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1. Introduction

The aim of this talk is to relate the Gauss hypergeometric function and
Borel resummed WKB solutions.

The Gauss hypergeometric function 2F1(a, b, c; z) is a standard solution of
the hypergeometric differential equation.

If we introduce a large parameter in the hypergeometric differential
equation suitably, we can construct WKB solutions of the equation.

These formal solutions are Borel summable under suitable generic
conditions. Taking the Borel sum, we have analytic solutions of the
hypergeometric differential equation.

2F1(a, b, c; z) can be expressed explicitly as a linear combination of the Borel
resummed WKB solutions.

As an application, we obtain asymptotic expansion formulas of the Gauss
hypergeometric function with respect to the parameter.
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2. The hypergeometric differential equation

• The hypergeometric differential equation:

(2.1) x(1 − x)
d2w
dx2
+ (c − (a + b + 1)x)

dw
dx
− abw = 0,

where a, b, c ∈ C. Regular singular at x = 0, 1,∞.
• The hypergeometric series (or function): (c , 0,−1,−2, . . . )

(2.2) 2F1(a, b, c; x) =
∞∑

n=0

(a)n(b)n

(c)nn!
xn,

where (a)n = a(a + 1) · · · (a + n − 1) =
Γ(a + n)
Γ(a)

, etc.

⋄ The radius of convergence = 1.
Thus 2F1(a, b, c; x) defines a holomorphic function on {x; |x| < 1}.
(If a or b ∈ Z≤0, 2F1(a, b, c; x) is a polynomial of x.)

⋄ 2F1(a, b, c; x) defines a holomorphic function on the universal covering of
C − {0, 1}.
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⋄ 1
Γ(c) 2F1(a, b, c; x) is an entire function of a, b and c.

• Characteristic exponents (Riemann scheme):
0 1 ∞
0 0 a

1 − c c − a − b b


• Standard solutions of (2.1) (notation of BMP):

u1 = 2F1(a, b, c; x),
u2 = 2F1(a, b, a + b + 1 − c; 1 − x),

u3 = (−x)−a
2F1

(
a, a + 1 − c, a + 1 − b;

1
x

)
,

u4 = (−x)−b
2F1

(
b, b + 1 − c, b + 1 − a;

1
x

)
,

u5 = x1−c
2F1(a + 1 − c, b + 1 − c, 2 − c; x),

u6 = (1 − x)c−a−b
2F1(c − a, c − b, c + 1 − a − b; 1 − x).

(Six of Kummer’s 24 solutions.)
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• Standard bases of solution space of (2.1):

(u1, u5), (u2, u6), (u3, u4) (a, b, c : generic)

• Connection formulas:

(u1, u5) = (u2, u6)


Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

Γ(2 − c)Γ(c − a − b)
Γ(1 − a)Γ(1 − b)

Γ(c)Γ(a + b − c)
Γ(a)Γ(b)

Γ(2 − c)Γ(a + b − c)
Γ(a − c + 1)Γ(b − c + 1)

 ,

(u1, u5) = (u3, u4)


Γ(c)Γ(b − a)
Γ(c − a)Γ(b)

Γ(2 − c)Γ(b − a)
Γ(1 − a)Γ(b + 1 − c)

eiπ(1−c)

Γ(c)Γ(a − b)
Γ(c − b)Γ(a)

Γ(2 − c)Γ(a − b)
Γ(1 − b)Γ(a + 1 − c)

eiπ(1−c)

 ,

. . . . . .
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3. A quick review of the exact WKB analysis

• Consider the differential equation in the complex domain

(3.1)
(
− d2

dx2
+ η2Q

)
ψ = 0.

Here η (= 1/ℏ) is a positive large parameter and Q =
N∑

j=0

η−jQj(x) is a

polynomial of η−1 with rational coefficients Qj (j = 0, 1, . . . ,N).

• Assume:

G(x)Qj(x) (j = 1, 2, . . . ,N) are polynomials in x, where Q0(x) =
F(x)
G(x)

with

coprime polynomials F(x), G(x).

•WKB solutions:

(3.2) ψ = exp
(∫

S(x, η)dx
)
.
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• Associated Riccati equation:

(3.3)
dS
dx
+ S2 = η2Q.

• Formal solutions: S =
∞∑

j=−1

η−jSj constructed recursively by

S2
−1 = Q0,(3.4)

Sj+1 = −
1

2S−1

dSj

dx
+

j∑
k=0

Sj−kSk − Qj+2

 , j = −1, 0, 1, 2, . . . .(3.5)

(Qj = 0 for j > N)

According to the choice of the leading term S−1 = S(±)
−1
= ±

√
Q0, we have two

formal solutions

S(±) =

∞∑
j=−1

η−jS(±)
j

to the Riccati equation.
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• Normalization

Sodd :=
1
2

(S(+) − S(−)) =:
∞∑

j=−1

η−jSodd, j,(3.6)

Seven :=
1
2

(S(+) + S(−)) =:
∞∑

j=0

η−jSeven, j.(3.7)

Then we have S(±) = ±Sodd + Seven and

(3.8) Seven = −
1
2

d
dx

log Sodd.

Thus we can take normalization of the integration of Seven as −1
2

log Sodd.

WKB solution normalized at a generic point x0 ∈ C:

(3.9) ψ
(x0)
± :=

1√
Sodd

exp
(
±

∫ x

x0

Sodddx
)
.
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• Some basic notions:

⋄ a (simple) turning point⇐⇒ a (simple) zero of Q0

⋄ a Stokes curve⇐⇒ an integral curve of Im
√

Q0dx = 0 emanating from
a turning point

⋄ a Stokes region⇐⇒ a region surrounded by Stokes curves

⋄ a regular singular point⇐⇒ a singular point r such that (x − r)2Q0 is
regular at x = r

WKB solution normalized at a simple turning point a ∈ C:

(3.10) ψ± :=
1√
Sodd

exp
(
±

∫ x

a
Sodddx

)
,

where the integration is understood as a half of the contour integral
starting from x in the second sheet of the Riemann surface of

√
Q0 going

back to x in the first sheet detouring the turning point.
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• The Borel resummation

⋄ Under some conditions, a suitably normalized WKB solution ψ is Borel
summable in each Stokes region (Koike-Schäfke).

⋄ The Borel sum of ψ in a Stokes region D is denoted by ΨD.

• Connection formula (Voros [V])

II

a
I

⋄ ψ±: WKB solutions normalized at a simple
turning point a

⋄ ΨD
±: The Borel sums of ψ± in D = I, II.

⋄ If Re
∫ x

a

√
Q0dx > 0 on the boundary Stokes

curve between I and II, then we have

ΨI
+
= ΨII

+
+ i ΨII

− ,

ΨI
− = Ψ

II
− .

In this case, we say that ψ+ is dominant (ψ− is recessive) on the Stokes
curve.
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•WKB solutions normalized at a regular singular point

Assume that Q0 has a double pole at x = r and (x − r)2Qj (j = 1, 2, . . . ,N) are
holomorphic at x = r.

⋄ Define ρ = ρ0 + η
−1ρ1 + η

−2ρ2 + · · · by

ρ = Res
x=r

√
Q

 Q =
N∑

j=0

η−jQj

 .
By Proposition 3.6 in Kawai-Takei [KT], we have

Res
x=r

Sodd = ση

with

σ = ρ

√
1 +

1
4ρ2η2

.

⋄WKB solutions normalized at the regular singular point x = r:

ψ(r)
± :=

(x − r)±ση√
Sodd

exp
(
±

∫ x

r

(
Sodd −

ση

x − r

)
dx

)
.
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• Recessive WKB solution at the regular singular point x = r

We assume Re ρ0 > 0. Then ψ(r)
+

is recessive on any Stokes curve flowing
into x = r.

⋄ By the connection formula, the recessive WKB solution does not have
Stokes phenomena on the Stokes curves.

Theorem 3.1 ([ATT2])

Set ψ̃(r)
+

:= (x − r)−
1
2−σηψ(r)

+
. There is a neighborhood U of x = r such that ψ̃(r)

+

is Borel summable in U − {r} and x = r is a removable singularity of the
Borel sum Ψ̃(r)

+
. Hence it is holomorphic in U × {η; Re η >> 0}. Moreover

Ψ̃
(r)
+

(r, η) = ψ̃(r)
+

(r, η) = (ση)−
1
2

holds.
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• Analytic solutions at the regular singular point r and WKB solutions

⋄ The characteristic exponents of our equation at x = r are
1
2
± ση.

⋄ There exist two independent analytic solutions Φ± of the forms

Φ±(x, η) = (x − r)
1
2±σηΦ±,0(x, η)

of (3.1) such that Φ±,0(x, η) are holomorphic in a neighborhood of x = r and
Φ±,0(r, η) = 1.

⋄ By Theorem 3.1, the Borel sum Ψ(r)
+

of ψ(r)
+

near x = r has the form

Ψ
(r)
+

(x, η) = (x − r)
1
2+σηΨ̃

(r)
+

(x, η),

where Ψ̃(r)
+

(x, η) is holomorphic near x = r and Ψ̃(r)
+

(r, η) = (ση)−
1
2 .

Theorem 3.2 ([ATT2])

Under the assumptions and notation given above, we have the relation

Φ+(x, η) = (ση)
1
2Ψ

(r)
+

(x, η)

in a neighborhood of x = r.

Remark: If Re ρ0 < 0, we have to exchange “+” and “−”.
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4. Exact WKB analysis of the hypergeometric differential equation

•We apply Theorem 3.2 to the hypergeometric differential equation

(4.1) x(1 − x)
d2w
dx2
+ (c − (a + b + 1)x)

dw
dx
− abw = 0.

Introduce a large parameter η by setting

a = α0 + αη, b = β0 + βη, c = γ0 + γη.

Eliminate the first order term:

w = x−
c
2 (1 − x)−

1
2 (a+b−c+1)ψ.

Equation for ψ:
(
− d2

dx2
+ η2Q

)
ψ = 0. Here Q = Q0 + η

−1Q1 + η
−2Q2 with

Q0 =
(α − β)2x2 + 2(2αβ − αγ − βγ)x + γ2

4x2(x − 1)2
,

Q1 =
(α − β)(α0 − β0)x2 + (2(αβ0 + α0β) − βγ0 − β0γ − γα0 − γ0α + γ)x + γ(γ0 − 1)

2x2(x − 1)2
,

Q2 =
(α0 − β0 + 1)(α0 − β0 − 1)x2 + 2(2α0β0 − β0γ0 − γ0α0 + γ0)x + γ0(γ0 − 2)

4x2(x − 1)2
.
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We assume (α, β, γ) < E0 ∪ E1 ∪ E2, where

E0 = {(α, β, γ) ∈ C3 | α β γ (α − β)(α − γ)(β − γ)(α + β − γ) = 0},
E1 = {(α, β, γ) ∈ C3 | Re αRe βRe(γ − α)Re(γ − β) = 0},
E2 = {(α, β, γ) ∈ C3 | Re(α − β)Re(α + β − γ)Re γ = 0}.

Then there are two distinct turning points a0, a1 and no Stokes curves
connect turning point(s).

We take the branch of
√

Q0 as

Res
x=0

√
Q0 =

γ

2
.

Then we have

Res
x=0

Sodd =
γ0 − 1 + γη

2
=

c − 1
2

and

Res
x=1

Sodd = −
α0 + β0 − γ0 + (α + β − γ)η

2
= −a + b − c

2

if we take the branch cut for
√

Q0 suitably.
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Normalization of WKB solutions:

⋄WKB solutions normalized at a0 (a simple turning point):

ψ± =
1√
Sodd

exp
(
±

∫ x

a0

Sodddx
)
,

⋄WKB solutions normalized at the origin:

ψ(0)
± =

x±
1
2 (c−1)√
Sodd

exp
(
±

∫ x

0

(
Sodd −

c − 1
2x

)
dx

)
.

⋄WKB solutions normalized at x = 1:

ψ(1)
± =

(x − 1)±(c−a−b)√
Sodd

exp
(
±

∫ x

1

(
Sodd −

c − a − b
2(x − 1)

)
dx

)
.
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⋄ Dominance:

Re γ > 0 =⇒ ψ+ is recessive at x = 0 (←→ u1 )

Re γ < 0 =⇒ ψ− is recessive at x = 0 (←→ u5 )

Theorem 4.1

(i) If Re γ > 0, then

2F1(a, b, c; x) =
√

c − 1
2

x−
c
2 (1 − x)−

1
2 (a+b−c+1)Ψ

(0)
+

holds near the origin. Here Ψ(0)
+

denotes the Borel sum of the WKB solution
ψ(0)
+

normalized at the origin.

(ii) If Re γ < 0, then

x1−c
2F1(a − c + 1, b − c + 1, 2 − c; x) =

√
c − 1

2
x−

c
2 (1 − x)−

1
2 (a+b−c+1)Ψ

(0)
−

holds near the origin. Here Ψ(0)
− denotes the Borel sum of the WKB solution

ψ(0)
− normalized at the origin.
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Re (α + β − γ) > 0 =⇒ ψ− is recessive at x = 1 (←→ u2 )

Re (α + β − γ) < 0 =⇒ ψ+ is recessive at x = 1 (←→ u6 )

Theorem 4.2

(i) If Re (α + β − γ) > 0, then

2F1(a, b, a + b − c + 1; 1 − x) =
√

a + b − c
2

x−
c
2 (1 − x)−

1
2 (a+b−c+1)Ψ

(1)
−

holds near x = 1. Here Ψ(1)
− denotes the Borel sum of the WKB solution ψ(1)

−
normalized at x = 1.

(ii) If Re (α + β − γ) < 0, then

(1−x)c−a−b
2F1(c−a, c−b, c−a−b+1; 1−x) =

√
c − a − b

2
x−

c
2 (1−x)−

1
2 (a+b−c+1)Ψ

(1)
+

holds near x = 1. Here Ψ(1)
+

denotes the Borel sum of the WKB solution ψ(1)
+

normalized at x = 1.

19 / 37



Introduction The hypergeometric differential equation A quick review of the exact WKB analysis Exact WKB analysis of the hypergeometric differential equation

The first statement of Theorem 4.1 gives the relation between the
hypergeometric function 2F1(a, b, c; x) and the WKB solution ψ(0)

+
normalized

at the origin when Re γ > 0.

We consider the following two questions:

Q1: What is the relation between 2F1(a, b, c; x) and the WKB solutions ψ±
normalized at the simple turning point a0 when Re γ > 0?

Q2: What happens when Re γ < 0?
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Answer to Q1:
Formally we have

ψ(0)
± = exp(±V0)ψ±

with

V0 =

∫ a0

0

(
Sodd −

c − 1
2x

)
dx +

1
2

(c − 1) log a0

and
ψ(1)
± = exp(±V1)ψ±

with

V1 =

∫ a0

1

(
Sodd −

c − a − b
2(x − 1)

)
dx +

1
2

(c − a − b) log(a0 − 1).

We call V0 (resp. V1) the Voros coefficient of our equation of the origin
(resp. of x = 1).
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We may write
V0 = V0, >0 + V0,≤0

with
V0, >0 :=

1
2

∫
C0

Sodd, >0 dx,

V0,≤0 := lim
x→0

1
2

(∫
Cx

Sodd,≤0 dx + (c − 1) log x
)
,

where
Sodd, >0 =

∑
j>0

η−jSodd, j, Sodd,≤0 =
∑
j≤0

η−jSodd, j,

Cx: a contour starting from x, going around a0 and back to x.

Similarly,
V1 = V1, >0 + V1,≤0,

with
V1, >0 :=

1
2

∫
C1

Sodd, >0 dx,

V1,≤0 := lim
x→1

1
2

(∫
Cx

Sodd,≤0 dx + (c − a − b) log(x − 1)
)
.
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Explicit forms of the Voros coefficients:

Theorem 4.3

V0, >0 =
1
2

∞∑
n=2

(−1)n−1η1−n

n(n − 1)

(Bn(α0)
αn−1

+
Bn(β0)
βn−1

+
Bn(γ0 − α0)
(γ − α)n−1

+
Bn(γ0 − β0)
(γ − β)n−1

−
Bn(γ0) + Bn(γ0 − 1)

γn−1

)
,

V1, >0 = −
1
2

∞∑
n=2

(−1)n−1η1−n

n(n − 1)

(Bn(α0)
αn−1

+
Bn(β0)
βn−1

−
Bn(γ0 − α0)
(γ − α)n−1

−
Bn(γ0 − β0)
(γ − β)n−1

−
Bn(α0 + β0 − γ0) + Bn(α0 + β0 − γ0 + 1)

(α + β − γ)n−1

)
.

Here Bn(x) denotes the n-th Bernoulli polynomial :

text

et − 1
=

∞∑
n=0

Bn(x)
n!

tn.
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Explicit forms of V0,≤0 and V1,≤0 depend on the choice of the simple turning
point a0 and of the branch of logarithms. Under suitable choice, we may
write, for example,

V0,≤0 =
1
4

{
(a + b − c) log

(α − γ)(β − γ)
αβ

+ (a − c) log
β(α − γ)
α(β − γ)

−(c − 1) log
αβ(α − γ)(β − γ)

γ4

}
,

V1,≤0 =
1
4

{
(c − 1) log

αβ

(α − γ)(β − γ)
+ (a − c) log

α(α − γ)
β(β − γ)

+(a + b − c) log
αβ(α − γ)(β − γ)

(α + β − γ)4

}
.
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The explicit forms of V0 and V1 are obtained by solving the following
system of difference equations:

Lemma 4.4

∆α∂αV0 =
1
2

(
1

α − γ + (α0 − γ0 + 1)η−1
− 1
α + α0η−1

)
,

∆β∂βV0 =
1
2

(
1

β − γ + (β0 − γ0 + 1)η−1
− 1
β + β0η−1

)
,

∆γ∂γV0 =
1
2

(
1

γ + γ0η−1
+

1
γ + (γ0 − 1)η−1

+
1

α − γ + (α0 − γ0)η−1

+
1

β − γ + (β0 − γ0)η−1

)
.

Here we set ∆α := exp(η−1∂α) − 1, ∂α := ∂/∂α, etc.
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Lemma 4.5

∆α∂αV1 =
1
2

(
1

α + α0η−1
+

1
α − γ + (α0 − γ0 + 1)η−1

− 1
α + β − γ + (α0 + β0 − γ0)η−1

− 1
α + β − γ + (α0 + β0 − γ0 + 1)η−1

)
,

∆β∂βV1 =
1
2

(
1

β + β0η−1
+

1
β − γ + (β0 − γ0 + 1)η−1

− 1
α + β − γ + (α0 + β0 − γ0)η−1

− 1
α + β − γ + (α0 + β0 − γ0 + 1)η−1

)
,

∆γ∂γV1 =
1
2

(
1

γ − α − β + (γ0 − α0 − β0 + 1)η−1
+

1
γ − α − β + (γ0 − α0 − β0)η−1

− 1
γ − α + (γ0 − α0)η−1

− 1
γ − β + (γ0 − β0)η−1

)
.

These systems can be solved by using formal differential operators of
infinite order of the form

(exp(η−1∂α) − 1)−1η−1∂α exp(α0η
−1∂α) =

∞∑
n=0

Bn(α0)
n!

(η−1∂α)n.
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• Borel sums of the Voros coefficients
Divergent parts of the Voros coefficients consist of sums of formal series of
the form

U(τ, s, η) :=
1
2

∞∑
n=2

(−1)n−1Bn(s)η1−n

n(n − 1)τn−1
.

This is Borel summable if Re τ , 0 and the Borel sumU± of U with respect
to η−1 depends on the signature of Re τ:

Re τ > 0 =⇒ U+ =
1
2

log
(τη)τη+s− 1

2
√

2π
Γ(s + τη)eτη

,

Re τ < 0 =⇒ U− =
1
2

log
Γ(1 − s − τη)(−τη)τη+s− 1

2

eτη
√

2π
.

Thus the explicit forms of the Borel sums of V0 and V1 depend on the
signatures of

Re α, Re β, Re (α − γ), Re (β − γ), Re (α + β − γ).

These signatures determine the type of Stokes geometry of the
hypergeometric differential equation.
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Characterization of the Stokes geometry in terms of parameters

ω1 = {(α, β, γ) ∈ C3| 0 < Re α < Re γ < Re β },
ω2 = {(α, β, γ) ∈ C3| 0 < Re α < Re β < Re γ < Re α + Re β },
ω3 = {(α, β, γ) ∈ C3| 0 < Re γ < Re α < Re β },
ω4 = {(α, β, γ) ∈ C3| 0 < Re γ < Re α + Re β < Re β },
G = group generated by ιm (m = 0, 1, 2),

where ιm (m = 0, 1, 2) are involutions in the parameter space defined by
ι0 : (α, β, γ) 7→ (β, α, γ), ι1 : (α, β, γ) 7→ (γ − α, γ − β, γ) and
ι2 : (α, β, γ) 7→ (−α,−β,−γ).
Moreover, we set Πk =

∪
r∈G

r(ωk) (k = 1, . . . , 4).

Theorem 4.6 [AT1].

Let n∗ (∗ = 0, 1,∞) denote the number of Stokes curves flowing into the
singular point ∗ and set n̂ = (n0, n1, n∞).
(1) (α, β, γ) ∈ Π1 =⇒ n̂ = (2, 2, 2). (2) (α, β, γ) ∈ Π2 =⇒ n̂ = (4, 1, 1).
(3) (α, β, γ) ∈ Π3 =⇒ n̂ = (1, 4, 1). (4) (α, β, γ) ∈ Π4 =⇒ n̂ = (1, 1, 4).
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By our assumption, (α, β, γ) ∈ Πk for some k and then V0 and V1 are Borel
summable. To specify the explicit forms of the Borel sums, we assume α, β,
γ to be real.

Theorem 4.7

If (α, β, γ) ∈ ω1, the Borel sum V1
0

of V0 has the following form:

V1
0 =

1
2

log
Γ(b − c)Γ(c)Γ(c − 1)e

πi
2 (a−c)

Γ(a)Γ(b)Γ(c − a)
.

Here we set
a = α0 + αη, b = β0 + βη, c = γ0 + γη.

Other cases can be managed similarly.
Taking the Borel sums of the formal relation

ψ(0)
+
= exp(V0)ψ+,

we have the following analytic relation:

Ψ
(0)
+
= exp(V1

0 )Ψ+.

Combining this and Theorem 4.1, (i), we have
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Theorem 4.8

Suppose that γ > 0. Let Ψ+ be the Borel sum of the recessive WKB solution
ψ+ at the origin normalized at the simple turning point a0.

For (α, β, γ) ∈ ωj (j = 1, 2, 3, 4), we have the relation:

2F1(a, b, c; x) = Cj x−
c
2 (1 − x)−

1
2 (a+b−c+1)Ψ+.

with a constant Cj given by

C1 =
e−

πi
2 (c−a− 1

2 )Γ(c)Γ(b − c + 1)
1
2

√
2
{
Γ(a)Γ(b)Γ(c − a)

} 1
2

, C2 =
e−

πi
2 (2c−a−b−1) √πΓ(c){

Γ(a)Γ(b)Γ(c − a)Γ(c − b)
} 1

2

,

C3 =
Γ(c)

{
Γ(a − c + 1)Γ(b − c + 1)

} 1
2

2
√
π
{
Γ(a)Γ(b)

} 1
2

, C4 =
e−

πi
2 (c−1)Γ(c)

{
Γ(1 − a)Γ(b − c + 1)

} 1
2

2
√
π
{
Γ(b)Γ(c − a)

} 1
2

.
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Answer to Q2: What happens when Re γ < 0?

We give an answer for the case where (α, β, γ) ∈ ι0(ω1). Other cases can be
treated similarly.

Theorem 4.9

If β < γ < α < 0, we have the relation

2F1(a, b, c; x) = x−
c
2 (1 − x)−

1
2 (a+b−c+1)(C11Ψ+ + C21Ψ−)

with

C11 =
e
πi
2 (b−c+ 1

2 )
{
Γ(1 − a)Γ(1 − b)Γ(a − c + 1)

} 1
2

√
2Γ(1 − c)Γ(c − b)

1
2

,

C21 =
e
πi
2 (c−b+ 1

2 )Γ(c)
{
Γ(1 − a)Γ(1 − b)

} 1
2

√
2Γ(1 − a)

{
Γ(c − b)Γ(a − c + 1)

} 1
2

.
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Here Ψ± are Borel sums of ψ± in the yellow-colored region:

a0

0 1
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• Applications
If we replace Ψ± by ψ± in our relations, we have asymptotic expansion
formulas of 2F1(a, b, c; x) with respect to η−1 (Watson’s Lemma).

The leading term of WKB solution ψ+ is

√
2x(x − 1)

G
1
4

 (α − β)2x + 2αβ − βγ − γα + (α − β)
√

G

(α − β)2x + 2αβ − βγ − γα − (α − β)
√

G


α−β

4

×

 (α2 + β2 + (β − α)γ)x + 2αβ − βγ − γα + γ2 − (α + β − γ)
√

G

(α2 + β2 + (β − α)γ)x + 2αβ − βγ − γα + γ2 + (α + β − γ)
√

G


α+β−γ

4

×

 (2αβ − βγ − γα)x + γ2 + γ
√

G

(2αβ − βγ − γα)x + γ2 − γ
√

G


γ
4

.

Here we set
G = (α − β)2x2 + 2(2αβ − βγ − γα)x + γ2.
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For example, we have not only an alternative proof of the asymptotic
formula for the monic Jacobi polynomial

P̂(nA,nB)
n (x) = 2n Γ(n(A + 1) + 1)Γ(n(A + B + 1) + 1)

Γ(n(A + B + 2) + 1)Γ(nA + 1)

× 2F1(−n, n(A + B + 1) + 1, nA + 1;
1 − x

2
).

(−1 < A < 0, −1 < B < 0, −2 < A + B < −1)

as n → ∞ obtained by Kuijlaars and Martı́nez-Finkelshtein but also an
asymptotic expansion formula for all orders:

P̂(nA,nB)
n (1 − 2z) ∼

2nz−
1
2 (1+nA)(1 − z)−

1
2 (1+nB) Γ(n(1 + A + B) + 1)Γ(−(1 + A + B)n)Γ(n + 1)

Γ(1 + n(2 + A + B))Γ(−(1 + B)n)Γ(1 − An)

×
[√−An

2
eλ1

( Γ(1 + n(1 + A))Γ(1 − An)Γ(−An)
Γ(n + 1)Γ(−(1 + B + A)n)Γ(1 + (B + 1)n)

) 1
2 ψ+

+
1
i

√
−Bn

2
eλ2

( Γ(1 + n(1 + B))Γ(1 − Bn)Γ(−Bn)
Γ(n + 1)Γ(−(1 + B + A)n)Γ(1 + (A + 1)n)

) 1
2

×
Γ(1 − An)Γ(Bn)

Γ(−(1 + A)n)Γ(1 + (1 + B)n)
ψ−

]
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Summary and concluding remarks

A large parameter is introduced in the 3 parameters in the Gauss
hypergeometric differential equation.

One can construct WKB solutions of the equation. Taking the Borel
sum, we have analytic solutions of the Gauss hypergeometric
equation.

The Gauss hypergeometric function 2F1(a, b, c; x) can be written
explicitly in terms of those Borel resummed WKB solutions under the
condition that the Stokes geometry is non-degenerate.

As an application, one can obtain asymptotic expansion formulas for
the hypergeometric function with respect to the parameter.
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