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Introduction
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Two approaches to gauge theories:

• Lattice gauge theory  (I have nothing to say in this talk)

• Sum over perturbation around every classical solution
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Introduction
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a0,kg

2k + e�c1/g
2 X

a1,kg
2k + e�c2/g

2 X
a2,kg

2k + · · ·

Perturbation around
the lowest action

Perturbation around
other classical solutions

After resummation, we hopefully get a sensible answer
which makes sense for any (possibly large) value of     .

trans-series expansion 

g

g : coupling constant
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Introduction
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First of all, each term of the trans-series expansion 
must be well-defined. 

But they are not well-defined due to IR divergences!
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Example: Instantons on      .         R4

We want to compute the vacuum energy as a function
of the theta angle ✓

The          can have importance for cosmology if we replaceE(✓)

✓ ! (string) axion, inflaton,…

exp(�E(✓)Vol) =

Z
[DA]e�S

S =

Z
d

4
x

1

2g2
tr(Fµ⌫F

µ⌫) +
i✓

32⇡2
✏

µ⌫⇢�tr(Fµ⌫F⇢�)

Remark:
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Instanton computation of 

b1 =
11

3
N for SU(N)

⇢ : instanton size

The integral over the instanton size     is ill-defined
due to IR divergence at

⇢
⇢ ! 1

µ : RG scale

E(✓) ⇠ �
Z

d⇢

⇢5
(⇢µ)b1e

� 8⇡2

g2
cos(✓) + · · ·

E(✓)
[’t Hooft,1976]

[see e.g. Coleman’s book]

Example: Instantons on      .         R4
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Hand-waving argument:

“The IR divergence is due to strong dynamics in IR and
somehow it should be cutoff at the dynamical scale.
Hopefully the result would give a qualitatively right answer.”

Trans-series expansion is ill-defined for vacuum energy:

E(✓) ⇠ · · ·+1IR · e�
8⇡2

g2
cos(✓) + · · ·

Example: Instantons on      .         R4
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“The IR divergence is due to strong dynamics in IR and
somehow it should be cutoff at the dynamical scale.
Hopefully the result would give a qualitatively right answer.”

Introduction
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Hand-waving argument:

WRONG!!!

E(✓) ⇠ · · ·+1IR · e�
8⇡2

g2
cos(✓) + · · ·

Trans-series expansion is ill-defined for vacuum energy:

Example: Instantons on      .         R4
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Introduction
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The correct theta dependence of the vacuum energy
[Witten,1980,1998]

Actually there exists many metastable vacua labeled by
integer             with vacuum energy

(in large N limit)

(in large N limit)

E(✓) ⇠ ⇤4✓2

E`(✓) ⇠ ⇤4(✓ + 2⇡`)2
` 2 Z

E`(✓)Each            is not a      periodic function of ✓2⇡

Example: Instantons on      .         R4
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What is a framework which may have well-defined 
trans-series expansion without IR divergences?

Strategy:    [many people in the audience] 
compactify the space in a way there is no IR divergence.

• We will consider                     with twist      

• The running coupling is evaluated at the length scale 
of       :   small radius → weak couplingT 3

Rtime ⇥ T 3
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Short Summary
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4d SU(N) Yang-Mills

compactificationT 2

2d              sigma model CPN�1

     with twisted
boundary condition
S1

Confinement at
weak coupling

twist by 1-form symmetry
('t Hooft magnetic flux)

IR divergence is eliminated by twisted boundary condition.

T 3 compactification
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Sigma model
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L = hij@µ�
i@µ�j

Sigma model Lagrangian:

Propagator:

IR divergences analogous to 4d Yang-Mills:

• Log IR divergence of propagator at 

[Coleman,1973]

h�i(x)�j(0)i ⇠
Z

d

2
k

(2⇡)2
e

ikx

k

2

• Instanton integral is also divergent

k ! 0

�i(    : sigma model field)

(The essence of the “no Goldstone boson theorem”)
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Twisted compactification
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Homogeneous coordinates of CPN�1

It has global symmetry ZN ⇢ SU(N)

[z1, z2, · · · , zN ]

[z1, z2, · · · , zN ] ! [e2⇡i/Nz1, e
4⇡i/Nz2, · · · , e2N⇡i/NzN ]

Twisted compactification on     : 
boundary condition is twisted by the above       transformation

S1

x 2 S

1

[· · · , zk(x+ 2⇡), · · · ] = [· · · , e2⇡ik/Nzk(x), · · · ]

ZN

[Dunne-Unsal,2012]
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Twisted compactification
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x 2 S

1

This boundary condition kills all zero modes
→no IR divergence at all.

[· · · , zk(x+ 2⇡), · · · ] = [· · · , e2⇡ik/Nzk(x), · · · ]

time
R

space
S1 with twist by ZN



/ 47

     : homogeneous coordinates

Classical vacua
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Classical vacua are given by the fixed points of the twisting.

[· · · , zk, · · · ] independent of 

[· · · , zk, · · · ] = [· · · , e2⇡ik/Nzk, · · · ]

x 2 S

1Vacuum:

    discrete vacua: fixed points on              by symmetryCPN�1

Pk = [0, · · · , 0,
k
1, 0, · · · , 0]

N

zk

� =

(k = 1, 2, · · · , N)
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Quantum vacua
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Degeneracy of classical vacua is lifted by
fractional instantons.

P1

P2

P3

PN

± 1

N
instanton

± 1

N
instanton

CPN�1

[Eto-Fujimori-Isozumi-Nitta-Ohashi-Ohta-Sakai,…]



/ 47

Quantum vacua
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Due to fractional instantons, the true quantum vacua are

|Pki : classical vacuum at the point Pk

|`i =
NX

k=1

e2⇡ik`/N |Pki

! (✓ + 2⇡`)2

E`(✓) / � cos(

✓ + 2⇡`

N
)

(in large N limit)

Perfect agreement with large N result!

Vacuum energy:

` 2 ZN
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Compactification of Yang-Mills
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Let’s compacfity 4d Yang-Mills on a torus
and perform KK reduction.

T 2

(Classical) massless modes: 
Flat connections               of the gauge field on T 2Fµ⌫ = 0
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Compactification of Yang-Mills
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Theorem 1 [Looijenga]

As an algebraic variety, the moduli space of SU(N) flat 
connections on      is given by   T 2 CPN�1

Theorem 2 (Crude statement) [Friedman-Morgan-Witten]

Yang-Mills instanton on              is essentially given by
              instanton on      .

T 2 ⇥ ⌃
CPN�1

(For more precise statements see their paper.)

⌃ ⌃(     : Riemann surface)
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1-form Z_N symmetry
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[z1, z2, · · · , zN ] ! [e2⇡i/Nz1, e
4⇡i/Nz2, · · · , e2N⇡i/NzN ]

The         global symmetry of              ZN CPN�1

It turns out that this is realized by dimensional reduction 
of 1-form center symmetry of SU(N) Yang-Mills

U ! e2⇡i/NU

: Wilson lineU

A little more details are discussed later.
e2⇡i/N : in the center        of SU(N)ZN
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Correspondence in 4d/2d
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4d SU(N) Yang-Mills

compactificationT 2

2d              sigma model CPN�1

• Instantons
•      symmetryZN

Correspondence on

These properties are enough to guarantee the argument
of the next slide:
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Quantum vacua of Yang-Mills
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P1

P2

P3

PN

± 1

N
instanton

± 1

N
instantonYang-Mills

|`i =
NX

k=1

e2⇡ik`/N |Pki

E`(✓) / � cos(

✓ + 2⇡`

N
)

` 2 ZNQuantum vacua:
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Reminder of Situation
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4d SU(N) Yang-Mills

compactificationT 2

2d              sigma model CPN�1

     with twisted
boundary condition
S1

Confinement at
weak coupling

Yang-Mills theory is put on Rtime ⇥ T 3

T 3 compactification
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What are the states in Yang-Mills in the box       ?|Pki T 3

Yang-Mills flat connections
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Lowest energy states

Fµ⌫ = 0

Flat connections on T 3 = S1
A ⇥ S1

B ⇥ S1
C

(UA, UB , UC) :Wilson lines

Characterized by              matrices

UA,B,C = exp i

Z

SA,B,C

Aµdx
µ

N ⇥N
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1-form center symmetry
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ZN 1-form center symmetry

• 1-form symmetry acts on line operators like Wilson lines 
(ordinary “0-form” symmetry acts on local operators)

• center symmetry is, roughly, the symmetry
U ! e2⇡i/NU

: Wilson lineU

e2⇡i/N : in the center        of SU(N)ZN
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Twist by 1-form symmetry
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How can we implement twisted compactification by
the 1-form center symmetry?

I’m going to give a rough explanation.
Please don’t care subtle details (because I don’t remember).

[’t Hooft,1979]
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Twist
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UB(xC + 2⇡) = e

2⇡i/N
UB(xC)

Twisted boundary condition by 1-form symmetry

xC
S1
C

S1
B

UB(xC)
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Twist
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UB(2⇡)UB(0)

UC

U�1
C

UB(2⇡) = UCUB(0)U
�1
C

xC = 0 xC = 2⇡

(if              )Fµ⌫ = 0
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(The       have trivial commutation relations in our twist.)

Twist
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Combining them and defining                        , we getUB := UB(0)

UCUB = e2⇡i/NUBUC

UAUB = UBUA

UAUC = UCUA

UA

UB(2⇡) = UCUB(0)U
�1
C

•  

•  

UB(2⇡) = e2⇡i/NUB(0)
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Classical vacua
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UCUB = e2⇡i/NUBUC

UAUB = UBUA

UAUC = UCUA

Classical vacua are solutions of the commutation relations
up to gauge transformations:

If UB~v = ei↵~v then UB(UC~v) = ei↵�2⇡i/N (UC~v)

Algebra: UC may be regarded as “lowering operator”
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Classical vacua
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Solutions up to gauge transformation

UB = diag(1, e2⇡i/N , e4⇡i/N ...)

UC = (�i+1,j)

UA = e2⇡ik/N , k = 1, 2, · · · , N

It turns out that      classical vacua are

UA = e2⇡ik/N |Pki

[Witten,1982]

N
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Confinement
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tr(UA) = Ne2⇡ik/N 6= 0

tr(UB) = tr(UC) = 0

The center symmetry is broken by the nonzero
vacuum expectation value of              at each 
classical vacua

tr(UA)

Definition:
confinement center symmetry unbroken

How about in our case?

|Pki

(Part of) relevant gauge invariant operators:
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Confinement
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P1

P2

P3

PN

± 1

N
instanton

± 1

N
instantonYang-Mills

:confinement

|`i =
NX

k=1

e2⇡ik`/N |Pki ` 2 ZNQuantum vacua:

h`|tr(UA)|`i = 0
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Remarks
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The center symmetry restoration itself is not surprising 
because all the spatial directions are compactified.

The points are:

• We realized it in completely weakly coupled regime

• Our results are expected to be continued to large volume
    (assuming resurgence and mass gap)

• I will later discuss an example of center symmetry 
breaking in the presence of fermions. 
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Adjoint fermions
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Let’s include fermions       in the adjoint representation.

Just for simplicity, in this talk I discuss the case of 
a single adjoint fermion

N=1 Super-Yang-Mills

�

Axial symmetry

� ! e2⇡i/2N�Z2N :
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Axial current
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@µJ
µ = N · 1

16⇡2
trFµ⌫F⇢�✏

µ⌫⇢�

@µJ̃
µ = 0

J̃µ = Jµ �N · CSµ

CSµ : Chern-Simons

Naive axial current

Conserved axial current

@µ(CS
µ) =

1

16⇡2
trFµ⌫F⇢�✏

µ⌫⇢�

Jµ ⇠ �̄�5�
µ�
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Axial charge
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Axial charge:

± 1

N
instantonYang-Mills

Pk

Pk+1

Z
CS =

k + 1

N
mod 1

Z
CS =

k

N
mod 1

Q =

Z
d

3
xJ̃

0

=

Z
d

3
xJ

0 �N

Z
CS
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Axial charge
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|Pki are eigenstates of the axial charge e2⇡iQ/N

Q : defined only modulo N (due to Chern-Simons)

e2⇡iQ/N : well-defined charge for discrete 

e2⇡iQ/N |Pki = e2⇡ik/N |Pki

Z2N
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Axial v.s. center symmetry
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|Pki : eigenstates of axial charge

|`i =
NX

k=1

e2⇡ik`/N |Pki : eigenstates of 
  center symmetry (confinement)

In Hilbert space, there is no simultaneous eigenstate of
the axial symmetry and  the center symmetry!
One of them (or both of them) is always 
spontaneously broken.
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Thermal phase transition
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Finite temperature scenario
[Komargodski-Sulejmanpasic-Unsal]

[Shimizu-Yonekura]
T : temperature

The equality is possible only for 1st order transition

broken

T
deconfine

 T
chiral

broken

Zcenter

Zaxial

Tchiral

T
deconfine
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Remarks
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• More deep reason behind it is a mixed anomaly 
between axial and center symmetry

• It is also possible to constrain phase transitions with 
fermions in the fundamental representation               
(massless QCD!).

• For details, please see our paper

[Shimizu-Yonekura]

[Gaiotto-Kapustin-Seiberg-Willett]
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Summary
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A setup which is free from IR divergences 
reproduce qualitative features of confinement in 
Yang-Mills even at weak coupling regime.

Vacuum structure has rich phenomena such as

• Nontrivial     angle dependence of vacuum energy
• Relation between confinement and axial symmetry 

✓


