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It originated in. . .

The delta expansion (Seznec-Zinn-Justin (1979), Kleinert (1992),
Bender-Duncan-Jones (1993), and many others) applied to the
anharmonic oscillator:

H =
p2

2
+

ω2

2
x2 +

g
4

x4, g > 0.

Split H by introducing an artificial parameter Ω:

H =
p2

2
+

Ω2

2
x2 + δ

[
ω2 − Ω2

2
x2 +

g
4

x4
]
.

Compute, say the ground state energy E0, as a power series of of δ to an
order N; set δ = 1 at the end.
The real answer E0 should not depend on Ω, but the finite order
approximation E (N)

0 does.
So, fix Ω order by order.
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Various criteria to fix Ω order by order

Principle of minimal sensitivity (Stevenson (1981)):

∂E (N)
0

∂Ω
= 0.

Fastest apparent convergence (Duncan-Jones (1992)):

E (N)
0 − E (N−1)

0 = 0.

Scaled delta expansion (Guida-Konishi-H.S. (1994)):

Ω = ωCNγ .
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The delta expansion can be constructed from PT

Note that the delta expansion can be constructed by simply making the
substitutions,

ω2 → Ω2 + δ(ω2 − Ω2), g → δg,

in the conventional perturbation series,

E0 ∼ ω

∞∑
n=0

cn

( g
ω3

)n
,

and then expanding it w.r.t. δ (and setting δ = 1).

We find

E (N)
0 = ω

N∑
n=0

cn

( g
ω3

)n (ω
Ω

)3n−1 N−n∑
k=0

(
1 − ω2

Ω2

)k
Γ(3n/2 + k − 1/2)

Γ(3n/2 − 1/2)Γ(k + 1)
.

Perturbation series to order N suffices!
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Conventional perturbation series

The conventional perturbation series

E0 ∼ ω

∞∑
n=0

cn

( g
ω3

)n
,

is terribly diverging as (here, I used the method of Bender-Wu (1969))

c0 =
1
2
, c1 =

3
16

, c2 = −
21

128
, c3 =

333
1024

, c4 = −
30885
32768

, c5 =
916731
262144

,

c6 = −
65518401
4194304

, c7 =
2723294673

33554432
, c8 = −

1030495099053
2147483648

, c9 =
54626982511455

17179869184
,

c10 = −
6417007431590595

274877906944
, c11 =

413837985580636167
2199023255552

, c12 = −
116344863173284543665

70368744177664
,

c13 =
8855406003085477228503

562949953421312
, c14 = −

1451836748576538293163705
9007199254740992

,

c15 =
127561682802713500067360049

72057594037927936
, c16 = −

191385927852560927887828084605
9223372036854775808

,

c17 =
19080610783320698048964226601511

73786976294838206464
, c18 = −

4031194983593309788607032686292335
1180591620717411303424

,

c19 =
449820604540765836160529697491458635

9444732965739290427392
,

c20 = −
211491057584560795425148309663914344715

302231454903657293676544
, . . .
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The (scaled) delta expansion converges very quickly!

The relative error for g/ω3 = 4.0, γ = 0.35 (Guida-Konishi-H.S. (1994)):
Similar behavior is observed for other criteria for Ω.
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Delta expansion as a resummation method

It appears that the delta expansion gives rise to a resummation method.

Convergence of the scaled delta expansion (Guida-Konishi-H.S. (1994),
inspired by Duncan-Jones (1992)): If

Ω = ωCNγ ,

and
1
3
< γ <

1
2
, C > 0,

or
γ =

1
3
, C ≥ αcg1/3, αc ≃ 0.5708751028937741,

then E (N)
K (K : energy level) converges to the exact value EK .

One can show that the error |EK − E (N)
K | → 0 as N → 0 by using an exact

expression for the energy (Loeffel-Martin-Simon-Wightman (1968)):

EK = c0ω +
g
π

ˆ 0

−∞
dg′ Im EK (g′)

g′(g′ − g)
.
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The order dependent mapping method
(Seznec-Zinn-Justin (1979), Le Guillou-Zinn-Justin
(1983))

Introduce a conformal mapping in the coupling constant place:

g = ρF (λ), F (λ) ∼ λ+ O(λ2).

The artificial parameter ρ is then fixed order by order by requiring, for
instance,

E (N)
0 (ρ)− E (N−1)

0 (ρ) = 0.

It can be seen that this method is equivalent to the delta expansion, if we
choose

F (λ) =
λ

(1 − λ)3/2 , ρ =
g

(Ω/ω)(Ω2/ω2 − 1)
.

The convergence proof applies: ρ = gC′/Nγ′
with

1 < γ′ <
3
2
, C′ > 0, or γ′ = 1, C′ ≤ 1/α3

c .
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How about the unbounded potential?

Anharmonic oscillator with a negative quartic term:

H =
p2

2
+

ω2

2
x2 − g

4
x4, g > 0.

E0 acquires the imaginary part, because of the quantum tunneling.
Kleinert et al. applied the delta expansion to this, and observed that it
reproduces the imaginary part for strong couplings g ≳ 0.1.

Convergence can be proven for g > g0 ≃ 0.1 (g−2/3
0 is the radius of

convergence of the strong coupling expansion due to the Bender-Wu
singularity).
It thus cannot replace the WKB/bounce calculus for weak couplings
g ≪ 1:

Im E0 ∼ −

√
8
πg

exp
(
− 4

3g

)(
1 − 95

96
g + O(g2)

)
.
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Tunneling vs perturbation theory?

The WKB/bounce formula,

Im E0 ∼ −

√
8
πg

exp
(
− 4

3g

)(
1 − 95

96
g + O(g2)

)
,

vanishes in all orders of the expansion in g; usually regarded
“non-perturbative”.

However, the anharmonic oscillator with a positive quartic term:

H =
p2

2
+

ω2

2
x2 +

g
4

x4, g > 0.

is Borel summable. The negative quartic case would be obtained by the
analytic continuation, g → −g.
If so, we may take “perturbation theory monism”（摂動論一元論）at least
in this system; PT should saturate.
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Tunneling vs perturbation theory?

In fact, the WKB/bounce formula for g ≪ 1 tells us the large order
behavior of PT:

E0 ∼
∞∑

n=0

cngn, cn
n→∞∼ −

√
6
π3

(
3
4

)n

Γ(n + 1/2).

The saturation of PT suggests:

Im E0 for weak g ≪ 1 (WKB/bounce) ⇔ large order behavior of cn

Im E0 for strong g ≃ 1 (difficult!) ⇔ small order cn

(quite similar flavor to Tin Sulejmanpasic’s self-resurgence)
This PT approach provides a systematic improvement of the bounce
calculus, that is difficult:
We have to resolve the mixing between the interaction among bounces
and PT around bounces; ex. 2 bounces (Bogomolny, Zinn-Justin)

Im E0|2 bounces ∼ ±6
g

exp
(
− 8

3g

)
.

⇐ Resurgence!?
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calculus, that is difficult:
We have to resolve the mixing between the interaction among bounces
and PT around bounces; ex. 2 bounces (Bogomolny, Zinn-Justin)

Im E0|2 bounces ∼ ±6
g

exp
(
− 8

3g

)
.

⇐ Resurgence!?
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Im E0 from cn

The Borel transform

B(z) ≡
∞∑

n=0

cn

n!
zn

possess a fractional branch point

B(z) ∼ −2
√

2
π

(z0 − z)−1/2 + · · · , z0 =
4
3

corresponding to the bounce solution.

The Borel integral along the positive real axis,

E0 =
1
g

ˆ ∞

0
dz e−z/gB(z),

thus develops the imaginary part because of the branch cut. The
integration path is taken along the upper side of the cut.
Here, we implicitly assumed that all singularities on the Borel transform
are on the real positive axis.
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Im E0 from cn

We compute PT coefficients cn to some order N.

The naive approach,

B(z) =
N∑

n=0

cn

n!
zn

does not work, because the radius of convergence of this series is z0; we
need the analytic continuation for z > z0.
To avoid this analytic continuation, we consider a conformal mapping on
the Borel z plane (Loeffel (1976)):

z = 4z0
λ

(1 + λ)2 .

This maps the whole cut plane into a unit disk on the λ-plane.
The singularity z0 is mapped to λ = 1 and the radius of convergence of

B(z) =
∞∑

k=0

dkλ
n, dk =

k∑
n=0

(−1)k−n Γ(k + n)
(k − n)!Γ(2n)

(4z0)
n cn

n!
,

is now 1.
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Im E0 from cn

The radius of convergence of the sum

B(z) =
∞∑

k=0

dkλ
n, dk =

k∑
n=0

(−1)k−n Γ(k + n)
(k − n)!Γ(2n)

(4z0)
n cn

n!
,

is now 1.

The Borel integral is carried out along the upper unit semi circle (the
convergence circle).
Parametrizing λ = eiθ, we arrive at

Im E0 =
z0

g

ˆ ∞

0
dθ exp

(
−z0

g
1

cos2 θ/2

)
sin θ/2

cos3 θ/2

N∑
k=0

dk sin kθ,

z0 = 4/3 is the bounce action.
This is our formula.
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The order N vs the logarithm of the relative error

• g = 0.08, ◦ g = 0.3, □ g = 0.6.
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g vs Im E0 normalized by the leading bounce calculus

◦ N = 5, • N = 15, the solid line; exact value, the broken line; the
two-loop bounce.
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Extension to the field theory

D-dimensional O(N) symmetric λϕ4-theory:

H =

ˆ
dD−1x

[
1
2
π2 +

1
2
(∂iϕ)

2 +
1
2

m2ϕ2 − 1
4!
(ϕ2)2

]
, g > 0.

The leading bounce calculus gives rise to (setting m = 1)

Im E = −ANCD,N

(
S0

2πg

)(D+N−1)/2

e−S0/g .

Corresponding to this imaginary part, the Borel transform

B(z) =
∞∑

n=0

cn

Γ(n + (D + N)/2)
zn, E ∼

∞∑
n=0

cngn,

develops the square-root branch point,

B(z) = − 1√
π

ANCD,N
S1/2

0

(2π)(D+N−1)/2 (S0 − z)−1/2 + · · · .
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Extension to the field theory

Assuming that the branch point is the singularity closest to the origin,
using the conformal mapping trick, we arrive at

Im E =

(
S0

g

)(D+N)/2 ˆ π

0
dθ exp

(
−S0

g
1

cos2 θ/2

)
× sin θ/2

cosD+N+1 θ/2

N∑
k=0

dk sin kθ,

dk =
k∑

n=0

(−1)k−n Γ(k + n)(4S0)
n

(k − n)!Γ(2n)Γ(n + (D + N)/2)
cn,

where

S0 =


8, D = 1,
35.10269, D = 2,
113.38351, D = 3.
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cn in D = 2

We calculated vacuum bubble diagrams to five loops.

Fig. 4

(a) (b)

(c) (d) (e)
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Result for D = 2 and N = 1

g vs Im E0 normalized by the leading bounce calculus.
◦ N = 2, ■ N = 3, • N = 4.

No definite idea. . .
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Gaussian propagator model (H. Yasuta, Phys. Lett. B
418, 145 (1998) [hep-th/9707161])

The Gaussian propagator model (Bervillier-Drouffe-Zinn-Justin (1978))

S =

ˆ
dDx

[
1
2
ϕ(x)e−∆ϕ(x)− g

4!
ϕ(x)4

]

The bounce calculus and perturbative expansion to none loops are
available.
The formula

Im E =

(
A0

g

)(D+1)/2 ˆ π

0
dθ exp

[
−A0

g
1

cos2(θ/2)

]
× sin(θ/2)

cosD+2(θ/2)

N∑
k=0

dk sin(kθ),

where

dk =
k∑

n=0

(−1)k−n Γ(k + n)(4A0)
n

(k − n)!Γ(2n)Γ(n + (D + 1)/2)
cn.
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Result for D = 1

g vs Im E0 normalized by the leading bounce calculus.
□ N = 4, ◦ N = 5, • N = 8.
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Result for D = 2

g vs Im E0 normalized by the leading bounce calculus.
□ N = 4, ◦ N = 5, • N = 8.
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Result for D = 3

g vs Im E0 normalized by the leading bounce calculus.
□ N = 4, ◦ N = 5, • N = 8.
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Result for D = 4

g vs Im E0 normalized by the leading bounce calculus.
□ N = 4, ◦ N = 5, • N = 8.
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Summary

Suggested by extensive studies in 70’s–90’s on the large order behavior
of PT and resummation methods. . .

we constructed a formula which gives rise to the tunneling rate from
perturbative coefficients in systems with an unbounded potential.
It systematically improves the WKB/bounce calculus for the quartic
potential QM.
The situation was not clear for field theories. . .
and since then for 20 years we left the investigation incomplete.
Presumably, it is now the time to reflect the logic, especially on the effect
of the renormalization. . .
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of the renormalization. . .
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