2. We can also study perturbative series around nontrivial saddle points
- 3. We can check relation between resummation and exact results

[cf. some SU(2) cases: Russo, Aniceto-Russo-Schiappa]

4d N=2 and 5d N=1 theories on sphere

expansion by g_{YM} around instanton background

• 3d N=2 Chern-Simons theories on S³ & lens sp.

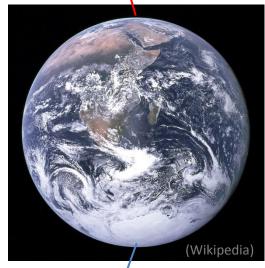
expansion by inverse CS levels

Summary of main results

Results on 4d N=2 SUSY theories (w/8 SUSY)

Set up:

- Theories w/ $\beta \leq 0$ and Lagrangians $(Z_{S^4} < \infty)$
- Perturbative expansion by g_{YM} around fixed # of instanton/anti-inst.



inst.

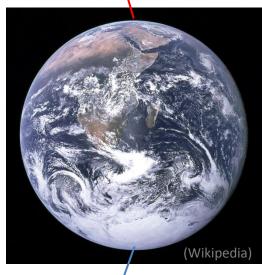
[M.H. '16]

anti-inst.

Results on 4d N=2 SUSY theories (w/8 SUSY)

Set up:

- Theories w/ $\beta \leq 0$ and Lagrangians $(Z_{S^4} < \infty)$
- Perturbative expansion by g_{YM} around fixed # of instanton/anti-inst.



inst.

[M.H. '16]

(similar for 5d case) [cf. some SU(2) theories: Russo, Aniceto-Russo-Schiappa]

anti-inst.

- Find explicit finite dimensional integral rep. of Borel trans. for various observables
- ^{\exists} Singularities only along R- \rightarrow Borel summable along R+ (for round S⁴)
- (Exact) = $\sum_{\text{instantons}}$ (Borel resum)

$$Z_{S^{4}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} da \ e^{-\frac{a^{2}}{g}} f^{(k,\bar{k})}(a),$$

$$\mathcal{B}Z_{S^4}^{(k,\overline{k})}(t) \propto f^{(k,\overline{k})}(a=\sqrt{t})$$

(anti-)instanton #

$$Z_{S^4}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} da \ e^{-\frac{a^2}{g}} f^{(k,\bar{k})}(a), \qquad \mathcal{B}Z_{S^4}^{(k,\bar{k})}(t) \propto f^{(k,\bar{k})}(a = \sqrt{t})$$
(anti-)instanton #

Ex.1) Pure SYM (trivial b.g.):

$$\mathcal{B}Z_{S^4}^{(0,0)}(t) \propto \sqrt{t} \prod_{n=1}^{\infty} \left(1 + \frac{4t}{n^2}\right)^{2n}$$

No singularities \longleftrightarrow Convergent expansion

$$Z_{S^4}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} da \ e^{-\frac{a^2}{g}} f^{(k,\bar{k})}(a), \qquad \mathcal{B}Z_{S^4}^{(k,\bar{k})}(t) \propto f^{(k,\bar{k})}(a = \sqrt{t})$$
(anti-)instanton #

Ex.1) Pure SYM (trivial b.g.):

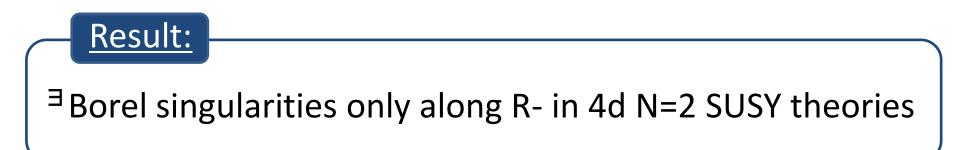
$$\mathcal{B}Z_{S^4}^{(0,0)}(t) \propto \sqrt{t} \prod_{n=1}^{\infty} \left(1 + \frac{4t}{n^2}\right)^{2n}$$

No singularities \longleftrightarrow Convergent expansion

Ex.2) SQCD (trivial b.g.):

$$\mathcal{B}Z_{S^4}^{(0,0)}(t) \propto \sqrt{t} \prod_{n=1}^{\infty} \frac{\left(1 + \frac{4t}{n^2}\right)^{2n}}{\left(1 + \frac{t}{n^2}\right)^{2N_f n}}$$

Interpretations

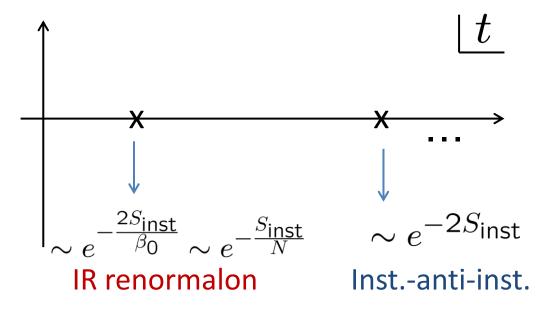


Agreement w/ recent conjecture on QCD-like theory &

Confusion compared w/ usual story of resummation

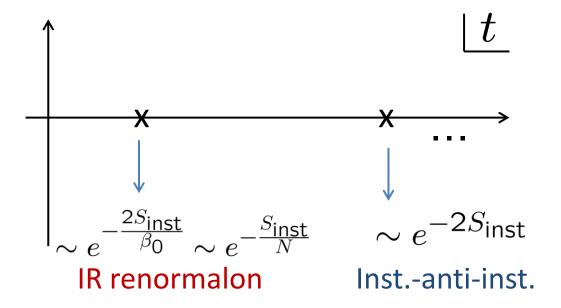
Nontrivial consistency w/ a conjecture on QCD

Borel plane in typical gauge theory :



Nontrivial consistency w/ a conjecture on QCD

Borel plane in typical gauge theory :

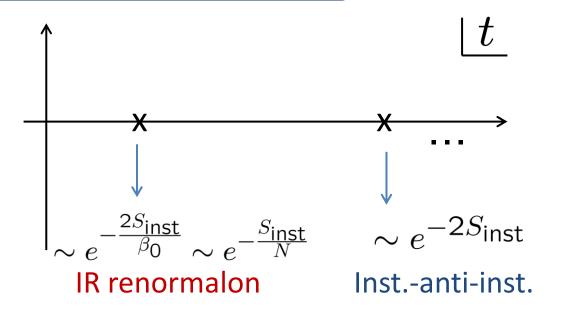


Conjecture: (IR renormalon) = (Combination of monopoles)

[Argyres-Unsal '12]

Nontrivial consistency w/ a conjecture on QCD

Borel plane in typical gauge theory :



Conjecture: (IR renormalon) = (Combination of monopoles)

[Argyres-Unsal '12]

But there is no such solution for $\mathcal{N}=2$ [Popitz-Unsal]

 \rightarrow No IR renormalon type singularities for $\mathcal{N}=2$?

Usually Borel singularities come from nontrivial saddles w/ the same topological numbers [cf. Lipatov '77]

Usually Borel singularities come from nontrivial saddles w/ the same topological numbers [cf. Lipatov '77]

Now we have $\int_{S^4} F \wedge F \propto k - \overline{k}$

Confusion?

Usually Borel singularities come from nontrivial saddles w/ the same topological numbers [cf. Lipatov '77]

Now we have
$$\int_{S^4} F \wedge F \propto k - \overline{k}$$

For example, around trivial saddle, we expect

$$\int Some l singularities from k \neq \overline{k}$$
$$\exists Borel singularities from k = \overline{k} \quad (namely, at t=2k)$$

But we do not have such singularities.

Results on 3d N=2 SUSY Chern-Simons theories

<u>Set up:</u>

(w/ 4 SUSY)

[M.H. '16]

• General Chern-Simons (CS) theories coupled to matters $(Z_{S^3} < \infty)$

Perturbative expansion by inverse CS levels

Results on 3d N=2 SUSY Chern-Simons theories (w/4SUSY)Set up:

- General Chern-Simons (CS) theories coupled to matters $(Z_{S^3} < \infty)$
- Perturbative expansion by inverse CS levels

$$S_{\theta}I(g) = \int_{0}^{e^{i\theta}\infty} dt \ e^{-\frac{t}{g}} \ \mathcal{B}I(t)$$

[M.H. '16]

- Find finite dimensional integral rep. of Borel trans.
- Usually non-Borel summable along R+

Result:

- But always Borel summable along (half-)imaginary axis
- (Borel resum. w/ $\theta = \pm \pi/2$) = (exact result)

$$Z_{S^{3}}(g) = \int_{-\infty}^{\infty} d\sigma \ e^{\frac{i \operatorname{sgn}(k)}{g}\sigma^{2}} f(\sigma),$$

$$\mathcal{B}Z_{S^3}(t) \propto f(\sigma = \sqrt{i \mathrm{sgn}(k)t})$$

$$Z_{S^{3}}(g) = \int_{-\infty}^{\infty} d\sigma \ e^{\frac{i \operatorname{sgn}(k)}{g}\sigma^{2}} f(\sigma), \qquad \mathcal{B}Z_{S^{3}}(t) \propto f(\sigma = \sqrt{i \operatorname{sgn}(k)t})$$

Ex.1) Pure SUSY CS:

$$\mathcal{B}Z_{S^3}(t) \propto \sigma \cdot \sinh^2(\sigma) \Big|_{\sigma = \sqrt{i \operatorname{sgn}(k)t}}$$

No singularities \longleftrightarrow Convergent expansion

$$Z_{S^{3}}(g) = \int_{-\infty}^{\infty} d\sigma \ e^{\frac{i \operatorname{sgn}(k)}{g}\sigma^{2}} f(\sigma), \qquad \mathcal{B}Z_{S^{3}}(t) \propto f(\sigma = \sqrt{i \operatorname{sgn}(k)t})$$

Ex.1) Pure SUSY CS:

$$\mathcal{B}Z_{S^3}(t) \propto \sigma \cdot \sinh^2(\sigma) \Big|_{\sigma = \sqrt{i \operatorname{sgn}(k)t}}$$

No singularities \longleftrightarrow Convergent expansion

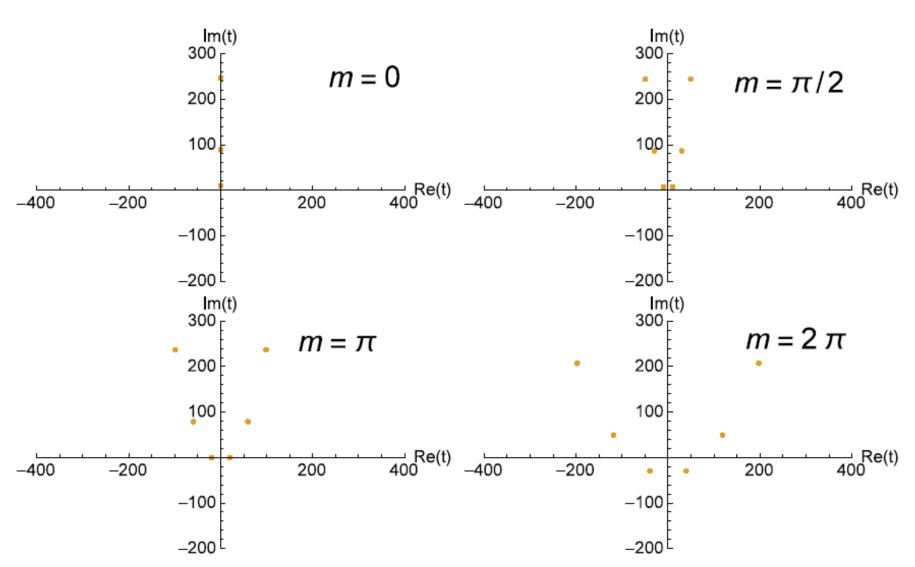
Ex.2) SQCD w/ hypers and real mass:

$$\mathcal{B}Z_{S^3}(t) \propto \left. rac{\sigma \cdot \sinh^2(\sigma)}{\left(\cosh rac{\sigma - m}{2} \cosh rac{\sigma + m}{2}
ight)^{N_f}}
ight|_{\sigma = \sqrt{i \operatorname{sgn}(k)t}}$$

Ex.2) SQCD w/ hypers and real mass

$$\mathcal{B}Z_{S^{3}}(t) \propto \frac{\sigma \cdot \sinh^{2}(\sigma)}{\left(\cosh \frac{\sigma - m}{2} \cosh \frac{\sigma + m}{2}\right)^{N_{f}}} \bigg|_{\sigma = \sqrt{i \operatorname{sgn}(k)t}}$$

I



Interpretation of Borel singularities (3d)

[M.H., to appear]

All the singularities can be explained by

complexified SUSY solutions

which are not on original contour of path integral but formally satisfy SUSY conditions: $Q\lambda = 0$, $Q\psi = 0$

Interpretation of Borel singularities (3d)

[M.H., to appear]

All the singularities can be explained by

complexified SUSY solutions

which are not on original contour of path integral but formally satisfy SUSY conditions: $Q\lambda = 0$, $Q\psi = 0$

Indeed their actions agree residues:

$$e^{-S} \sim \operatorname{Res} \left[\mathcal{BO}(t) \right]$$

The numbers also agree if we follow the rule:

<u>Contents</u>

- 1. Introduction & Summary
- 2. 4d N=2 SUSY theories
- 3. 3d N=2 SUSY Chern-Simons matter theories
- 4. Interpretation of Borel singularities (3d)
- 5. Summary & Outlook

Partition function of Superconformal QCD on S⁴

SU(N) SQCD w/ 2N-fundamental hypermultiplets

Exact result by localization method:

[Pestun '07]

$$Z_{\text{SQCD}}(g,\theta) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g}\sum_{j=1}^{N} a_j^2} \tilde{Z}(a) Z_{\text{inst}}(g,\theta;a)$$

$$Z_{\text{inst}}(g,\theta;a) = \sum_{k,\bar{k}=0}^{\infty} e^{-\frac{k+\bar{k}}{g} + i(k-\bar{k})\theta} Z_{\text{inst}}^{(k,\bar{k})}(a)$$

$$Z_{\mathsf{SQCD}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g}\sum_{j=1}^N a_j^2} \tilde{Z}(a) Z_{\mathsf{inst}}^{(k,\bar{k})}(a)$$

We are interested in small-g expansion of this



inst.

⊮ anti-inst.

Borel resummation & SUSY (Honda)

We would like to study small-g expansion of

$$Z_{\mathsf{SQCD}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g}\sum_{j=1}^N a_j^2} \tilde{Z}(a) Z_{\mathsf{inst}}^{(k,\bar{k})}(a)$$

<u>A naïve way:</u>

- 1. Compute perturbative expansion at all orders
- 2. Compute Borel transformation
- 3. Look at its analytic property

We would like to study small-g expansion of

$$Z_{\mathsf{SQCD}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g}\sum_{j=1}^N a_j^2} \tilde{Z}(a) Z_{\mathsf{inst}}^{(k,\bar{k})}(a)$$

<u>A naïve way:</u> <u>Our method:</u>

- 1. Compute perturbative expansion at all orders
- 2. Look at its analytic property. Find Borel trans. hidden
 - 3. Look at its analytic property

Borel trans. hidden in localization formula

$$Z_{\mathsf{SQCD}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g}\sum_{j=1}^N a_j^2} \tilde{Z}(a) Z_{\mathsf{inst}}^{(k,\bar{k})}(a)$$

Taking polar coordinate $a_i = \sqrt{t}\hat{x}_i$ w/ $(\hat{x}^i)^2 = 1$,

Borel trans. hidden in localization formula

$$Z_{\mathsf{SQCD}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g}\sum_{j=1}^N a_j^2} \tilde{Z}(a) Z_{\mathsf{inst}}^{(k,\bar{k})}(a)$$

Taking polar coordinate $a_i = \sqrt{t}\hat{x}_i$ w/ $(\hat{x}^i)^2 = 1$,

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} f^{(k,\bar{k})}(t)$$

Similar to the Borel resummation formula! Is this Borel transformation?

$$\left(f^{(k,\bar{k})}(t) = \int_{S^{N-1}} d^{N-1}\hat{x} h^{(k,\bar{k})}(t,\hat{x}), h^{(k,\bar{k})}(t,\hat{x}) = \tilde{Z}(a) Z^{(k,\bar{k})}_{\mathsf{inst}} \right|_{a^{i} = \sqrt{t}\hat{x}^{i}}$$

Borel resummation & SUSY (Honda)

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} f^{(k,\bar{k})}(t)$$

Is this Borel trans.?

More precisely, given
$$Z_{SQCD}^{(k,\overline{k})}(g) \sim \sum_{\ell=0}^{\infty} c_{\ell}^{(k,\overline{k})} g^{\sharp+\ell}$$
,

$$f^{(k,\bar{k})}(t) = \sum_{\ell=0}^{\infty} \frac{c_{\ell}^{(k,\bar{k})}}{\Gamma(\sharp+\ell)} t^{\sharp+\ell-1} ??$$

(analytic continuation)

We can prove that this is actually true.

Analytic property of Borel trans.

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} f^{(k,\bar{k})}(t), \ f^{(k,\bar{k})}(t) = \int_{S^{N-1}} d^{N-1}\hat{x} \ h^{(k,\bar{k})}(t,\hat{x})$$

For trivial b.g.,

$$h^{(0,0)}(t,\hat{x}) = \delta\left(\sum_{j} \hat{x}_{j}\right) \prod_{i < j} (\hat{x}_{i} - \hat{x}_{j})^{2} \prod_{n=1}^{\infty} \frac{\prod_{i < j} \left(1 + \frac{t(\hat{x}_{i} - \hat{x}_{j})^{2}}{n^{2}}\right)^{2n}}{\prod_{j} \left(1 + \frac{t(\hat{x}_{j})^{2}}{n^{2}}\right)^{2Nn}}$$

No singularities for $t \in R_+$ \implies Borel summable!!

<u>General theory w/ Lagrangians (& $\beta \le 0$)</u>

Suppose a theory w/ gauge group: $G = G_1 \times \cdots \times G_n$

$$Z_{S^4}(g,\theta) = \int_{-\infty}^{\infty} d^{|G|} a \ Z_{\mathsf{CI}}(g;a) \tilde{Z}(a) Z_{\mathsf{inst}}(g,\theta;a)$$
$$Z_{\mathsf{CI}}(g;a) = \exp\left[-\sum_{n=1}^{n} \frac{1}{q_n} \mathrm{tr}(a^{(p)})^2\right]$$

king polar coordinate
$$a^{(p)} - \sqrt{t_n} \hat{r}^{(p)}$$

Taking polar coordinate $a_i^{(p)} = \sqrt{t_p \hat{x}_i^{(p)}}$,

$$Z_{S^4}^{(\{k\},\{\bar{k}\})}(g) = \int_0^\infty d^n t \, e^{-\sum_p \frac{t_p}{g_p}} f^{(\{k\},\{\bar{k}\})}(t_1,\cdots,t_n)$$

Borel trans.
Borel trans.

Remark on non-conformal case

- g_{YM} is running
 Here g_{YM} is at scale 1/R_{sphere}

For example, in pure SYM case,

[cf. Pestun '07]

$$e^{-\frac{8\pi^2}{g_{\rm YM}^2} \operatorname{tr} a^2} \cdot Z_{1-\operatorname{loop}}^{\mathcal{N}=2^*}(a,m) \xrightarrow{mR_{S^4} \gg 1} e^{-\frac{8\pi^2}{\tilde{g}_{\rm YM}^2} \operatorname{tr} a^2} \cdot Z_{1-\operatorname{loop}}^{\operatorname{pure}\mathcal{N}=2}(a)$$
$$\frac{1}{\tilde{g}_{\rm YM}^2} = \frac{1}{g_{\rm YM}^2} - \frac{C_2}{8\pi^2} \log\left(mR_{S^4}\right)$$

Borel resummation & SUSY (Honda)

Relation to the exact result

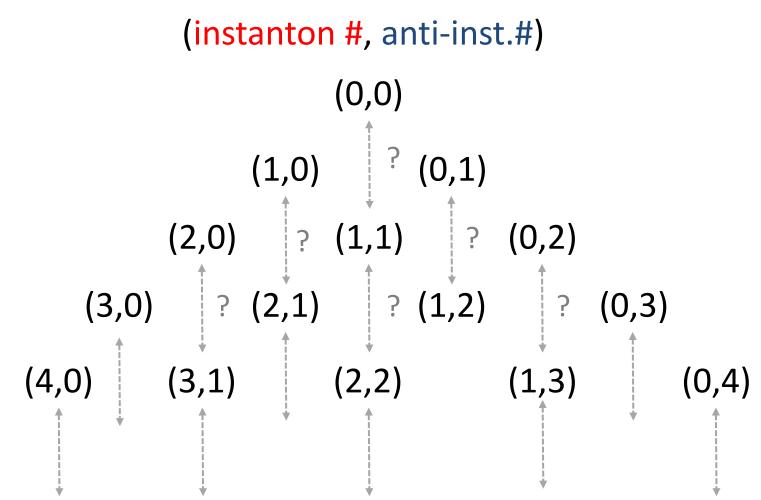
We have shown

(Borel resum. in sector w/ fixed inst./anti-inst. #)

(Truncation of whole exact result to the same sector)

Thus,

Resurgence triangle and our result



Every sector is Borel summable, unambiguous Every sector is isolated in some sense (at least from this viewpoint)

Other observables

Supersymmetric Wilson loop on S⁴

$$W = P \exp\left[\oint ds \left(iA_{\mu}\dot{x}^{\mu} + \Phi\right)\right]$$

• Bremsstrahrung function in SCFT on R⁴ [cf. Fiol-Gerchkovitz-Komargodski'15]

(Energy of quark) =
$$B \int dt \ \dot{a}^2$$

• Extremal correlator in SCFT on R⁴

[cf. Gerchkovitz-Gomis-Ishtiaque -Karasik-Komargodski-Pufu '16]

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_n \overline{\mathcal{O}} \rangle$$

• Partition function on squashed $S^4 \sim SUSY$ Renyi entrory

[cf. Hama-Hosomichi, Nosaka-Terashima]

[cf. Nishioka-Yaakov '13, Crossley-Dyer-Sonner, Huang-Zhou]

3d N=2 SUSY CS matter theory

Partition function of CS adjoint SQCD on S³

By localization method,

[Kapustin-Willett-Yaakov, Jafferis Hama-Hosomichi-Lee]

$$Z_{\text{SQCD}}(g) = \int_{-\infty}^{\infty} d^{N}\sigma \ e^{\frac{i \cdot \text{sgn}(k)}{g} \sum_{j=1}^{N} \sigma_{j}^{2}} \tilde{Z}(\sigma)$$
$$g \propto \frac{1}{|k|}$$

We are interested in small-g (large level) expansion of this

Borel trans. hidden in localization formula

$$Z_{\text{SQCD}}(g) = \int_{-\infty}^{\infty} d^N \sigma \ e^{\frac{i \cdot \text{sgn}(k)}{g} \sum_{j=1}^{N} \sigma_j^2} \tilde{Z}(\sigma)$$

Taking polar coordinate $\sigma_i = \sqrt{\tau} \hat{x}_i$

$$Z_{\text{SQCD}}(g) = \int_0^\infty d\tau \ e^{\frac{i\text{sgn}(k)}{g}\tau} f(\tau)$$

= $i\text{sgn}(k) \int_0^{-i\text{sgn}(k)\infty} dt \ e^{-\frac{t}{g}} f(i\text{sgn}(k)t)$

Similar to the Borel resummation formula but w/ different integral contour!

$$\left(f(\tau) = \int d^{N-1}\hat{x} h(\tau, \hat{x}), \quad h(\tau, \hat{x}) = \tilde{Z}(\sigma) \Big|_{\sigma^{i} = \sqrt{\tau}\hat{x}^{i}} \right)$$

$$Z_{\text{SQCD}}(g) = i \text{sgn}(k) \int_{0}^{-i \text{sgn}(k)\infty} dt \ e^{-\frac{t}{g}} f(i \text{sgn}(k)t)$$

Borel transformation?

By using the technique in 4d, we can actually prove

$$i \operatorname{sgn}(k) f(\tau) = \mathcal{B}Z_{\operatorname{SQCD}}(-i \operatorname{sgn}(k)\tau)$$

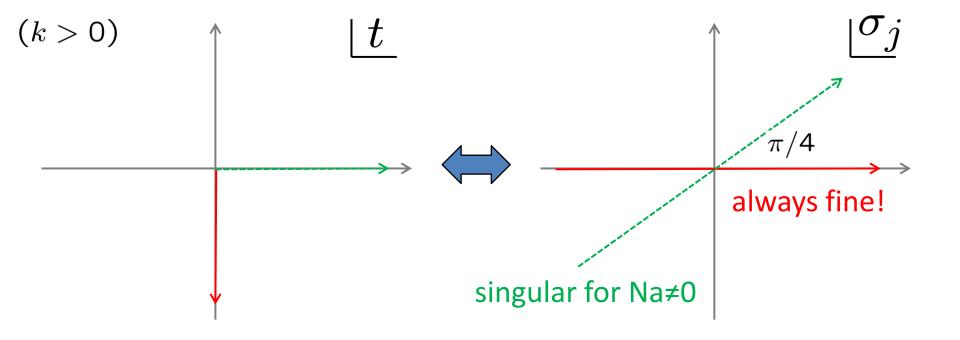
Namely,

$$Z_{\text{SQCD}}(g) = \int_0^{-i\text{sgn}(k)\infty} dt \ e^{-\frac{t}{g}} \mathcal{B}Z_{\text{SQCD}}(t)$$

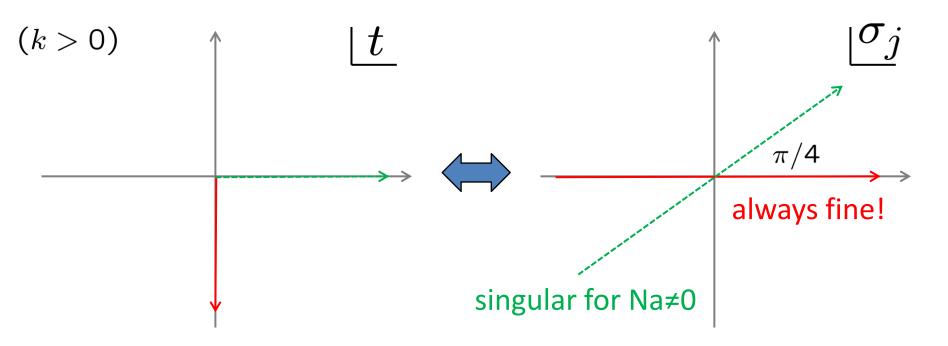
Analytic property of Borel trans.

$$Z_{\text{SQCD}}(g) = \int_{0}^{-i\text{sgn}(k)\infty} dt \ e^{-\frac{t}{g}} \mathcal{B}Z_{\text{SQCD}}(t), \quad \mathcal{B}Z_{\text{SQCD}}(t) = \int_{S^{N-1}} d^{N-1}\hat{x} \ \tilde{Z}\left(\sigma = \sqrt{i\text{sgn}(k)t}\hat{x}\right)$$
$$\tilde{Z}(\sigma) = \prod_{j=1}^{N} \frac{s_{1}^{\bar{N}_{f}}\left(\sigma_{j} + i(1-\bar{\Delta}_{f})\right)}{s_{1}^{N_{f}}\left(\sigma_{j} - i(1-\bar{\Delta}_{f})\right)} \frac{\prod_{i$$

Sufficient condition for Borel summability = Absence of singularities along the contour in $\tilde{Z}(\sigma)$



Analytic property of Borel trans. (Cont'd)



- When we have adjoint matters, it would be non-Borel summable along R+
- But it is always Borel summable along $\theta = -\pi/2$

General 3d N=2 CS matter theory

Suppose a theory w/ gauge group: $G = G_1 \times \cdots \times G_n$

$$Z_{S^3}(g) = \int_{-\infty}^{\infty} d^{|G|} \sigma \ Z_{Cl}(g;\sigma) \tilde{Z}(\sigma)$$
$$Z_{Cl}(g;a) = \exp\left[\sum_{p=1}^{n} \frac{i \cdot \operatorname{sgn}(k_p)}{g_p} \operatorname{tr}(\sigma^{(p)})^2\right]$$

Taking polar coordinate $\sigma_i^{(p)} = \sqrt{\tau_p} \hat{x}_i^{(p)}$,

$$Z_{S^{3}}(g) = \left[\prod_{p=1}^{n} \int_{0}^{-i \operatorname{sgn}(k_{p})\infty} d^{n}t \ e^{-\frac{t_{p}}{g_{p}}}\right] \mathcal{B}Z_{S^{3}}(t)$$

Borel summable along $\theta_p = -\frac{\operatorname{sgn}(k_p)\pi}{2}$

Borel resummation & SUSY (Honda)

We have shown

$$Z_{S^3}(g) = \left[\prod_{p=1}^n \int_0^{-i \operatorname{sgn}(k_p)\infty} d^n t \ e^{-\frac{t_p}{g_p}}\right] \mathcal{B}Z_{S^3}(t)$$

Thus,

(Exact result)

(Borel resummation along the directions)

Other observables

• SUSY Wilson loop on S³:

$$W = P \exp\left[\oint ds \left(iA_{\mu}\dot{x}^{\mu} + \Phi\right)\right]$$

• Bremsstrahrung function in SCFT on R³ [cf. Lewkowycz-Maldacena '13]

- 2-pt. function of U(1) flavor current in SCFT
- 2-pt. function of stress tensor in SCFT
- Partition function on squashed $S^3 \sim SUSY$ Renyi entropy
- Partition function on squashed lens space

Interpretation of singularities (3d)

[M.H., to appear]

Interpretation of poles (3d ellipsoid case)

All the poles are explained by complexified SUSY solutions:

Interpretation of poles (3d ellipsoid case)

All the poles are explained by complexified SUSY solutions:

$$\int 0 = Q\lambda = \left(\frac{1}{2}\epsilon_{\mu\nu\rho}F^{\nu\rho} - D_{\mu}\sigma\right)\gamma^{\mu}\epsilon - iD\epsilon - \frac{i}{f(\vartheta)}\sigma\epsilon$$
$$0 = Q\psi = -\gamma^{\mu}\epsilon D_{\mu}\phi - \epsilon\sigma\phi - \frac{i\Delta}{f(\vartheta)}\epsilon\phi + i\overline{\epsilon}F,$$

Especially, $\sigma \in \mathbf{R}$ on the original path integral contour.

Interpretation of poles (3d ellipsoid case)

All the poles are explained by complexified SUSY solutions:

$$\int 0 = Q\lambda = \left(\frac{1}{2}\epsilon_{\mu\nu\rho}F^{\nu\rho} - D_{\mu}\sigma\right)\gamma^{\mu}\epsilon - iD\epsilon - \frac{i}{f(\vartheta)}\sigma\epsilon$$
$$0 = Q\psi = -\gamma^{\mu}\epsilon D_{\mu}\phi - \epsilon\sigma\phi - \frac{i\Delta}{f(\vartheta)}\epsilon\phi + i\overline{\epsilon}F,$$

Especially, $\sigma \in \mathbf{R}$ on the original path integral contour. If we relax this, we have

$$F_{\mu\nu} = 0, \quad D = -\frac{1}{f(\vartheta)}\sigma, \quad F = 0,$$

$$\sigma = -i\left(mb + nb^{-1} + \frac{b + b^{-1}}{2}\Delta\right), \quad \gamma^{\mu}\epsilon D_{\mu}\phi + \epsilon\sigma\phi + \frac{i\Delta}{f(\vartheta)}\epsilon\phi = 0$$

 $(m,n\in \mathbf{Z}_{\geq 0},\ b$: squashing parameter)

 $e^{-S} \sim \operatorname{Res} \left| \mathcal{B} Z_{S^3}(t) \right|$

We can show

Summary & Outlook

<u>Summary</u>

How to resum perturbative series in SUSY gauge theories

<u>4d N=2 theories:</u>

- ^{\exists} Singularities only along R- \rightarrow Borel summable along R+ (for round S⁴)
- (Exact) = $\sum_{\text{instantons}}$ (Borel resum)

<u>3d N=2 CS matter theories:</u>

- Usually non-Borel summable along R+
- Always Borel summable along (half-)imaginary axis
- (Exact result) = (Borel resummation along the direction)
- •(Singularities) = (Complexified SUSY solutions)

- Less SUSY case?
- Other observables? [For 't Hooft loop, M.H.-D.Yokoyama, in preparation]
- How can we see convergence in planar limit?
- Expansion by other parameters? (such as 1/N)

4d N=2 theories:

Physical interpretation of poles in complex plane?

<u>3d N=2 CS matter theories:</u>

• Restriction to 3d N=4 case? [cf. Russo '12]

Thanks!

Borel resummation & SUSY (Honda)