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SEMI-CLASSICS AND GROUND
STATE ENERGY

%
7 =e PH = /qu arle]
T
path-integral over real paths
Lump of “®”

suppressed by 64120

1
Z =14 VpBce 5% 4 §(Vﬁce_s(¢0>)2 + ...

7 6_5Eé\rP Bt 6_(_5‘/66—8(9250))

ENP _ Ve S(®o)



INCONSISTENCY WITH SUSY

H= Y {0120

b, >0

Perturbative corrections are vanishing, implying that if the
classical semi-classics is true, no non-perturbative semi-

classical contributions can exist.

But we know non-perturbative contributions can and do
exist in SUSY theories (e.g. spontaneous SUSY breaking). So

what is going on!



RESOLUTION: PICARD-
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A ZETA-DEFORMED DOUBLE
WELL AND SINE-GORDON
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with i p = e A G =l )
C=1 is the SUSY limit!

However when T is any positive integer, these systems are special
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(see also the related talk by Hideaki AOYAMA)



The sine-Gordon case
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Which obey the SU(2) algebra and for which
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Vanishes if C=1+2;
But j is either positive integer or half integer,
so C=1,2,... are special
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So when T are positive integers we can reduce the eigenvalue
equation to the equation involving the J-operators which obey
the SU(2) algebra.
These |-operators are special because they leave a subspace of
functions invariant. In particular plane-waves

umze—zmx7 m:_ja_j+17°°°7j
Transform into each other under the action of |-operators

like the states of the SU(2) group in the 2j+| dimensional
representation. In other words um act like spin-j basis states

This decomposes the solutions into solutions in this
subspace and the rest. Since this subspace is finite the
Schrodinger equation can be solved within it exactly
algebraically.
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Exactly solvable

Perfectly convergent series

e.g. C=4 «~ expansioning \
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fH

There is always an instanton
What happened with it?
Why doesn’t it contribute with e 2 corrections?
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THE REAL BION CONITRIBUTION

Dx(t) — Dz’ (t) x (quasi-)zeromodes
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B COMIPLEXCRICN
CONTRIBUTION

Integral saturated at T=0 where all approximations fail

We can continue g->-g like in the talk of Zinn-Justin — the
so-called Bogomolny—/Zinn-Justin (BZJ) perscription. This
makes both perturbation theory well defined as well as the
above integral saturate at T>>log(1/g).




However, there are conceptual problems with this because

|. Analytic continuation produces terms e'’® which are small
when g<0 but large when g is continued back to g>0.
These need to be dropped before continuing back. There
is no rational for doing this

2. Since the Borel sum of the perturbation theory can be
defined for infinitesimal continuation of g to avoid a pole
on the positive real axis of the Borel plane, one cannot
help wonder why an infinitesimal transformation is not
sufficient to cure the instanton—anti-instanton amplitude



ALTERNATIVE RATIONAL # 1

Dx(t) — Dx'(t) x (quasi-)zeromodes
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Treat with Picard-Lefschetz theory
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FRRSEENMS A0 BECOIRRECT
BECAUSE T WORKS

The above prescription seems to work beautifully, and gives wonderful agreement with
the asymptotic of the perturbation theory, while not causing conceptual problems
which | mentioned.

These instanton—anti-instanton configurations are really solutions of the complexified
equations of motion, giving the following heuristic picture of the two problems
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This played a vital role to show consistency of semi-classics in N=1 SUSY QM (with
Bahtash, Schafer, Dunne & Unsal), N=2 SUSY QM (with Bahtash, Poppitz & Unsal), in
SUSY Yang-Mills (with Bahtash, Schafer, Unsal), in CP(N-1) models (works of T. Fujimori,
S. Kamata, Tatsuhiro Misumi, Muneto Nitta, Norisuke Sakai), in Gross-Witten large N
expansion (Buividovich, Dunne,Valgushev), etc.
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There are still conceptual problems with this

This logic works for the C-deformed systems, but not for C=0 (although
it does work in this limit, but conceptually this shouldn’t be necessary)

The extremized action is complex, and since the imaginary part of the
action is conserved along both the upward flow (the thimble) and the
downward flow, the latter cannot intersect the original integration cycle

The action which is extremized has g-dependent pieces which should be
dropped when extremizing the action



Resolution: the critical point at “infinity”, the
C=0 case revisited
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Periodic boundary condition:
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After subtracting the
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COMMENDT ON THE
BOGOMOLNY-ZINN-JUSTIN PERSCRIPTION
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BEHAVIOR OF PERTURBATION
ORY AND QUASI-EXACT SOLVABILITY

with Can Kozcas, Yuya Tanizaki, Mithat Unsal
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The integer T theories are special

The perturbation theory is CONVERGENT for the first C states

In the case of Double Sine Gordon, a part of a spectrum is exactly solvable
(Turbiner 1988), and the exact solution is reproduced by the perturbation theory

In the case of the Tilted Double Well potential, the perturbation theory, although

convergent for lowest C states, does not give the correct answer, i.e. it is missing
the non-perturbative contribution which is unambiguous.



THE INTEGER CTHEORY

First C states/bands
convergent for §€N+and

asymptotic otherwise i i




TILIED DOUBLE WELL €=

(see also talk by Hideaki AOYAMA)




TILTED DOUBLE WELL  T=20

(see also talk by Hideaki AOYAMA)
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THE CHASHIRE-CAT RESURGENCE
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Enp = = (‘g) I'(¢)(cos O + eTP™¢)e=25%0/9Pg (g, ¢)
/ \
Due to real saddle Due to complex saddle
“The Real Bion” “The Complex Bion”

At T=1,2,3,... the “complex bion” is unambiguous and therefore, so must the

perturbation theory be unambiguous as well. In fact it is convergent, as we
already discussed.

Further cosO+exp(iTTC)=0, there are no non-perturbative contributions. This
is consistent with the exact solution of the low-lying spectrum.



SELF-RESURGENCE
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*a version of Alvarez-Dunne-Unsal (or A-Dun relation)
2014

* relates petrubation theory around trivial vacuum to the
“complex bion” (instanton—anti-instanton) fluctuation

* But a complex bion dictates late orders of perturbation
theory

* Hence we have a relation between early terms of PT and
late terms of PT



FRE SEEF-RESUIRGENC EALIR
ECHO-RESURGENCE
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THE SELF-RESURGENCE
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THE BenderWu PACKAGE:
STUDYING LARGE ORDERS

http://library.wolfram.com/infocenter/MathSource/9479/

Bender-Wu (1973): anharmonic oscillator
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THE BenderWu PACKAGE:
STUDYING LARGE ORDERS
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SELF-RESURGENCE
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FRE DIFEERENCE EOQUATFICONS

With Jie Gu arXiv:1709.00854

The BenderWu for difference equations

geometry Ilamiltonian operator
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Also look at the talks by R. Schiappa and Y. Hatsuda

All described genus-| curves!



Roughly number of digits of agreement between numerical
eigenvalue the Borel-Pade sum v.s. the order of Borel-Pade
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CONCLUSIONS

The nature of semi-classics is inextricably linked to the complexification of the path-integrals
The machinery of resurgence guarantees the reality of all real physical observables

Self-resurgent behavior: early-terms—Iate-terms relation in the same saddle-sector

SUSY and integer C-deformed theories are special, with resurgent cancellation not needed for
certain observables (i.e. energy-levels)

The resurgence mechanism is not lost, and is restored with slight deformation of such theories
Potential connection with emergent symmetries in QCD(adj) (Cherman, Unsal...)
Application of BenderWu to the quantum mirror curves

Is there self-resurgence in the quantum mirror curves!?



