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Exact WKB analysis

For an equation(
−ℏ2

d2

dx2
+ Q(x)

)
ψ = 0 (ℏ > 0: small, x ∈ C),

we can construct a formal solution called a WKB solution of the form

ψ(x , ℏ) = exp

[∫ x

x0

S(x , ℏ)dx
]
,

S(x , ℏ) =
1

ℏ
S−1(x) + S0(x) + ℏS1(x) + · · ·

with an appropriate point x0. By substitution, we find

S−1(x) = ±
√
Q(x), S0(x) = − Q ′(x)

4Q(x)
, S1(x) = ±

(
Q ′′(x)

8Q(x)3/2
− 5

32

Q ′(x)2

Q(x)5/2

)
,

and so on. Thus we have two formal solutions

ψ±(x , ℏ) = exp

[∫ x

x0

S (±)(x , ℏ)dx
]
= exp

 ∑
n≥−1

ℏn
∫ x

x0

S (±)
n (x)dx

 .
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Following Voros ([V83]), we give an analytic meaning to a formal WKB solution by

Borel resummation with respect to ℏ. In this talk, we assume Q(x) is a polynomial

or a rational function.

Theorem (Ko-Schäfke)

WKB solutions is Borel summable (in a direction 0) if a path of integration in

WKB soluitons does not intersect any Stokes curves.

Here Stokes curves are curves defined by

Im

∫ x

a

√
Q(x)dx = 0,

where a is a turning point (i.e., a zero of Q(x)) or a simple pole of Q(x) (cf., e.g.,

[Ko00]).
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Examples of Stokes curves

Q(x) =
1

4
x2 − E (E > 0) Q(x) =

x − 4α

4x
(α > 0)

5/23



Voros coefficients

For singular points b0 and b1 of the equation (precisely speaking, b0 and b1 are

poles of Q0(x) of order ≥ 2), we define the Voros coefficient by

V “=”

∫ b1

b0

S (+)(x , ℏ)dx .

Here “=” means that the LHS should be properly regularized.

▶ If both of bj ’s are irregular singular points (i.e., poles of Q(x) of order ≥ 3), we

define

V =

∫ b1

b0

{
S (+)(x , ℏ)− 1

ℏ
S
(+)
−1 (x)− S

(+)
0 (x)

}
dx .

▶ If one of bj ’s is a double pole of Q(x), this integral does not converge because

Sj(x) has a simple pole at a double pole of Q(x). One way to regularize this

integral is to substract more terms from the integrand. The other way is to add

lower order terms w.r.t. ℏ to Q(x) in order to cancel simple poles of Sj(x) out.

(We will not discuss this case in this talk.)

6/23



▶ Some global quantities (such as secular equations for eigenvalues) are expressed

by using them (and “periods”).

▶ They are also useful to study singularity structures, especially the so-called fixed

singular points, of the Borel transform of WKB solutions.

– Parametric Stokes phenomenons (i.e., Stokes phenomenons with respect

to parameters of the equation in question).

There are many results about Voros coefficients:

▶ Voros ([Vo83]) in his study of the anharmonic oscillator.

▶ General Properties:

– Delabaere-Dillinger-Pham ([DDP93]): Voros symbols, Voros multipliers,

Voros ring, · · ·

– Iwaki-Nakanishi (e.g., [IN14]) : a link to the cluster algebra.
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▶ Explicit forms for

– the Weber equation ([Vo83], [KT94], [SS08], [T08]) ,

– the Whittaker equation ([KoT11]),

– the Legendre equation ([Ko]),

– the Bessel equation ([Iwaki, 2013]),

– Gauss’ hypergeometric equation (Aoki-Tanda, [AKT13], · · · ),

– Kummer’s confluent hypergeometric equation, (Aoki-Takahashi-Tanda,

[ATT13] and Takahashi [T17], · · · ).

▶ Transformation theory:

– MTP (= Merging-Turning-Points) equation (Aoki-Kawai-Takei, [AKT10])

– MPPT (= Mering Pair of a simple Pole and simple Turning point) equation

(Kawai-Kamimoto-Ko-Takei, [KKKoT10])

– M2P1T (= Merging triplet of Two simple Poles and One simple Turning

point) equations (Kamimoto-Kawai-Takei, [KKT14]).
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Voros coefficients for the Weber equation(
−ℏ2

d2

dx2
+

1

4
x2 − λ

)
ψ = 0

In this case

ψ±(x ,λ; ℏ) = exp

[∫ x

S (±)(x ,λ; ℏ)dx
]
,

S (±)(x ,λ; ℏ) = ±1

ℏ

√
1

4
x2 − E − x

2(x2 − 4λ)
∓ ℏ

3x2 + 8λ

4(x2 − 4λ)5/2
+ · · ·

2
√

λ−2
√

λ

γ
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(
−ℏ2

d2

dx2
+

1

4
x2 − λ

)
ψ = 0

We then obtain

V (λ; ℏ) =
∫
γ

{
S (+)(x ,λ; ℏ)− 1

ℏ
S−1(x ,λ)− S0(x ,λ)

}
dx

=
∞∑
n=1

21−2n − 1

2n(2n − 1)
· B2n ·

(
ℏ
λ

)2n−1

where B2n is the 2n-th Bernoulli number. This relation is proved by

▶ Voros (1983) (by using functional determinants),

▶ Shen and Silverstone (2008) (by comparing the asymptotic behavior of WKB

solutions and the Weber function),

▶ Takei (2008) (by using the ladder operators).

Takei’s proof can be applicable to equations whose ladder operaters are known. All

the result of explicit forms of the Voros coefficients listed before are, more or less,

based on his idea.
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Sketch of a proof by Takei

▶ Because A = ℏ
d

dx
− 1

2
x is the rasing operator, we have

ψ+(x ,λ+ ℏ; ℏ) = (const.)×Aψ+(x ,λ; ℏ)

= (const.)×
{
ℏS(x ,λ; ℏ)− 1

2
x

}
ψ+(x ,λ; ℏ)

▶ The logarighmic derivative of both hand sides gives

S (+)(x ,λ+ ℏ; ℏ) = S (+)(x ,λ; ℏ)− d

dx
log

[
S (+)(x ,λ; ℏ)− 1

2
x

]
▶ By integration,

V (λ+ ℏ; ℏ) = V (λ; ℏ) + 1 + log(1 +
ℏ
2λ

)−
(
λ

ℏ
+ 1

)
log(1 +

ℏ
λ
).

▶ Solving this difference equation, we obtain the result.
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Remark Voros coefficients for other equaitons:

▶ The Whittaker equation: Q(x , ℏ) =
x − 4α

4x
+ ℏ2

γ(γ + 1)

x2

V = 2
∑
n≥1

B2n(−γ)
2n(2n − 1)

(
ℏ
α

)2n−1

.

Here Bm(X ) is the m-th Bernoulli polynomial.

▶ Kummer’ equaiton ([Aoki-Takahashi-Tanda, [ATT13] and Takahashi [T17]):

Q(x , ℏ) =
x2 + 2(2α− γ)x + γ2

4x2
+ ℏ

(2α0 − γ0)x + γ(γ0 − 1)

2x2
+ ℏ2

γ20 − 2γ0
4x2

V0 =
∑
n≥1

(−1)nℏn

n(n + 1)

{
Bn+1(α0)

αn
+

Bn+1(γ0 − α0)

(γ − α)n
− Bn+1(γ0) + Bn(γ0 − 1)

γn

}
▶ Higher order differential equations are also discussed. For a parameter brought

by middle convolution, we can find the ladder operators. We can find how Voros

coefficients depend on such parameters (Iwaki-Ko, [IKo14]).
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A consequence of the explicit formula: Stokes phenomenon w.r.t. λ

By the Borel transformation (ℏm 7→ ym−1

(m − 1)!
), we obtain

VB(λ; y) =
1

2y

(
−2λ

y
+

1

ey/(2λ) − 1
+

1

ey/(2λ) + 1

)
.

Therefore VB has singular ponits at

y = 2mπiλ = m · 2
∫ 2

√
λ

−2
√
λ

S−1(x ,λ)dx (m ∈ Z \ {0}).

All of them are simple poles, and

Res
y=2mπiλ

VB(λ, ℏ) =
(−1)m

2im

(1) From these formula, we obtain

S[V ](λe(
π
2 +ε)i ) = S[V ](λe(

π
2 −ε)i )−

∞∑
m=1

2πi Res
y=2mπiλ

[VB(λ; y)]e
−2miπλ

= S[V ](λe(
π
2 −ε)i ) + log(1 + e−2πiλ).
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(2) Typical normalizations of WKB solutions are

ψ± =
1√

Sodd(x ,λ; ℏ)
exp

(
±
∫ x

2
√
λ

Sodd(x ,λ; ℏ)dx
)
,

which is called WKB solutions normalized at a turning point, and

φ
(∞)
± =

1√
Sodd(x ,λ; ℏ)

exp

(
±1

ℏ

∫ x

2
√
λ

S−1(x ,λ)dx

)
× exp

(
±
∫ x

∞

{
Sodd(x ,λ; ℏ)−

1

ℏ
S−1(x ,λ)

}
dx

)
,

which is called WKB solutions normalized at the infinity. Here we set

Sodd(x ,λ; ℏ) :=
∑

n≥−1,odd

ℏnSn(x ,λ), Seven(x ,λ; ℏ) :=
∑

n≥−1,even

ℏnSn(x ,λ),

and use the relation

S (±)(x ,λ; ℏ) = ±Sodd(x ,λ; ℏ) + Seven(x ,λ; ℏ),

Seven(x ,λ; ℏ) = −1

2

d

dx
log Sodd(x ,λ; ℏ).
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▶ WKB solution normalized at a turning point is a suitable form to describe

connection formula of (Borel sum of) WKB solutions:

ψ+(x , ℏ) 7−→ ψ+(x , ℏ) + iψ−(x , ℏ)

holds when we cross a Stokes curves in a counter-clockwise manner and ψ+ is

dominant there.

▶ WKB solutions normalized at the infinity has a good asymptotic behavior when

x → ∞:

φ
(∞)
+ (x , ℏ) ∼ ℏ−1/2 1

4
√

Q(x)
exp

[
1

ℏ

∫ x

2λ

Q(x)dx

](
1 + O

(
1

x

))
,

and hence it is easy to compare this and classical Weber functions.

▶ The Voros coefficient connects these two solutions:

ψ±(x ,λ; ℏ) = exp

[
±
∫ ∞

2
√
λ

(
Sodd(x ,λ; ℏ)−

1

ℏ
S−1(x ,λ)

)
dx

]
φ
(∞)
± (x ,λ; ℏ)

= exp

[
±1

2
V (λ; ℏ)

]
φ
(∞)
± (x ,λ; ℏ).
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▶ When we change arg λ from π/2−ε to π/2+ε, the path of integration in φ
(∞)
±

does not cross any Stokes curves (Hence φ
(∞)
± is Borel summable).

�✁✂✄ ☎✆ ✝✞✂✟✠✡✁✂✝☎✞

arg λ=π/2−ε

�✁✂✄ ☎✆ ✝✞✂✟✠✡✁✂✝☎✞

arg λ=π/2

�✁✂✄ ☎✆ ✝✞✂✟✠✡✁✂✝☎✞

arg λ=π/2+ε
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▶ Hence

S[φ(∞)
± ]

∣∣∣
arg λ=π/2+ε

= S[φ(∞)
± ]

∣∣∣
arg λ=π/2−ε

.

Therefore relations

ψ± = exp

[
±1

2
V (λ; ℏ)

]
φ
(∞)
±

and

S[V ]
∣∣∣
arg λ=π/2+ε

= S[V ]
∣∣∣
arg λ=π/2−ε

+ log(1 + e−2πiλ).

gives

S[ψ±]
∣∣∣
arg λ=π/2+ε

= (1 + e−2πiλ)±1/2S[ψ±]
∣∣∣
arg λ=π/2−ε

.

▶ Here we study Stokes phenomenon of WKB solutions ψ±. By the Borel transfor-

mation, we can also study the analytic structure (e.g., locations of singularities,

their orders, etc.) of ψ±,B , the Borel transform of WKB solutions.
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Transformation Theory to the Weber equation

An MTP operator is introduced by Aoki-Kawai-Takei [AKT09]:

P = −ℏ2
d2

dx2
+ Q(x , t),

where

• Q(x , t) is holomorphic near (x , t) = (0, 0),

• Q(x , t) = cx2 + O(x3) with a constant c ,

• for each t small enough, the equation Q(x , t) = 0 in x has two simple ditinct

roots which merge together at t = 0, whereas other roots stay uniformly away

from 0.

• We also assume some condition about the merging speed of two simple turing

points.
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In [AKT09], the formal change of variable

z = z(x , ℏ) = z0(x) + z1(x)ℏ+ z2(x)ℏ2 + · · ·

is constructed for an MTP operator P such that Pψ = 0 transforms uniformly to(
−ℏ2

d2

dz2
− 1

4
z2 + E (t, ℏ)

)
φ = 0

with

E (t, ℏ) =
1

2πi

∫
γ

Sodd(x , t, ℏ)dx .

Here γ is a closed path which encircles two merging turning points in a counter-

clockwise manner. In this transformation, ψ± relates to φ± by

ψ±(x , t; ℏ) =
(
∂z

∂x

)−1/2

φ(z(x , ℏ),E (ℏ); ℏ)

After the Borel transformation, this relation becomes

ψ±,B(x , t, y) = P(x , ∂x , ∂y )φ(z0(x),E0, y)

with an apropriate microdifferential operator P, and we can find the alien derivative

of ψ±,B(x , t, y).
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Conclusion

Voros coefficients are used to describe the analytic continuation of Borel sum of

WKB solutions, and also used to study the analytic properties of Borel transform of

WKB solution.

▶ Explicit computations of Voros coefficients.

▶ Stokes phenomenon w.r.t parameters:

By using explicit forms of its Voros coefficient and WKB solutions normalized

at infinity, we can describe Stokes phenomenons for WKB solutions normalized

at a turning point.

▶ Transformation theory:

Even more general equations, such as an MTP equation, we can study several

properties by using transformation theory.
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