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In 1976, Douglas Hofstadter 
considered an interesting 2d 

electron model in a magnetic field
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He predicted a novel electron 
spectrum, which is now known as 

Hofstadter’s butterfly
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q; hence one might expect the above condition to
be satisfied in roughly q distinct regions of the
e axis (one region centered on each root). This
is indeed the case, and is the basis for a very
striking (and at first disturbing) fact about this
problem: when n =p/q, the Bloch band always
breaks up into i.-recisely q distinct energy bands.
Since small variations in the magnitude of o. can
produce enormous fluctuations in the value of the
denominator q, one is apparently faced with an
unacceptable physical prediction. However, nature
is ingenious enough to find a way out of this ap-
pax'ent, anomaly. Befox'e we go into the x'esolution
however, let us mention certain facts about the
spectrum belonging to any value of z. Most can
be proven trivially: (i) Spectrum(tr) and spectrum
(ci+N) are identical. (ii) Spectrum(n) and spec-
trum(-tr) are identical. (iii) & belongs to spec-
trum(a } if and only if -e belongs to spectrum(a}.
(iv) If e belongs to spectrum (a) for any a, then
-4 ~ &~+4. The last property is a little subtler
than the previous three; it can be proven in dif-
ferent ways. One proof has been published. "
From properties (i) and (iv), it follows that a

graph of the spectrum need only include values of
& between + 4 and -4, and values of e in any unit
interval. We shall look at the interval [0, 1]. Fur
thermore, as a consequence of pxoperties, the
graph inside the above-defined rectangular region
must have two axes of reflection, namely the hor-
izontal line z= &, and the vertical line &=0. A
plot of spectrum(o. ), with n along the vertical axis,
appears in Fig. 1. (Only rational values of a with
denominator less than 50 are shown. )

IV. RECURSIVE STRUCTURE OF THE GRAPH

This graph has some vexy unusual properties.
The large gaps form a very striking pattern some-
what resembling a butterfly; perhaps equally strik-
ing are the delicacy and beauty of the fine-grained
structure. These are due to a very intricate
scheme, by which bands cluster into groups, which
themselves may cluster into laxger groups, and
so on. The exact rules of formation of these hier-
archically organized clustering patterns (II's) are
what we now wish to cover. Our description of 0's
will be based on three statements, each of which
describes some aspect of the structure of the
graph. All of these statements are based on ex-
tremely close examination of the numex ical data,
and are to be taken as "empirically proven" theo-
rems of mathematics. It would be preferable to
have a rigorous proof but that has so far eluded
capture. Before we present the three statements,
let us first adopt some nomenclature. A "unit
cell" is any portion of the graph located between
successive integers N and N +1—in fact we will
call that unit cell the N th unit cell. Every unit cell
has a "local variable" P which runs from 0 to 1.
in particular, P is defined to be the fractional part
of rt, usually denoted as (a). At P=O and P= I,
there is one band which stretches across the full
width of the cell, separating it from its upper and
lower neighbors; this band is therefore called a
"cell wall. " It turns out that eex'tain rational val-
ues of I3 play a very important role in the descrip-
tion of the structure of a unit cell; these are the
"pure cases"

FIG. 1. Spectrum inside
a unit cell. & is the hori-
zontal variable, ranging
between+4 and -4, and
p=(n) is the vertical vari-
able, ranging from 0 to 1.

Hofstadter, Phys. Rev. 
B14 (1976) 2239.
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40 years later, Katsura, 
Tachikawa and myself found 

that the completely same figure 
appears in the context of 

Calabi-Yau geometry

In this talk, I would like to 
explain its idea

YH, Katsura & Tachikawa, arXiv:1606.01894 
“Hofstadter’s butterfly in quantum geometry”
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Moduli of CYs

Consequence

Density of states

Magnetic effect 
= “Quantum deformation”

YH-Katsura-Tachikawa 
New J.Phys. 18 (2016) 10, 103023

[Recall Dunne’s & Schiappa’s talk]
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1. Hofstadter Model



2d Electron in Magnetic Field
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Vector potential



2d Electron in Magnetic Field
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Vector potential



• This Hamiltonian is the same as that for the 
harmonic oscillator 

• The spectrum of the 2d electron is quantized 
by the magnetic effect

2d Electron in Magnetic Field
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• In this case, the spectrum is 
obtained by the tight-biding 
approximation

An Electron on 2d Lattice
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• The allowed range of the energy:

Single energy band



• An electron on a 2d lattice 
with a magnetic flux

The Hofstadter Model

11

Free

Lattice



• An electron on a 2d lattice 
with a magnetic flux

The Hofstadter Model
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Free
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• By fixing the Landau gauge                    , 
the eigenvalue problem finally leads to 
Harper’s equation 

• If                (rational), the spectrum of this 
equation gives     energy bands 

The Hofstadter Model

Hofstadter ’76
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2. Toda Lattice



• The Toda lattice is the well-known quantum 
integrable system 

• There are N mutually commuting operators 

• The eigenvalue problem 

The Toda Lattice

15

Toda ’67



• There is a one-parameter deformation of the 
Toda lattice

Generalized Toda Lattice

16

Ruijsenaars ’90



• There is a one-parameter deformation of the 
Toda lattice

Generalized Toda Lattice

16

Ruijsenaars ’90



• Let us consider the case of N=2

N=2 gToda

17

(Center of mass frame)



• Let us consider the case of N=2

N=2 gToda
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(Center of mass frame)



• The eigenvalue equation is thus a difference 
equation 

• This equation is very similar to Harper’s 
equation, but their spectra are quite 
different

N=2 gToda

18

Harper → Continuous (Bands) 
Toda     → Discrete



3. Relation to Calabi-Yau



• The Hofsdater model (Harper’s equation) 

• The generalized Toda lattice 

• The situation is similar to the difference 
between the Mathieu (cos) and the modified 
Mathieu (cosh) potentials

So far…

20
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This equation defines a genus one 
Riemann surface

To Calabi-Yau

[Dunne’s talk]
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To Calabi-Yau
• The complex 3d space 

    describes a Calabi-Yau manifold 

• The Riemann surface has enough information 
to describe this CY manifold 

• In this way, one can see a connection to the 
CY geometry

[Schiappa’s talk]



• The Calabi-Yau geometry has a remarkable 
hidden duality, called mirror symmetry

Mirror Symmetry

23

Calabi-Yau A Calabi-Yau B

Moduli Moduli

“Mirror map”



• The spectral problem of the N=2 
generalized Toda lattice is solved by the 
exact version of the quantization condition 
in terms of string theory

24

Spectral Solution 1

Grassi, YH & Marino ’14; Wang, Zhang & Huang ’15



• On the other hand, the spectrum of the 
Hofstadter problem is encoded in the 
quantum deformed mirror map

25

YH, Katsura & Tachikawa ’16

Spectral Solution 2



4. Semiclassical Analysis



• In the weak magnetic regime, the band width 
of the Hofstadter model is extremely narrow, 
and one can see Landau level splitting
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• This fact is easily seen by the Hamiltonian 
analysis
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• This fact is easily seen by the Hamiltonian 
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Figure 3. The weak flux behaviors for � = 1 (Left), for � = 1/2 (Middle) and for � = 1/4 (Right)
are shown. We show the first four graphs (0  n  3) of the expansion (3.51) by the red solid lines.
In all of these case, the semiclassical expansion captures the positions of the bands for � ⇠ 0.

Near � = 0, the width of each band is exponentially narrow, and the spectrum can be

regarded as the Landau levels labelled by n in (3.51). We show the behavior near � = 0 in

Fig. 3. The semiclassical expansion indeed explains the position of the bands.

Similarly, if we consider the semiclassical limit of the Hamiltonian (2.1), we find

EToda = 2(1 +R2) +R(2n+ 1)~+
1 +R2

16
(2n2 + 2n+ 1)~2 +O(~3). (3.52)

These two expansions are simply related by the replacement � ! �~. This is easily

understood since the two Hamiltonians are connected by the analytic continuation x ! i⇧
x

and p ! i⇧
y

. Both of the semiclassical expansions above are asymptotic divergent series,

but there is a crucial di↵erence. As observed in [22], the expansion (3.52) is an alternating

sum. This means that the Borel transform of (3.52) does not have any singularities on

the positive real axis, and its Borel sum is well-defined for ~ > 0. On the other hand, the

expansion (3.51) is a non-alternating sum, and it should have singularities on the positive

real axis. In this case, the Borel sum along the positive real axis is not defined, and one

has to avoid these singularities by deforming the integration contour. There are choices

in how to deform the contour. This ambiguity is of order e�1/� and must be annihilated

by additional non-perturbative corrections to the semiclassical expansions. In this case,

one needs a trans-series expansion to explain the spectrum for finite �. Roughly speaking,

the non-perturbative order e�1/� is also related to the width of the bands, and thus it is

extremely narrow in the weak flux limit. Recently, the non-perturbative band splitting in

– 16 –

@ Weak Coupling



• There is a systematic way to compute the 
weak coupling expansion 

• Obviously, this expansion looks divergent 

• One needs a resummation method

29

@ Weak Coupling

BenderWu package: Sulejmanpasic & Ünsal ’16 
Extension: Gu & Sulejmanpasic ’17



Borel(-Pade) Singularities
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Borel(-Pade) Resum

This ambiguity should be canceled 
by “nonperturbative” corrections

31



What does this value mean?
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• The Borel resummed value is very close to 
the energy at the Van Hove singularity
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Observation

Bands Gaps

Van Hove 
singularities

YH, in progress



• For              , the positions of the Van Hove 
singularities are analytically determined by

Observation
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• The coincidence is probably not accidental

Observation

35



• The Hofstadter model (2d electrons) and the 
generalized Toda lattice (integrable system) 
has a nontrivial relation to the Calabi-Yau 
geometry 

• The weak magnetic expansion in the 
Hofstadter model is not Borel summable

36

Summary



• The full weak magnetic expansion must be a 
transseries expansion 

• P/NP (Dunne-Ünsal) relations? 

• If    is irrational, the spectrum is much more 
involved 

• What does the Borel resum for the irrational 
case mean?

37

Open Questions
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Open Questions

I need your help!



Thank you!


