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Resurgence for QFT

Lots of evidence in special cases:

Belief: QFT observables = resurgent transseries in some couplings

matrix models

QM (d=1 QFT)

 some SUSY theories

topological strings

Marino, Schiappa, Weiss …

Aniceto, Hatsuda, Marino, Schiappa, Vonk, …

Basar, Dunne, Kawai, Misumi, Nitta, Sakai, 
Takei, Sulejmanpasic, Unsal, Zinn-Justin …

Aniceto, Dorigoni, Hatsuda, 
Honda, Russo, Schiappa, …

Integrals with saddles Stokes, Dingle, Berry, Howls …

What about realistic QFTs with asymptotic freedom like QCD?



Basic resurgence questions for QCD 

(1) What is a useful expansion parameter λ?

(2) What kind of transseries should we expect?

In simpler cases studied so far, transmonomials restricted to

 {λ, 1/λ, log λ, e-1/λ }

Turns out in QCD we also need

as well, at the least!

Aitken, AC, 
Poppitz, Yaffe,
1707.08971



Outline
QCD coupling λ changes with energy scale. Most 

interesting observables are “low-energy” ones. 

Relevant coupling isn’t small.

Challenge: construct a useful semiclassical expansion for QCD + its cousins.

useful = first few orders already give good guide to expected behavior.

1.  Explain currently best-understood approach, 
giving its motivation and why we believe it works.

2.  Highlight physical and mathematical lessons.

Big difference from QM and special QFT/string examples.



Semiclassics requirements for QCD
Need coupling to be small at long distance

Keep as many features of QCD as many possible:

1. asymptotic freedom

2. quark confinement

3. chiral symmetry breaking

4. Lorentz invariance

5. No microscopic scalars

Turns out we can almost have it all.

Scalar fields  ⇒ Higgs mechanism ⇒  weak coupling ?

Works in EW part of SM + many SUSY theories, but not in QCD.

Lorentz-invariant route to weak coupling:



Adiabatic compactification
Break 4D Lorentz, but as little as possible!

R3

S1

NB: still have Lorentz invariance in R3 directions.

Unsal, Yaffe, Shifman, 
… 2008-onward

3 > 2 ⇒ symmetries can break spontaneously.

Large L:  some symmetries preserved, others spontaneously broken!

Want same pattern at small L for our expansion to be useful. 

If circle size L is small, get weak coupling by asymptotic freedom

Need d ≥ 3 non-compact directions to avoid Coleman-Mermin-Wagner thm.



Self-Higgsing

R3 S1

When YM compactified on S1,  Polyakov loop becomes an observable

Eigenvalues = classical moduli space 

Non-coincident eigenvalues ⇒ breaking SU(N) → U(1)N-1 
VEV of “A4”  produces a (compact) adjoint Higgs mechanism!

But we don’t get to choose eigenvalues:  theory picks own vacuum



Adiabatic compactification for YM

But at small L in pure YM dynamics force A4 = 0 ⟺ < tr Ω > ≠ 0

Options:  (a) add 1 heavy Dirac adjoint fermion with periodic BCs
(b) add appropriate double-trace deformation

Unsal + friends, 
2008-onward

Idea:  add something that leaves large L theory 
the “same”, but makes small L limit smooth

Resulting theories remains center-symmetric at small L

Confined phase at large L  ⟺  < tr Ω > ≈ 0 ; related to “center symmetry”.

Non-coincident eigenvalues of Ω ⇒ breaking SU(N) → U(1)N-1 
Adjoint Higgs mechanism driven by VEV of “A4” !

W-boson mass scale is mW = 2π/NL



Coupling flow with adiabatic compactification

The NLΛ << 1 regime gives a weakly-coupled theory at all scales!

large N 
volume 

independence

Semiclassically 
calculable 

regime

Flow for NLΛ ≪ 1

Flow for NLΛ ≫ 1

Λ (N L)-1
Q

λ(1/NL)

1
λ



Small L limit in perturbation theory
At long distances l  >>  N L ~ 1/mW

due to the center-symmetric background holonomy.

The light fields are Nc - 1 “Cartan gluons”

Small-L physics easiest to describe using 3D Abelian duality

(added fictitious p=0 mode for notational simplicity;  it decouples exactly.)

N2 - N W-bosons with masses mW ~ 1/NL; ignore for now.



Small L limit in perturbation theory
N - 1 Cartan gluons are classically gapless.

σi shift symmetry ⟺ conservation of magnetic charge.

But there are no magnetic monopoles in perturbation theory.

σi are massless to all orders in perturbation theory.



Non-perturbative mass gap

Due to SU(N) → U(1)N-1, instantons break up into N ‘monopole-instantons’

Associated ’t Hooft amplitudes look like

Magnetic-charge-carrying Mi events produce potential for σi

So the dual photons get a non-perturbative mass gap:

Unsal, 
Yaffe, Shifman, Poppitz,

Sulejmanpasic, 
…

Here p = 1, … , N-1.



Weak coupling confinement
Magnetic-charge-carrying Mi events produce potential for σi

Unsal, 
Yaffe, Shifman, Poppitz,

Sulejmanpasic, 
…

Have mass gap, preserved center symmetry

Also have finite string tension ~ mW e-1/λ 
for test quarks, independent of N.

Compare to e.g. Seiberg-Witten 
confinement, where tension ~ 1/N2 !

Poppitz,  Erfan Shalchian T., 1708.08821

We really have confinement!  



Expect a non-perturbative gap at large L as well - time to celebrate?

First, let’s dig into meaning of ‘p’ in

Aitken, AC, 
Poppitz, Yaffe,
1707.08971

‘color’ index ‘j’ is discrete Fourier transform of holonomy winding number ‘p'

Dual photon mass term looks like

Need to use inverse Fourier transform to diagonalize.

Quantum number issue



‘p’ is tied to the winding number of the Polyakov loop holonomy!

Aitken, AC, 
Poppitz, Yaffe,
1707.08971

So actually the dual photons are center symmetry eigenstates:

Ooops.  The light sector is all charged under center symmetry?

p = 1, … , N-1;  so no neutral states.

That’s alarming!

Quantum number issue



center p-charged states = p-winding string states.

At small fixed L, their energy is small.

Aitken, AC, 
Poppitz, Yaffe,
1707.08971

Answer:  bound states of dual photons!

But as L → ∞ , energy ~ L * p * (string tension) → ∞

What are the lightest states that have the right quantum 
numbers to extrapolate to finite energy states at large L?

Large L extrapolation

R3

S1



Set N = 2 to keep it simple.

Aitken, AC, 
Poppitz, Yaffe,
1707.08971

Light bound states

mγ ~ mW e-4π/λ,        ϵ ~ e-4π/λ

3D relativistic power counting: σ4 is relevant, σ8 marginal, σ8 irrelevant.

Indeed, they are completely ignored in literature.

center symmetry: σ → - σ

But they produce bound states!

May seem mass gap + ϵ ≪ 1  should ensure one can ignore interactions.



1d:  none ,    2d:  Σ6,  3d:  Σ4,   4d:  Σ10/3,    5d:  Σ3, …

Non-relativistic effective field theory

3d power counting:  |Σ|6 is irrelevant, |Σ|4 is marginal!

Binding energy small compared to mγ, so take non-relativistic limit

Marginal interactions in QM
[t] = -2 , [x] = -1 , [Σ] = (d-1)/2 , [m] = 0 

Non-relativistic power counting



Non-relativistic effective field theory

Coefficient of |Σ|4 , ϵ , runs with energy scale:

Asymptotic freedom, and hence “strong coupling” at long distances!

Binding energy small compared to mγ, so take non-relativistic limit



Effective field theory matryoshka doll

4d
YM



Effective field theory matryoshka doll

4d
YM

U(1)N-1 
3d QED



Effective field theory matryoshka doll

4d
YM

U(1)N-1 
3d QED

massi
ve

dual photons



Effective field theory matryoshka doll

4d
YM

U(1)N-1 
3d QED

massi
ve

dual photons

non-relativistic 
 3d EFT



In fact this is how Schrodinger equations are derived from QFT.

Light bound states
Strong coupling in the IR would be a disaster in a 
relativistic  QFT - couldn’t continue to calculate.

But here we have a non-relativistic QFT!

In two-particle sector we can actually sum all the Feynman 
diagrams exactly, and solve for the bound states.

But even though here asymptotic freedom is 
harmless, it’s quite funny that it appears!



Light bound states

Binding energies ~ (strong-coupling momentum)2/mγ

When N = 2, two-photon bound state is center neutral!

Should include iterated exponentials in transseries of YM.

Analogous results for any N.  Always get some center-neutral bound states.

Dual photon mass scale is indeed associated with single-
particle states which can extrapolate smoothly to large L!



Heavy state interactions
Larger mass states, involving W-bosons, described by 3d U(1)N-1 QED EFT

Λ-1

Λ-1 mγ-1L mW-1

V ~ 1/r V ~ r

V ~ 1/r V ~ r

W-boson interactions



Heavy bound states
Note:  in 3D log r is a confining force.  Can’t isolate individual W bosons.

Indeed, the 4D-variable interpolating 
operators for these states are color singlets.

Physical states must have vanishing charge

spectrum = `closed string’ W-boson bound states

Exactly what we should from confinement and match to large L



Energy-dependence of W-W bound states is interesting

Hagedorn behavior Aitken, AC, 
Poppitz, Yaffe,
1707.08971



Hagedorn behavior Aitken, AC, 
Poppitz, Yaffe,
1707.08971

Energy-dependence of W-W bound states is interesting
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Energy-dependence of W-W bound states is interesting

Hagedorn behavior

⇒ need λ log(λ) in transseries!

Number of states grows exponentially with energy:

“Hagedorn comes from confinement.”  True here, but 
bizarrely already comes from quantum-mechanics analysis.

“Hagedorn comes from weakly-coupled string theory”.
Not true here - happens even when N is finite!

Aitken, AC, 
Poppitz, Yaffe,
1707.08971

Rumer 1961

Folk 
theorem 2:

(Contrast with e-1/λ log(λ) from instanton physics)

Folk 
theorem 1:



To get to QCD, add nF color-fundamental fermions.

From YM to QCD

If fermions mass m = 0, get symmetry

Spontaneous 
chiral symmetry 

breaking

Spectrum has nF2 - 1 massless Nambu-Goldstone bosons

This is the story on R4.



Idea: to keep chiral symmetry breaking for any 
L, take “center-symmetric” BCs for quarks.

Continuity for QCD

If d = gcd(N, nF) > 1, keep Zd “color-flavor center” subgroup of 
ZN color center and ZnF cyclic flavor permutation symmetries

When nF < N, preserving  Zd leads to  ΧSB

AC, Schafer, Unsal 2016

AC, Sen, Wagman, 
Unsal, Yaffe 2017

Kashiwa, Kouno, 
Misumi, Takahashi, 

Yahiro, …, 2012-now

related ideas in Shimizu, 
Yonekura 2017

Fits with heuristic idea that confinement is tied up with ΧSB



Large L expectations

NF-1 ‘pions’ remain gapless, all others pick up positive gaps E2 ≳ 1/L2  

So expect NF -1 gapless NGBs at small L.

Twisted BCs break flavor symmetry to 

Twisted BCs = holonomies for background flavor gauge fields
= real (chiral-symmetry-preserving) mass terms for quarks

Can ensure all 3d matter fields have non-vanishing real masses by  U(1)Q twist

Necessary to make sure 3d QED EFT stays weakly coupled.



Fermion zero modes
AC, Schafer, 
Unsal, 2016

~↵1

~↵2

~↵3

~↵4Nc = NF = 4

This drives chiral symmetry breaking!

using index 
theorem of 

Poppitz+Unsal
2008



Look at symmetries preserved by 

Broken and unbroken symmetries

Monopole-instanton vertex invariance requires

AC, Schafer, 
Unsal, 2016

[U(1)V]Nf-1xU(1)Q is obvious.  What about axial transformations?  

(Can also see it from Abelian duality and how background 
chiral gauge fields enter mixed Chern-Simons terms.)



Broken and unbroken symmetries
So NF - 1 ‘dual photons’ pick up an exact shift symmetry.

chiral symmetry breaking = VEV for dual photon fields.

They remain exactly massless, even at non-perturbative level.

All topological molecules have uncompensated fermi 
zero modes. No “magnetic bions” exist here.

AC, Schafer, 
Unsal, 2016

In fact dual photon action can be written as

Σ’ is usual chiral field restricted to maximal torus, and here fπ is calculable:



Mesons and baryons
So we have χ-SB and pions.  What about other hadrons?

All the usual suspects are there!

Quarks pick up real masses ~ mW  from color and flavor holonomies 
+ small ~ (mW mq)1/2 e-4π^2/λ  chiral-breaking masses from X-SB.

So get mesons which look like non-relativistic  bound states

Circular quiver U(1)N-1 QED produces `open string’ meson states



Mesons and baryons

Also get baryons:

baryon mass ~ N mW

Baryon masses calculable.  

In progress: baryon interactions such that nuclear physics exists.



Conclusions
∃ small L limit of YM/QCD with unbroken center/CFC 

symmetries, as well as broken chiral symmetry.

Strong evidence for continuity in L, and hence for existence 
of  useful semiclassical expansion for QCD-type theories.

Surprises:

4D ΧSB at weak coupling is possible.

Hagedorn scaling arising from non-relativistic confining dynamics.

Transseries structure not the one assumed so far:

 {λ, 1/λ, log λ, e-1/λ, exp(-exp[+1/λ]), … }

Future:  better understanding of large N limit.  Very surprising features.

AC, Poppitz, 2016


