Resurgent Transseries in String Theory

Ricardo Schiappa

(IST — University of Lisbon)

RIMS–iTHEMS International Workshop on Resurgence Theory 06–08 September 2017, RIKEN Kobe

Ricardo Schiappa (Técnico Lisbon) R

Based on work in collaboration with:

Inês Aniceto, Ricardo Couso-Santamaría, José Edelstein, Marcos Mariño, Sara Pasquetti, Jorge Russo, Ricardo Vaz, Marcel Vonk, Marlene Weiss

0711.1954,	0809.2619,	0907.4082,	1106.5922,
1302.5138,	1308.1115,	1308.1695,	1407.4821,
1410.5834,	1501.01007,	1605.07473,	1610.06782

I. Aniceto, S. Codesido, M. Mariño, R. Vaz, M. Vonk, arXiv: Upcoming...

> DM DEPARTAMENTO DE MATEMÁTICA TÉCNICO LISBOA

E 5 4 E 5

Perturbative Expansions and Borel Resummation

• Perturbative series asymptotic \Rightarrow Coefficients grow as $F_q \sim g!...$

$$F(z) \simeq \sum_{g=0}^{+\infty} \frac{F_g}{z^{g+1}}$$

Borel transform "removes" factorial growth

$$\mathcal{B}\left[\frac{1}{z^{\alpha+1}}\right](s) = \frac{s^{\alpha}}{\Gamma(\alpha+1)}.$$

Borel resummation given by inverse Borel transform

$$S_{\theta}F(z) = \int_{0}^{\mathrm{e}^{\mathrm{i} heta}\infty} \mathrm{d}s \,\mathcal{B}[F](s) \,\mathrm{e}^{-zs}.$$

Only defined if $\mathcal{B}[F](s)$ has no singularities along direction $\mathcal{B}[F](s)$ Perturbation theory non-Borel resummable along any Stokes line.

Resurgent Functions versus Simple Resurgent Functions

- What class of singularities does one usually find?
- Resurgent Function: a formal (asymptotic) series whose Borel transform has *endless analytic continuation* (too broad...).
- Simple Resurgent Function: a resurgent function whose Borel singularities restrict to simple poles and logarithmic branch-points (here ω is a simple singularity, S_ω ∈ C, and Φ_ω some other sector):

$$\mathcal{B}[F](s) = \mathsf{S}_{\omega} \times \mathcal{B}[\Phi_{\omega}](s-\omega) \frac{\log(s-\omega)}{2\pi \mathrm{i}} + \mathsf{holomorphic.}$$

• Can be precise about what happens upon crossing a Stokes line!

4 / 55

E 5 4 E 5

Discontinuity upon Crossing a Stokes Line

$$\begin{split} \mathcal{S}_{\theta^+} F - \mathcal{S}_{\theta^-} F &= -\sum_{\{\omega_n\}} \mathsf{S}_{\omega_n} \, \mathrm{e}^{-\omega_n z} \, \mathcal{S}_{\theta^-} \Phi_{\omega_n} \equiv -\mathcal{S}_{\theta^-} \circ \mathrm{Disc}_{\,\theta} F \\ \Rightarrow \qquad \mathrm{Disc}_{\,\theta} F &= \sum_{\{\omega_n\}} \mathsf{S}_{\omega_n} \, \mathrm{e}^{-\omega_n z} \, \Phi_{\omega_n}. \end{split}$$

• All sectors Φ_{ω_n} must be included in full solution, as the perturbative series not enough! \Rightarrow Leads to *transseries* and to *resurgence*.

Applications to String Theory and Large N Duality

- Gravity and spacetime out from large N gauge theory. [Maldacena]
- B-model on local Calabi–Yau is large N dual to matrix model [Dijkgraaf-Vafa]. Class of target CY geometries is

 $uv = \mathcal{H}(X,Y).$

- Non-trivial information about this geometry encoded in Riemann surface Σ described by $\mathcal{H}(X, Y) = 0$.
- Spectral curve of matrix model is precisely Riemann surface Σ .
- Special geometry of CY, solving tree-level closed strings on this background, further yields planar solution to hermitian matrix model.

6 / 55

Nonperturbative Strings and Large N Duality?

- Extend to all genera? (Perturbative) large N expansion matches (perturbative) closed string-theory free-energy [Eynard-Mariño-Orantin].
- Can one go beyond the perturbative large N expansion?
 - Establish large N duality at full nonperturbative level?
 - Nonperturbative large N gauge theory?
 - Nonperturbative closed string theory?
 - Better understand the gauge theory \Leftrightarrow gravity/spacetime map?
 - Find new phenomena or new phases at large or complex couplings?

7 / 55

イロト 不得下 イヨト イヨト

Kobe, September 2017

Outline

- Resurgent Asymptotics in String Theory
- 3 Asymptotics of Enumerative Invariants
- 4 The Resurgence of the Large N Expansion
- 5 Large N Expansion: Stokes versus Anti-Stokes Phases

🗿 Outlook

∃ → (∃ →

Outline

Nonperturbative Holomorphic Anomalies

- 2 Resurgent Asymptotics in String Theory
- 3 Asymptotics of Enumerative Invariants
- 4 The Resurgence of the Large N Expansion
- 5 Large N Expansion: Stokes versus Anti-Stokes Phases
- 🛛 Outlook

< 回 ト < 三 ト < 三 ト

String Theory on Calabi–Yau Geometries

- Consider topological string B-model on local Calabi–Yau, mirror to some toric threefold. Non-trivial information about CY geometry encoded in Riemann surface ⇔ mirror curve of the geometry.
- Compute the string free energy using the holomorphic anomaly!

$$F \simeq \sum_{g=0}^{+\infty} F_g(z) g_{\mathsf{s}}^{2g-2}$$

- Genus-g free energy depends on complex structure moduli z...
- ...but it is not holomorphic $\Rightarrow F_g \equiv F_g(z, \bar{z})!$ [Bershadsky-Cecotti-Ooguri-Vafa]
- Moduli space of genus-g surfaces has a boundary:

$$\frac{\partial F_g}{\partial \bar{z}} \sim \int_{\mathfrak{M}_g} \mathrm{d}\mathfrak{m} \, \frac{\partial}{\partial \mathfrak{m}} \, \Big(\cdots \cdots \Big) \neq 0.$$

ヘロト 不得 とくき とくきとうき

Holomorphic Anomaly Equations: Idea

• The boundary of genus-g surface moduli space corresponds to those moduli which make the genus-g surface degenerate:

• This leads to the holomorphic anomaly equations: [BCOV]

< ロト < 同ト < ヨト < ヨト

Holomorphic Anomaly Equations: Formalism

• Will consider the example of B-model on mirror of $\mathbb{K}_{\mathbb{P}^2} = \mathcal{O}(-3) \rightarrow \mathbb{P}^2$ \Rightarrow Fully solved perturbatively [Haghighat-Klemm-Rauch] via holomorphic anomaly equations [Bershadsky-Cecotti-Ooguri-Vafa]

$$\frac{\partial F_g^{(0)}}{\partial S^{ij}} = \frac{1}{2} \left(D_i D_j F_{g-1}^{(0)} + \sum_{h=1}^{g-1} \partial_i F_{g-h}^{(0)} \partial_j F_h^{(0)} \right), \qquad g \ge 2.$$

Here D_i covariant derivative in complex structure moduli space (holomorphic dependence); S^{ij} propagators or "potentials" for Yukawa couplings (also anti-holomorphic dependence).

12 / 55

イロト 不得下 イヨト イヨト

Kobe, September 2017

Nonperturbative Holomorphic Anomaly Equations?

• $F_g^{(0)}(z_i, \bar{z}_i)$ depends on holomorphic and anti-holomorphic complex structure moduli \Rightarrow What is large-order behavior?

• Rewrite holomorphic anomaly equations for partition function $Z \Rightarrow$ Naturally solved with transseries ansatz [Couso-Edelstein-RS-Vonk]

$$Z = \exp\left(\sum_{n} \sigma^{n} F^{(n)}\right).$$

Holomorphic Anomaly: Master Equation

- Complex structure moduli space of dimension one (single z and S).
- Master equation for standard holomorphic anomaly:

$$\left(\frac{\partial}{\partial S} - \frac{1}{2}g_{\mathsf{s}}^2D_z^2\right)Z + UD_zZ = \left(\frac{1}{g_{\mathsf{s}}^2}W + V\right)Z,$$

with "initial data"

$$U \equiv D_z F_0^{(0)},$$

$$W \equiv \frac{\partial F_0^{(0)}}{\partial S} + \frac{1}{2} \left(D_z F_0^{(0)} \right)^2,$$

$$V \equiv \frac{\partial F_1^{(0)}}{\partial S} - \frac{1}{2} \left(D_z^2 F_0^{(0)} \right).$$

• Inserting $Z = \exp F^{(0)}$ yields back holomorphic anomaly equations:

Nonperturbative Holomorphic Anomaly Equations

- Inserting $Z = \exp\left(\sum_{n} \sigma^{n} e^{-n \frac{A}{g_{s}}} F^{(n)}(g_{s})\right)$ leads to recursion for nonperturbative transseries components!
- Instanton action is holomorphic: $\partial_S A = 0$. [Couso-Edelstein-RS-Vonk]
- Instanton action holomorphic ⇒ Can still compute A as appropriate combinations of periods in the geometry. [Drukker-Mariño-Putrov]
- Nonperturbative holomorphic anomaly equations $(A^{(n)} \equiv nA)$:

$$\left(\partial_{S} - \frac{1}{2} \left(\partial_{z} A^{(n)}\right)^{2}\right) F_{g}^{(n)} = -\sum_{h=1}^{g} \mathcal{D}_{h}^{(n)} F_{g-h}^{(n)} + \frac{1}{2} \sum_{m=1}^{n-1} \sum_{h=0}^{g-1} \left(\partial_{z} F_{h-1}^{(m)} - \partial_{z} A^{(m)} F_{h}^{(m)}\right) \left(\partial_{z} F_{g-2-h}^{(n-m)} - \partial_{z} A^{(n-m)} F_{g-1-h}^{(n-m)}\right).$$

Interlude: Refined Holomorphic Anomaly

• Refined holomorphic anomaly equations compute Nekrasov partition function in $\Omega\text{-}\mathsf{background}$

$$F(z;\epsilon_1,\epsilon_2) \simeq \sum_{n,g \ge 0} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F_{(n,g)}(z),$$

VIA [Krefl-Walcher, Huang-Klemm]

$$\frac{\partial F_{(n,g)}}{\partial S} = \frac{1}{2} \left(D_z^2 F_{(n,g-1)} + \sum_{m,h}' D_z F_{(m,h)} D_z F_{(n-m,g-h)} \right)$$

• Standard topological string limit:

$$F_{\mathsf{Top}} \coloneqq F(z;\epsilon_1,\epsilon_2)\Big|_{\epsilon_1+\epsilon_2=0,\,\epsilon_1\epsilon_2=g_{\mathsf{s}}^2} \simeq \sum_{g\geq 0} g_{\mathsf{s}}^{2g-2}F_{(0,g)}(z)$$

• Refined NS-limit: [Nekrasov-Shatashvili]

$$F_{\rm NS} \coloneqq \lim_{\epsilon_1 \to 0} \epsilon_1 F(z; \epsilon_1, \epsilon_2 = \hbar) \simeq \sum_{n \ge 0} \hbar^{2n-1} F_{(n,0)}(z) \bigcup_{\text{the material department of the material states of$$

Ricardo Schiappa (Técnico Lisbon)

Resurgent Transseries in String Theory

Interlude: Refined Master Equation

• Master equation for refined holomorphic anomaly: [Codesido-Mariño-RS]

$$\left(\frac{\partial}{\partial S} - \frac{1}{2}\epsilon_1\epsilon_2 D_z^2\right)Z + UD_z Z = \left(\frac{1}{\epsilon_1\epsilon_2}W + V\right)Z,$$

with "initial data"

$$U \equiv D_z F_{(0,0)}^{(0)}, \quad W \equiv \sum_{n=0}^{+\infty} (\epsilon_1 + \epsilon_2)^{2n} W_n, \quad V \equiv \sum_{n=0}^{+\infty} (\epsilon_1 + \epsilon_2)^{2n} V_n.$$

- Standard topological string limit $\epsilon_1 + \epsilon_2 = 0$, $\epsilon_1 \epsilon_2 = g_s^2$ recovers standard master equation.
- Refined NS-limit yields the master equation:

$$\frac{\partial F}{\partial S} - \frac{1}{2}\hbar \left(D_z F\right)^2 + U D_z F = \frac{1}{\hbar}W,$$

reproducing the (refined) NS-limit holomorphic anomaly equations,

$$\frac{\partial F_{(n,0)}}{\partial S} = \frac{1}{2} \sum_{m=1}^{n-1} D_z F_{(m,0)} D_z F_{(n-m,0)}.$$

Interlude: Refined Nonperturbative Holomorphic Anomaly

- Inserting $Z = \exp\left(\sum_{n} \sigma^{n} e^{-n\frac{A}{\hbar}} F^{(n)}(\hbar)\right)$ leads to recursion for nonperturbative transseries components!
- Instanton action is holomorphic: $\partial_S A = 0$. [Codesido-Mariño-RS]
- Refined nonperturbative holomorphic anomaly equations $(A^{(n)} \equiv nA)$:

$$\frac{\partial F_g^{(n)}}{\partial S} = -\sum_{h=1}^g \mathfrak{D}_h^{(n)} F_{g-h}^{(n)} + \frac{1}{2} \sum_{m=1}^{n-1} \sum_{h=-1}^{g-1} \left(\partial_z F_h^{(m)} - \partial_z A^{(m)} F_{h+1}^{(m)} \right) \left(\partial_z F_{g-2-h}^{(n-m)} - \partial_z A^{(n-m)} F_{g-1-h}^{(n-m)} \right).$$

On the Structure of Nonperturbative Solutions

• Perturbative topological string: [Yamaguchi-Yau]

$$F_g^{(0)} = \mathsf{Pol}\,(S; 3g - 3).$$

• Nonperturbative topological string:

$$\begin{split} F_{g}^{(1)} &= \mathrm{e}^{\frac{1}{2}(\partial_{z}A)^{2}S} \operatorname{Pol}(S;3g), \\ F_{g}^{(2)} &= \mathrm{e}^{(\partial_{z}A)^{2}S} \operatorname{Pol}(S;3g-3) + \mathrm{e}^{2(\partial_{z}A)^{2}S} \operatorname{Pol}(S;3g), \quad \cdots \end{split}$$

• Perturbative refined NS-limit:

$$F_n^{(0)} = \operatorname{Pol}(S; 2n - 3).$$

• Nonperturbative refined NS-limit:

$$F_n^{(1)} = \text{Pol}(S;n),$$

 $F_n^{(2)} = \text{Pol}(S;n+1), \cdots$

Outline

- Resurgent Asymptotics in String Theory
- 3 Asymptotics of Enumerative Invariants
- 4 The Resurgence of the Large N Expansion
- 5 Large N Expansion: Stokes versus Anti-Stokes Phases
- 🕤 Outlook

・ 何 ト ・ ヨ ト ・ ヨ ト

Local \mathbb{P}^2 : Checks of Conifold Instanton Actions

• Near conifold $z = -\frac{1}{27}$ use coordinate $\psi^{-3} = -27z \Rightarrow 3$ conifold points at cubic roots of unity \Rightarrow Instanton actions $A_i(\psi) = \frac{2\pi i}{\sqrt{3}} t_{c,i}(\psi)$, with $t_{c,1}(\psi) = t_c(\psi)$, $t_{c,2}(\psi) = t_c(e^{-2\pi i/3}\psi)$, $t_{c,3}(\psi) = t_c(e^{+2\pi i/3}\psi)$. $\left(t_c = \frac{2\pi}{\sqrt{3}} \left(\frac{3\psi}{\Gamma(\frac{2}{3})^3} {}_{3}F_2\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}; \frac{2}{3}, \frac{4}{3} \middle| \psi^3\right) - \frac{9}{\Gamma(\frac{1}{3})^3} {}_{3}F_2\left(\frac{2}{3}, \frac{2}{3}; \frac{2}{3}; \frac{4}{3}, \frac{5}{3} \middle| \psi^3\right) - 1\right)$

Local \mathbb{P}^2 : Structure of Instanton Actions

• Branch points and cuts of actions A_1 , A_2 , A_3 , in complex ψ plane. Each wedge $2\pi/3$ in correspondence with one full complex z plane.

• Large-radius point z = 0, $\psi^{-1} = 0$ use mirror map to write Kähler parameter as

$$T(\psi) = -\frac{1}{2\pi i} \frac{\sqrt{3}}{2\pi} G_{33}^{22} \left(\begin{array}{ccc} \frac{1}{3} & \frac{2}{3} & 1\\ 0 & 0 & 0 \end{array} \right| - \frac{1}{\psi^3} \right).$$

⇒ In region of moduli space associated to large-radius point ψ dominant instanton action is $A_{\mathsf{K}}(\psi) = 4\pi^2 \mathrm{i} T(\psi)$.

22 / 55

TÉCNICO I ISBO

Local \mathbb{P}^2 : Conifold versus Kähler Actions on Borel Plane

Resurgent Transseries in String Theory

Local \mathbb{P}^2 : Checks of Conifold One-Instanton Sector I

- Conifold one-instanton: $F_g^{(\mathbf{e}_1)} = \frac{\mathrm{i}\pi}{S_{1,1}} \mathrm{e}^{\frac{1}{2}(\partial_z A_1)^2 (S-S_{1,\mathsf{hol}})} \operatorname{Pol}(S;3g).$
- Testable at large-order using the sequence:

$$\frac{S_{1,1}}{\mathrm{i}\pi} F_h^{(\mathbf{e}_1)} = \lim_{g \to \infty} \frac{A_1^{2g-1-h}}{\Gamma(2g-1-h)} \left(F_g^{(\mathbf{0})} - \sum_{h'=0}^{h-1} \frac{\Gamma(2g-1-h')}{A_1^{2g-1-h'}} \frac{S_{1,1}}{\mathrm{i}\pi} F_{h'}^{(\mathbf{e}_1)} \right)$$

• Fig: for h = 0, 1, 2, 3, at three different points in ψ -moduli space:

Fig: *x* changes value of propagator around its holomorphic value ^{DM}
 Fig: numerical blue, green dots correspond to real, imaginary.

Local \mathbb{P}^2 : Checks of Conifold One-Instanton Sector II

25 / 55

Ricardo Schiappa (Técnico Lisbon)

Local \mathbb{P}^2 : Checks of Conifold Two-Instanton Sectors I

• At two-instanton level find a "pure" contribution

 $\widehat{F}_{h}^{(2\mathbf{e}_{1})} = e^{(\partial_{z}A_{1})^{2} \left(S-S_{1,\text{hol}}\right)} \operatorname{Pol}\left(S;3h\right) + e^{2(\partial_{z}A_{1})^{2} \left(S-S_{1,\text{hol}}\right)} \operatorname{Pol}\left(S;3h\right),$

alongside a "mixed" contribution

$$\widehat{F}_{h}^{(\mathbf{e}_{1,1})} = \mathrm{e}^{(\partial_{z}A_{1})^{2}\left(S-S_{1,\mathsf{hol}}\right)} \mathsf{Pol}\left(S;\frac{5h}{2}\right) + \mathsf{Pol}\left(S;\frac{3h}{2}-1\right).$$

• These are testable at large-order using the sequence:

$$F_g^{(\mathbf{e}_1)} \simeq \sum_{h=0}^{+\infty} \left\{ \frac{\Gamma(g+1-h)}{(+A_1)^{g+1-h}} \, \frac{S_{1,1}}{\mathrm{i}\pi} \, \widehat{F}_h^{(2\mathbf{e}_1)} + \frac{\Gamma(g+1-h)}{(-A_1)^{g+1-h}} \, \frac{\widetilde{S}_{-1,1}}{2\pi \mathrm{i}} \, \widehat{F}_h^{(\mathbf{e}_{1,1})} \right\} + \cdots$$

• Top Fig: real and imaginary parts of $\frac{S_{1,1}^2}{(i\pi)^2} \widehat{F}_0^{(2e_1)}$.

• Bottom Fig: real and imaginary parts of $\frac{S_{1,1}}{i\pi} \frac{\widetilde{S}_{-1,1}}{2\pi i} \widehat{F}_0^{(\mathbf{e}_{1,1})}$. (numerical tests at fixed $\psi = 2 e^{-i\pi/36}$ and varying $S = 10^{-8} (1 + 1x)$)

Local \mathbb{P}^2 : Checks of Conifold Two-Instanton Sectors II

Ricardo Schiappa (Técnico Lisbon)

Resurgent Transseries in String Theory

Kobe, September 2017

Local \mathbb{P}^2 : Nonperturbative Completions

- For the case of strings on local \mathbb{P}^2 there is a nonperturbative definition in the literature! [Grassi-Hatsuda-Mariño, Kashaev-Mariño, Mariño-Zakany]
 - Actually extends for toric Calabi–Yau geometries...
- This is based upon the quantization of mirror curve:

 $\hat{\mathcal{O}}_{\mathbb{D}^2}(\hat{x},\hat{p}) = e^{\hat{p}} + e^{\hat{x}} + e^{-\hat{p}-\hat{x}}.$

with commutation relations $[\hat{x}, \hat{p}] = i\hbar$.

• Inverse operator $\rho = \hat{\mathcal{O}}^{-1}$ acting on $L^2(\mathbb{R})$ is trace class and positive definite \Rightarrow Partition function (in conifold frame) follows from spectral-trace expansion of Fredholm determinant:

$$\det(1+\kappa\rho) = 1 + \sum_{N=1}^{+\infty} Z(N,\hbar) \kappa^N.$$

3

Resurgent Asymptotics in String Theory

Local \mathbb{P}^2 : Resummation of the String Free Energy

• Matching perturbative results... [Couso-Mariño-RS]

Resurgent Transseries in String Theory

Local \mathbb{P}^2 : Resummations and Stokes Phenomena I

Matching nonperturbative one-instanton results before Stokes ling

• Notation is $\hbar = \frac{4\pi^2}{g_s}$ and $\lambda = \frac{N}{\hbar}$ (with $\lambda = \frac{\sqrt{3}}{12\pi^2} t_c$).

Ricardo Schiappa (Técnico Lisbon)

Resurgent Transseries in String Theory

Kobe, September 2017

ember 2017 30 / 55

Local \mathbb{P}^2 : Resummations and Stokes Phenomena II

• Crossing Stokes line and still find matching results! [Couso-Marine TS] DM • Stokes jump is: $2\pi i e^{2\pi i N} \rightarrow 2\pi i e^{2\pi i N} - 2\pi i$.

Local $\mathbb{P}^1 \times \mathbb{P}^1$: Different Nonperturbative Completions?

- For the case of strings on local P¹ × P¹ there are actually two distinct nonperturbative definitions in the literature!
 - Quantization of mirror curve: $\hat{\mathcal{O}}_{\mathbb{P}^1 \times \mathbb{P}^1}(\hat{x}, \hat{p}) = e^{\hat{p}} + e^{-\hat{p}} + e^{\hat{x}} + m e^{-\hat{x}}$, partition function out of spectral trace expansion of Fredholm determinant det $(1 + \kappa \rho) = 1 + \sum_{N=1}^{+\infty} Z(N, \hbar) \kappa^N$ (with $\rho = \hat{\mathcal{O}}^{-1}$).
 - Chern–Simons partition function on lens space $L(2,1) \simeq S^2/\mathbb{Z}_2$ (localized to 2-cuts matrix model). [Gopakumar-Vafa, Aganagic-Klemm-Mariño-Vafa]
- In what / how much do these definitions differ?
- Can the same transseries match both results?
- How would the corresponding semi-classical decodings differ?

Outline

- 1 Nonperturbative Holomorphic Anomalies
- 2 Resurgent Asymptotics in String Theory

3 Asymptotics of Enumerative Invariants

- 4) The Resurgence of the Large N Expansion
- 5 Large N Expansion: Stokes versus Anti-Stokes Phases
- Outlook

・ 同下 ・ ヨト ・ ヨト

Mirror Map to A-Model and Gromov-Witten Invariants

 Mirror map from B-model (with complex structure moduli z) to the A-model mirror geometry (with Kähler moduli t) is

$$-t = \log z - 6z + 45z^2 - 560z^2 + \cdots.$$

• In the A-model, the genus-g free energies are

$$F_g(t) = \sum_{d=1}^{+\infty} N_{g,d} \operatorname{e}^{-dt},$$

where the $N_{g,d}$ are the enumerative Gromov–Witten invariants.

• If free energies are asymptotic, how does this translate to the growth of enumerative GW invariants in genus and in degree?

Growth of GW Invariants: Local \mathbb{P}^2 Geometry

$\log N_{g,d} $	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
20	111.4	117.1	122.6	128.0	133.2	138.3	143.4	148.3	153.2	157.9	162.6	167.3	171.8	176.3	180.8	185.2	189.5	193.9	198.1	202.3	206.5
21	113.7	119.6	125.3	130.8	136.2	141.4	146.6	151.6	156.6	161.5	166.3	171.0	175.7	180.3	184.8	189.3	193.7	198.1	202.5	206.8	211.1
22	116.0	122.0	127.9	133.5	139.1	144.5	149.7	154.9	160.0	165.0	169.9	174.7	179.5	184.2	188.8	193.4	197.9	202.4	206.8	211.2	215.5
23	118.2	124.4	130.4	136.2	141.9	147.4	152.8	158.1	163.3	168.4	173.4	178.4	183.2	188.0	192.8	197.4	202.0	206.6	211.1	215.6	220.0
24	120.4	126.7	132.9	138.9	144.7	150.3	155.9	161.3	166.6	171.8	177.0	182.0	187.0	191.8	196.7	201.4	206.1	210.7	215.3	219.9	224.4
25	122.5	129.0	135.3	141.5	147.4	153.2	158.9	164.4	169.9	175.2	180.4	185.6	190.6	195.6	200.5	205.4	210.1	214.9	219.5	224.2	228.7
26	124.5	131.2	137.7	144.0	150.1	156.0	161.8	167.5	173.1	178.5	183.9	189.1	194.3	199.3	204.3	209.3	214.1	219.0	223.7	228.4	233.0
27	126.5	133.4	140.0	146.5	152.7	158.8	164.8	170.6	176.2	181.8	187.2	192.6	197.8	203.0	208.1	213.1	218.1	223.0	227.8	232.6	237.3
28	128.5	135.5	142.3	148.9	155.3	161.5	167.6	173.5	179.3	185.0	190.6	196.0	201.4	206.7	211.9	217.0	222.0	227.0	231.9	236.8	241.6
29	130.4	137.6	144.6	151.3	157.9	164.2	170.4	176.5	182.4	188.2	193.9	199.4	204.9	210.3	215.6	220.8	225.9	231.0	236.0	240.9	245.8
30	132.2	139.6	146.7	153.7	160.4	166.9	173.2	179.4	185.4	191.3	197.1	202.8	208.4	213.8	219.2	224.5	229.7	234.9	240.0	245.0	249.9
31	134.0	141.6	148.9	155.9	162.8	169.5	175.9	182.2	188.4	194.4	200.3	206.1	211.8	217.4	222.9	228.2	233.6	238.8	244.0	249.1	254.1
32	135.7	143.5	151.0	158.2	165.2	172.0	178.6	185.1	191.4	197.5	203.5	209.4	215.2	220.9	226.4	231.9	237.3	242.7	247.9	253.1	258.2
33	137.4	145.4	153.0	160.4	167.6	174.5	181.3	187.8	194.3	200.5	206.6	212.7	218.5	224.3	230.0	235.6	241.1	246.5	251.8	257.1	262.3
34	139.0	147.2	155.0	162.6	169.9	177.0	183.9	190.6	197.1	203.5	209.7	215.9	221.9	227.7	233.5	239.2	244.8	250.3	255.7	261.0	266.3
35	140.6	149.0	157.0	164.7	172.2	179.4	186.4	193.3	199.9	206.4	212.8	219.0	225.1	231.1	237.0	242.8	248.4	254.0	259.5	265.0	270.3
36	142.2	150.7	158.9	166.8	174.4	181.8	188.9	195.9	202.7	209.3	215.8	222.2	228.4	234.5	240.4	246.3	252.1	257.7	263.3	268.8	274.3
37	143.7	152.4	160.7	168.8	176.6	184.1	191.4	198.5	205.5	212.2	218.8	225.3	231.6	237.8	243.8	249.8	255.7	261.4	267.1	272.7	278.2
38	145.1	154.0	162.6	170.8	178.7	186.4	193.9	201.1	208.2	215.0	221.8	228.3	234.7	241.0	247.2	253.3	259.2	265.1	270.9	276.5	282.1
39	146.6	155.6	164.3	172.7	180.8	188.7	196.3	203.7	210.8	217.8	224.7	231.4	237.9	244.3	250.6	256.7	262.8	268.7	274.6	280.3	286.0
40	147.9	157.2	166.1	174.6	182.9	190.9	198.6	206.2	213.5	220.6	227.6	234.3	241.0	247.5	253.9	260.1	266.3	272.3	278.3	284.1	289.9
				log	M				lo	$\sigma \mid N$	aal				logU	NI					

- For fixed genus g or degree d there is no factorial growth...
- Only when both genus and degree grow,

$$d = a_0(t) + a_1(t) g.$$

TÉCNICO I ISBO.

Universal Growth from Kähler Instanton Action

• Universal growth of GW invariants with $d = \frac{2g-3}{t}$, controlled by the Kähler instanton action $A_{\rm K} = 2\pi t$, [Couso-RS-Vaz]

$$N_{g,d}^{\mathbb{P}^2} Q^d \Big|_{g=\frac{t}{2}d+q} \sim \sum_{n=1}^{+\infty} \sum_{h=0}^{+\infty} \frac{\Gamma\left(2g-\frac{3}{2}-h\right)}{(nA_{\mathsf{K}})^{2g-\frac{3}{2}-h}} \frac{n_0^{(1)} t^{\frac{3}{2}-h}}{2^{2h+1} \pi^{h+2} n^{\frac{3}{2}+h}} \mathcal{P}_h(q),$$

where

$$\mathcal{P}_{0}(q) = 1,$$

$$\mathcal{P}_{1}(q) = -\frac{71}{12} + 12q - 4q^{2},$$

$$\mathcal{P}_{2}(q) = \frac{11545}{288} - 131q + \frac{419q^{2}}{3} - \frac{176q^{3}}{3} + 8q^{4},$$

...

• All geometries tested: resolved conifold, local \mathbb{P}^2 , local $\mathbb{P}^1 \times \bigcap_{\mathbb{P}^{d} \in \mathbb{P}^{d}} \bigcap_{\mathbb{P}^{d}} \bigcap_{\mathbb{P}^{d} \in \mathbb{P}^{d}} \bigcap_{\mathbb{P}^{d}} \bigcap_{\mathbb{P}^{d} \in \mathbb{P}^{d}} \bigcap_{\mathbb{P}^{d} \bigcap_{\mathbb{P}^{d}} \bigcap_{\mathbb{P}^{d}$

But Contributions from Other Instanton Actions...

• There are further contributions arising from other instanton actions!

• Construct $a_0(t)$, $a_1(t)$ numerically but (still) cannot in closed form....

Outline

- 1 Nonperturbative Holomorphic Anomalies
- 2 Resurgent Asymptotics in String Theory
- 3 Asymptotics of Enumerative Invariants
- 4 The Resurgence of the Large N Expansion
 - 5 Large N Expansion: Stokes versus Anti-Stokes Phases

) Outlook

< 回 > < 三 > < 三 >

Random Matrices and 't Hooft Large N Limit

- What is the resurgent, nonperturbative nature of the large N limit?...
- Hermitian one-matrix model with polynomial potential V(z),

$$Z = \frac{1}{\operatorname{vol}(\operatorname{U}(N))} \int \mathrm{d}M \, \exp\left(-\frac{1}{g_{\mathsf{s}}} \operatorname{Tr}V(M)\right).$$

• Consider limit $N \to +\infty$ while $t = g_s N$ fixed ['t Hooft]. In this case free energy $F = \log Z$ has perturbative genus expansion,

$$F \simeq \sum_{g=0}^{+\infty} F_g(t) g_{\mathsf{s}}^{2g-2}.$$

• Large-order behavior $F_g \sim (2g)!$ renders topological genus expansion as asymptotic approximation [Shenker].

A B F A B F

Interacting Theory: Quartic Matrix Model

- Potential $V(z) = \frac{1}{2}z^2 \frac{\lambda}{24}z^4$ generically three-cut solution.
- One-cut $y^2 = \left(1 \frac{\lambda}{6}\left(z^2 + 2\alpha^2\right)\right)^2 \left(z^2 4\alpha^2\right)$. [Mariño, Aniceto-RS-Vonk]
- Two-cut \mathbb{Z}_2 -symmetric $y^2 = \frac{1}{36}\lambda^2 z^2 (z^2 a^2) (z^2 b^2)$. [RS-Vaz] DM

ÉCNU

Resurgent Solution around One-Cut Background

• Transseries solution to (quartic) string equation:

$$\mathcal{R}(x)\left\{1-\frac{\lambda}{6}\left(\mathcal{R}(x-g_{s})+\mathcal{R}(x)+\mathcal{R}(x+g_{s})\right)\right\}=x.$$

• Requires both "instanton" actions +A and -A, leading to transseries:

$$\mathcal{R}(x,\sigma_1,\sigma_2) = \sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} \sigma_1^n \sigma_2^m e^{-(n-m)A(x)/g_{\mathfrak{s}}} \sum_{g=\beta_{nm}}^{+\infty} g_{\mathfrak{s}}^g R_g^{(n|m)}(x).$$

- Fully nonperturbative solution ⇒ Via Stokes transitions can move anywhere in (multi-cut) phase diagram.
- Extensive resurgent checks of large-order asymptotics on both perturbative and multi-instantonic sectors! [Aniceto-RS-Vonk]

41 / 55

A 12 N A 12 N

Double-Scaling Limit and the Painlevé I Equation

• DSL yields Painlevé I equation for $u(z) = -F''_{ds}(z)$

$$u^2(z) - \frac{1}{6}u''(z) = z.$$

Perturbative solution

$$u(z) \simeq \sqrt{z} \sum_{g=0}^{+\infty} \frac{u_g}{z^{\frac{5}{2}g}},$$

yields recursion equation; obtain asymptotic expansion

$$u(z) \simeq \sqrt{z} \left(1 - \frac{1}{48} z^{-\frac{5}{2}} - \frac{49}{4608} z^{-5} + \cdots \right).$$

● A second order differential equation ⇒ Yields two instanton actions

$$A = \pm \frac{8\sqrt{3}}{5}.$$

Resurgent Transseries in String Theory

3

Two-Parameter Transseries Solution

• General two-parameter transseries solution is $(g_s = z^{-5/4})$:

$$u(g_{s},\sigma_{1},\sigma_{2}) = \sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} \sigma_{1}^{n} \sigma_{2}^{m} e^{-(n-m)\frac{A}{g_{s}}} \left(\sum_{k=0}^{\min(n,m)} \log^{k}(g_{s}) \cdot \Phi_{(n|m)}^{[k]}(g_{s}) \right)$$

- Checked nonperturbative sectors via resurgent large-order analysis.
- Resurgence allows extremely accurate tests: at genus *g* = 30, including six instantons corrections, results correct up to 60 decimal places!

Outline

- 1 Nonperturbative Holomorphic Anomalies
- 2 Resurgent Asymptotics in String Theory
- 3 Asymptotics of Enumerative Invariants
- Φ The Resurgence of the Large N Expansion
- 5 Large N Expansion: Stokes versus Anti-Stokes Phases

Outlook

A B F A B F

Holomorphic Effective Potential

- What exactly controls saddle-points/asymptotics of matrix integral?
- In diagonal gauge, $M = \text{diag}(\lambda_1, \dots, \lambda_N)$, holomorphic effective potential

$$V_{
m h;eff}(\lambda) = \int_a^\lambda {
m d}z \, y(z)$$

appears at leading order in large N expansion of the matrix integral

$$Z \sim \int \prod_{i=1}^{N} \mathrm{d}\lambda_{i} \, \exp\left(-\frac{1}{g_{\mathsf{s}}} \sum_{i=1}^{N} V_{\mathsf{h};\mathrm{eff}}(\lambda_{i}) + \cdots\right).$$

• Zero-locus $\mathcal{V}_0 = \{z \in \mathbb{C} \mid \mathbb{R}e V_{h; eff}(z) = 0\}$ constructs "spectral network" suitable for (non-linear) steepest-descent analysis.

Large N Expansion: Stokes versus Anti-Stokes Phases

Multi-Instanton Sectors from B-Cycles

- Instantons from B-cycles [David, Seiberg-Shih, Mariño-RS-Weiss, RS-Vaz].
- Stokes lines ("jumps" in Borel plane): $\operatorname{Im}\left(\frac{A(t)}{q_s}\right) = 0.$
- Anti-Stokes lines (phase boundaries): $\mathbb{R}e\left(\frac{A(t)}{q_s}\right) = 0.$

Quartic Phase Diagram at Complex 't Hooft Coupling

Anti-Stokes phase [Bonnet-David-Eynard, Mariño-Pasquetti-Putrov, Aniceto-RS-Vonk].
 Trivalent-tree phase [David, Bertola, Couso-RS-Vaz].

Ricardo Schiappa (Técnico Lisbon)

Resurgent Transseries in String Theory

Kobe, September 2017

er 2017 47 / 55

пм

TÉCNICO I ISBO

Phases and their Transseries Asymptotics

- Stokes phases (either 1 or \mathbb{Z}_2 -symmetric 2 cuts): usual $\frac{1}{N}$ perturbative expansion, alongside $\exp(-N)$ instanton corrections...
- Anti-Stokes phase (with 3 cuts): unusual oscillatory asymptotics in *N*, given by theta functions ⇒ No clear string dual!
- Trivalent phase (here numerical solution N = 75, t = 5):

- More intricate theta function asymptotics...
- Accesses strong 't Hooft coupling region...

The Modularity of Resurgent Transseries

- Resummation methods help describing different phases of our systems.
- Can reorganize the transseries double-sum

$$u(z,\sigma) = \sum_{n=0}^{+\infty} \sigma^n \operatorname{e}^{-nAz} z^{-n\beta} \sum_{g=1}^{+\infty} \frac{u_g^{(n)}}{z^g},$$

summing first over all instanton numbers (transasymptotics [Costin]). • Introducing variable $\xi = \sigma z^{-\beta} e^{-Az}$ this yields

$$u(z,\xi) = \sum_{g=0}^{+\infty} \frac{\mathbb{U}_g(\xi)}{z^g} \simeq \mathbb{U}_0(\xi) + \cdots, \qquad \mathbb{U}_g(\xi) = \sum_{n=0}^{+\infty} \xi^n u_g^{(n)}.$$

Surprisingly, now each $\mathbb{U}_{q}(\xi)$ results in a convergent series!

• For Painlevé I, find Weierstrass elliptic function in variable $s = \log \xi$,

$$\left(\mathbb{U}_{0}'(s)\right)^{2} = 4 \mathbb{U}_{0}^{3}(s) - g_{2} \mathbb{U}_{0}(s) - g_{3}.$$

Finding Poles of Painlevé Solutions

• Painlevé solutions generically have double poles,

$$u(z)\Big|_{z=z_0} \simeq \frac{1}{(z-z_0)^2} + \cdots,$$

translating to simple zeroes of partition function $Z(z) \approx (z - z_0) + \cdots$. • One-parameter transseries, $u_0^{(n)} = \frac{n}{12^{n-1}}$, implying $(\tau = \frac{1}{12} \sigma z^{-\beta} e^{-Az})$

$$\mathbb{U}_{0}(\tau) = \frac{1 + 10\tau + \tau^{2}}{(1 - \tau)^{2}}.$$

• Two-parameter transseries harder, now find [RS-Vonk]

$$\mathbb{U}_0(T) = \frac{1 + 10T + T^2}{(1 - T)^2},$$

with

$$T = \frac{\sigma_1}{12\sqrt{z}} \exp\left(-\frac{47\sqrt{3}}{72\,z}\,\sigma_1^2\sigma_2^2 + \frac{2\sqrt{3}}{3}\sigma_1\sigma_2\log z - Az\right) \int_{\text{temperaturent}}^{\text{DM}} \int_{\text{temperaturent}}^$$

Ricardo Schiappa (Técnico Lisbon)

Resurgent Transseries in String Theory

Kobe, September 2017

Large N Expansion: Stokes versus Anti-Stokes Phases

All Painlevé Solutions from Transseries

- Tritronquée solution: perturbative series alone.
- Tronquée solution: one-parameter transseries.
- General solution: full two-parameter transseries [RS-Vonk].

Finding Zeroes of Matrix-Model Partition Function

• Solutions to string equation also have double poles,

$$\mathcal{R}(t) \simeq \frac{g_{\mathsf{s}}^2}{\left(t-t_0\right)^2} + \cdots,$$

leading to simple zeroes (Lee-Yang zeroes) of the partition function

 $Z(t)\approx (t-t_0)+\cdots.$

• For one-parameter transseries, find [RS-Vaz]

$$\mathbb{R}_0(\zeta) = \frac{\zeta}{(1-\zeta)(1-X^2\zeta)} + \cdots,$$

where we have defined

$$\zeta = \frac{1}{18} \sigma^2 \lambda^2 \frac{X \left(1 + 4X + X^2\right)^2}{\left(1 - X\right)^5 \left(1 + X\right)^3}$$

• Harder than previous Lambert W-function but still doable...

52 / 55

and $X = e^{A'}$.

Matrix Model Zeroes of the Partition Function

Ricardo Schiappa (Técnico Lisbon)

Resurgent Transseries in String Theory

Kobe, September 2017 53 / 55

Outline

- Nonperturbative Holomorphic Anomalies
- 2 Resurgent Asymptotics in String Theory
- 3 Asymptotics of Enumerative Invariants
- 4 The Resurgence of the Large N Expansion
- 5 Large N Expansion: Stokes versus Anti-Stokes Phases

- 4 週 1 - 4 三 1 - 4 三 1

Summary and Future Directions

• Wrap-up:

- Resurgence and transseries definitely powerful tools in string theory! \Rightarrow Play a critical role in nonperturbative constructions.
- Observables described by resurgent functions/transseries ⇒ Define observables nonperturbatively starting out from perturbation theory!
- Nonperturbative structure fully encoded in Borel surface.
- Constructed and rigorously tested resurgent solutions in many models...

• Upcoming:

- Deal with trivalent-tree phase: resurgent transseries & asymptotics?
- Uncover new phases of spacetime via large N duality?
- Extend to other toric or non-toric geometries and multi-matrix models... Need fully general classification of resurgent asymptotics?
- Systematics as a tool to access finite and complex coupling! If

