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E
xecu

tive
S
u
m

m
ary

F
igure

1.4:
N

uclear
physics

does
play

a
pivotalrole

during
the

different
stages

in
the

evolution
of

our
universe.

In
the

field
of

nuclear
astrophysics,

basic
questions

such
as

the
origin

ofthe
chem

icalelem
ents

and
the

energy
in

start
are

addressed.
T

he
answ

ers
do

rely
heavily

on
experim

ental
inform

ation
on

the
structure

of
stable

and
exotic

nucleiand
w

here
this

inform
ation

is
not

available
on

theoreticalm
odels.

V
LT

and
the

K
eck.

H
ighlights

w
ith

significant
public

attention
w

ere
the

high
redshift

super-
nova

search
and

its
im

plication
for

the
struc-

ture
and

dynam
ics

ofthe
U

niverse
as

w
ellas

the
proof

of
oscillations

for
solar

neutrinos
on

their
w

ay
from

the
solar

core
to

earth
by

earthbound
detectors.

T
his

solution
to

the
solar

neutrino
puzzle

does
not

only
open

the
door

to
new

physics
be-

yond
the

Standard
M

odel
of

particle
physics,

it
also

confirm
s

the
predictions

of
the

solar
m

odels
including

their
nuclear-physics

input.
T

he
latter

included
the

m
easurem

ent
of

the
3H

e( 3H
e,2p) 4H

e
reaction

cross
section

at
the

G
ran

Sasso
low

-energy
underground

facility.
T

his
m

ilestone
of

nuclear
astrophysics

consti-
tutes

the
first

direct
m

easurem
ent

of
a

reaction
rate

at
stellar

energies.
To

optim
ally

exploit
this

unique
facility,

the
installation

of
a

com
-

pact
high-current

5-M
V

accelerator,
equipped

w
ith

a
highly-effi

cient
G

e
detector

array
is

ur-
gently

needed.

O
ther

highlights
ofexperim

entalnuclear
as-

trophysics
include

the
developm

ent
and

success-
ful

use
of

novel
neutron-tim

e-of-flight
facilities

at
Los

A
lam

os
and

C
E

R
N

,
w

hich
allow

to
de-

term
ine

neutron-capture
cross

sections
for

the
s-

process
w

ith
unprecedented

precision,the
high-

accuracy
m

ass
m

easurem
ents

of
m

any
unstable

nuclei
at

G
SI,

ISO
LD

E
and

G
A

N
IL,

the
de-

term
ination

of
m

ore
than

30
new

half-lives
for

neutron-rich
nuclei

on
the

r-process
path,

and
the

precision
m

easurem
ents

of
spin-isospin

re-
sponses

in
nucleiat

K
V

I,G
roningen

and
R

C
N

P,
O

saka,w
hich

are
im

portant
inputs

in
supernova

sim
ulations

and
for

supernova
neutrino

detec-
tors.A

new
era

ofnuclearastrophysics
hasstarted

w
ith

the
use

of
radioactive

ion-beam
acceler-

ators
dedicated

to
the

m
easurem

ent
of

astro-
physically

relevant
nuclear

reactions
involving

short-lived
nuclides.

T
his

field
has

been
pio-

neered
by

the
Louvain-la-N

euve
facility,

w
here

several
im

portant
low

-energy
nuclear

reactions
for

explosive
astrophysical

environm
ents

have
been

studied
in

the
last

10
years.

N
ew

installa-
tions

are
now

operational
at

Louvain-la-N
euve,

T
R

IU
M

F
,G

A
N

IL
and

at
C

E
R

N
.T

hey
w

ill
al-

low
to

determ
ine

som
e

of
the

m
ost

im
portant

reaction
rates

for
the

nuclear
netw

orks
in

no-
vae

and
X

-ray
bursters.

Im
m

ediate
upgrades

of
the

existing
facilities

in
E

urope
are

crucial
to

bridge
the

gap
until

the
second-generation

radioactive
ion-beam

facilities
becom

e
opera-

tional.
T

his
next

generation
of

radioactive
ion-

beam
facilities,

planned
and

proposed
in

E
u-

rope
(G

SI
and

E
U

R
ISO

L),in
Japan

and
in

the
U

SA
,

w
ill

then
allow

to
produce

and
experi-

m
ent

w
ith

m
ost

of
the

astrophysically
im

por-
tant

short-lived
nuclides,

prom
ising

to
rem

ove
the

m
ost

crucial
am

biguities
in

nuclear
astro-

physics
arising

from
nuclear-physics

input.

In
m

any
ofthe

astrophysicalm
odels,nuclear

theory
hasto

bridge
the

gap
betw

een
experim

en-
tal

data
and

astrophysical
applications.

H
ere,

w
e

clearly
stand

at
the

eve
of

a
new

era
as

the
required

step
can

now
be

taken
on

the
basis

of
first-principle

theoreticalm
odels

rather
than

by
em

pirical
param

eterisation
of

the
data.

T
his

should
reduce

the
uncertainties

connected
w

ith

10
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They are well within the uncertainty of the overall world average quoted above. Note,
however, that the average excluding the lattice result is no longer as close to the value
obtained from lattice alone as was the case in the 2013 Review, but is now smaller by
almost one standard deviation of its assigned uncertainty.

Notwithstanding the many open issues still present within each of the sub-fields
summarised in this Review, the wealth of available results provides a rather precise and
reasonably stable world average value of αs(M2

Z), as well as a clear signature and proof of
the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q2)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO
pp –> tt (NNLO)

)(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).

♦ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [381],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.

January 6, 2017 18:42

Particle Data Group                                                           Chin. Phys. C40 (2016) 100001 
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quark − gluon phase

µB1 GeV

nuclear

matter

0.2

T

[GeV] Nf = 2 (q = u,d)

critical point

hadron phase

CSC phase
superconductor

(color)

matter
nuclear

density [fm−3]0.15

baryon chemical potential

0

0

CSC phases

0.1

0.2

phases

color�
superconducting

nuclear
matter

?

?
?

c

r

o

s

s

o

v

e

r

HADRONS

QUARKS  &  GLUONS

5

1 fm 10 fm 20km

neutron 
stars

nucleons 
& 

nuclei

LATTICE 
QCD

LHC and RHIC experiments

PHASES and STRUCTURES of QCD

PHYSIK
DEPARTMENT

neutron
matter

quark
 matter ?

10km

1 fm 10 fm 20km



        QCD THERMODYNAMICS on the LATTICE
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Figure 5: Left: contributions of the light (magenta) and strange quarks (turquoise) to the the
pressure at T = 214 MeV at our two finest lattice spacings. The curves represent a scan though
various theories with di�erent masses. The sum of the area under the curves gives p/T 4. Right:
continuum extrapolation of the pressure at T � 214 MeV with (blue) and without (orange) tree level
improvement. Only statistical errors are shown.
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Figure 6: Left: continuum extrapolated result for the pressure with Nf = 2 + 1 flavors. The
HRG prediction is indicated by the black line at low temperatures, at high temperature we show a
comparison to the NNLO Hard Thermal Loop result of ref. [31] using three di�erent renormalization
scales (µ =⇥T , 2⇥T or 4⇥T ). Right: entropy and energy density. The insert shows the speed of
sound.
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Figure 6: Left: continuum extrapolated result for the pressure with Nf = 2 + 1 flavors. The
HRG prediction is indicated by the black line at low temperatures, at high temperature we show a
comparison to the NNLO Hard Thermal Loop result of ref. [31] using three di�erent renormalization
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A. Bazavov et al. (HotQCD collab.)
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Figure 5. Spline fits to the trace anomaly for several values of the lattice spacing aT = 1/N� and the result of our continuum
extrapolation (left). Note that the error bands shown here do not include the 2% scale error. The right hand panel shows
suitably normalized pressure, energy density, and entropy density as a function of the temperature. In this case the 2% scale
error is included in the error bands. The dark lines show the prediction of the HRG model. The horizontal line at 95�2/60
in the right panel corresponds to the ideal gas limit for the energy density and the vertical band marks the crossover region,
Tc = (154± 9) MeV.

find that the N⇥ = 6 data lie outside the range of applica-
bility of the quadratic ansatz. The same error bands are
compared with the final continuum extrapolated result
(black band) in Fig. 5.

Having determined the final fit, we obtained the pres-
sure p/T 4 by numerically integrating the bootstrap sam-
ples for �µµ(T ) between 130 MeV and 400 MeV using
Eq. (12). For the integration constant p0, the pressure
at T = 130 MeV, we picked a value from a normal dis-
tribution with the mean value p0/T 4

0 = 0.4391, again
taken from the HRG model, and width 0.0439, a con-
servative 10% error estimate on this HRG value. Since
the estimate of p0/T 4

0 is independent of the calculation
of �µµ(T ), this choice e⇥ectively adds a �p0 in quadra-
ture to the errors from integrating �µµ(T )/T 4. Knowing
�µµ(T )/T 4 ⇤ (⇥�3p)/T 4 and p/T 4, it is straightforward
to derive the energy density, ⇥, and the entropy density
s = (⇥+ p)/T .

The final systematic error that is folded into the esti-
mates of all the thermodynamic quantities is the uncer-
tainty in the determination of the lattice scale a, and thus
the values of the temperature T used in the fits. Based
on the uncertainty analyses in the determination of the
lattice scale a (⇧ 1.3%) and tuning of the ms to stay on
the LCP presented in Appendices B and C, we assigned
an overall conservative 2% uncertainty in T , which we
add linearly to the error estimates already assigned by
the bootstrap process. In practice, at each T and for
each observable, we picked the minimum and maximum
values of the 1⇤ bootstrap envelope in the region T ±2%.
This new envelope is then used as the final uncertainty
band for all the continuum results shown in the figures
and discussed below.

Our continuum extrapolated results for the trace
anomaly and other thermodynamic observables are

shown in Fig. 5 and the data are given in Table I. For
T < 150 MeV, the trace anomaly is well approximated
by the HRG estimate shown by the solid line in Fig. 5
(left). For T > 150 MeV, the N⇥ ⌅ 8 lattice results are
systematically higher than the HRG estimate as shown
in Fig. 3, and the slopes of the HRG and continuum ex-
trapolated curves start to di⇥er as shown in Fig. 5. In
the peak region, (⇥ � 3p)/T 4 has a maximum of about
4.05(15) at T ⇧ 204 MeV. This maximal value from simu-
lations with the HISQ/tree action is significantly smaller
than our previous results with the p4 and asqtad actions
which were incorporated in the HotQCD parametrization
[23] of the EoS, as well as in the s95p parametrization of
the EoS that is frequently used in hydrodynamic models
[42].
The final continuum extrapolated estimates of the

pressure, energy density and entropy density are shown
in Fig. 5 (right) and compared with HRG predictions for
T < 170 MeV. Again, there is reasonable agreement for
T < 150 MeV. Above T = 150 MeV, HRG estimates
lie along the lower edge of the error-band of the lattice
estimates.
We can now compare our results with the results ob-

tained by the Wuppertal-Budapest Collaboration using
the stout action [26]. This comparison is shown in Fig.
6 for the trace anomaly, the pressure and the entropy
density. We find good agreement in the trace anomaly
with the stout results over the full temperature range
(130 � 400) MeV. Note, however, that above the peak
the central values with the stout action lie systemati-
cally below ours. As a result, our estimates of the pres-
sure become systematically larger for T > 200 MeV.
By T = 400 MeV, the di⇥erence between the central
values in the two calculations increases to about 6%.
The two results, however, still agree within errors. The

Entropy 
Density

µB = 0

Tc '
150� 160 MeV

crossover 
(not a phase transition)
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2. The QCD Phase diagram

Before discussing calculations for the η/s ratio for confined matter, let
us present a novel form of displaying the phase diagram of QCD matter,
i.e. matter, where the mean interparticle spacing is of the order of a few
femtometers. In this case the strong interaction is the main player in the
equation of state. Rather than representing the phase diagram in terms of
temperature T and baryo-chemical potential µ we choose to plot pressure
vs. temperature. This has the advantage of a more direct comparison with
other substances such as water or liquid Helium. The results are shown in
Fig. 2.
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Fig. 2. Phase diagram of strong-interaction matter in the pressure-temperature
plane [5]. Due to relativistic effects there exists an unphysical region in which
QCD matter cannot exist in equilibrium.

The low-temperature regime is the realm of nucleonic matter, which may
undergo a first-order chiral restoration transition to chirally ordered and
superconducting quark matter at high pressure. These phases could be
realized in the interior of neutron stars. At high temperatures one encoun-
ters quark-gluon matter, whose boundary to the unphysical region (µ = 0)
is quantitatively described by lattice QCD and a free pion gas at low T .
When raising the temperature the first-order chiral transition line ends in a
chiral critical endpoint (CEP) of second order. Current and future heavy-
ion experiments are indicated as well as the chemical freeze out. The latter
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Fig. 2. Phase diagram of strong-interaction matter in the pressure-temperature
plane [5]. Due to relativistic effects there exists an unphysical region in which
QCD matter cannot exist in equilibrium.

The low-temperature regime is the realm of nucleonic matter, which may
undergo a first-order chiral restoration transition to chirally ordered and
superconducting quark matter at high pressure. These phases could be
realized in the interior of neutron stars. At high temperatures one encoun-
ters quark-gluon matter, whose boundary to the unphysical region (µ = 0)
is quantitatively described by lattice QCD and a free pion gas at low T .
When raising the temperature the first-order chiral transition line ends in a
chiral critical endpoint (CEP) of second order. Current and future heavy-
ion experiments are indicated as well as the chemical freeze out. The latter
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ABSTRACT

In recent years, there have been several successful attempts to constrain the equation of state
of neutron star matter using input from low-energy nuclear physics and observational data. We
demonstrate that significant further restrictions can be placed by additionally requiring the pressure
to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn
out to be highly insensitive to the amount — or even presence — of quark matter inside the stars.
Subject headings: equation of state — dense matter — stars: neutron

1. INTRODUCTION

The equation of state (EoS) of cold and dense strongly
interacting matter, which determines the inner structure
of compact stars (Glendenning 1997), is encoded in its
fundamental theory, Quantum Chromodynamics (QCD).
A full nonperturbative determination of the pressure of
the theory is still out of reach due to the so-called Sign
Problem of lattice QCD (de Forcrand 2010). Neverthe-
less, the methods of chiral effective field theory (EFT)
of nuclear forces (Epelbaum et al 2009) and high-density
perturbative QCD (pQCD) (Kraemmer & Rebhan 2004)
have matured enough to provide reliable predictions for
the EoS in the limits of low density nuclear matter and
dense quark matter, respectively. In particular, by now
both approaches produce results with reliable error es-
timates, implying that it is finally possible to quanti-
tatively estimate our understanding of the neutron star
matter EoS.
During the past couple of years, several articles have

addressed the determination of the neutron star EoS
by combining insights from low-energy chiral EFT with
the requirement that the resulting EoSs support the
most massive stars observed (see e.g. Hebeler et al.
(2013)). In particular, the discovery of neutron stars with
masses around two solar masses (Demorest et al. 2010;
Antoniadis et al. 2013) has recently been seen to lead
to strong constraints on the properties of stellar matter
(Lattimer 2012). While otherwise impressive, these anal-
yses have solely concentrated on the low density regime,
and have typically applied no microphysical constraints
beyond the nuclear saturation density n0. This has re-
sulted in EoSs that behave very differently from that of
deconfined quark matter even at rather high energy den-
sities.
In the present work, our aim is to demonstrate that

the EoS of neutron star matter can be significantly fur-
ther constrained by requiring it to approach the quark
matter one at high density. To do this, we use the state-
of-the-art result of Fraga et al. (2014), where a compact
expression for the three-loop pressure of unpaired quark
matter, taking into account the nonzero value of the
strange quark mass, was derived (see also Kurkela et al.
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Fig. 1.— Known limits of the stellar EoS on a logarithmic scale.
On the horizontal axis we have the quark chemical potential (with
an offset so that the variable acquires the value 0 for pressureless
nuclear matter), and on the vertical axis the pressure. The band
in the region around the question mark corresponds to the inter-
polating polytropic EoS that will be introduced in this work.

(2010a) and Kurkela et al. (2010b) for details of the origi-
nal pQCD calculation). A particularly powerful outcome
of the analysis is that the high density constraint signifi-
cantly reduces the uncertainty band of the stellar matter
EoS even at low densities, well below a possible phase
transition to deconfined quark matter. This implies that
the M -R relations we obtain are more restrictive than
previous ones even for pure neutron stars.
In practice, our calculation proceeds as follows (see

also fig. 1): at densities below 1.1n0, we employ the chi-
ral EFT EoS of Tews et al. (2013), assuming the true
result to lie within the error band given in this reference.
At baryon chemical potentials above 2.6 GeV, where the
relative uncertainty of the quark matter EoS is as large
as the nuclear matter one at n = 1.1n0, we on the other
hand use the result of Fraga et al. (2014) and its re-
spective error estimate. Between these two regions, we
assume that the EoS is well approximated by an interpo-
lating polytrope built from two “monotropes” of the form
P (n)=κnΓ. These functions are first matched together
in a smooth way, but later we also consider the scenario
of a first-order phase transition, allowing the density to
jump at the matching point of the two monotropes.
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CHIRAL  and  DECONFINEMENT 
crossover transitions appear to be closely connected

Quark Condensate

Transition temperature and EoS from lattice QCD 2

! !

!

!
!

!

!

!

!

!

!

!
!

!!
! !!!

"

"

"

"

"

"

"

"
"

""
"
""
" " "

!

!
!
!
!
!
!

!
!

!

!
!
!
! ! ! !

#

#

#

#

#

#

##

!!

""

!!

Continuum
Nt"16
Nt"12
Nt"10
Nt"8

100 120 140 160 180 200 220

0.2

0.4

0.6

0.8

1.0

T !MeV"

#
l,
s

Figure 1. Left: Subtracted chiral condensate ∆l,s as a function of the temperature.
The gray band is the continuum result of our collaboration, obtained with the stout
action. Right: The trace anomaly normalized by T 4 as a function of T onNt = 6, 8, 10
and 12 lattices. The inset shows a comparison with the results of the Hadron Resonance
Gas model, including resonances from the Particle Data Book up to 2.5 GeV mass.

1. Introduction

The study of QCD thermodynamics is receiving increasing interest in recent years. A

systematic approach to determine the properties of the deconfinement phase transition

is through lattice QCD. Lattice simulations indicate that the transition at vanishing
chemical potential is merely an analytic crossover [1]. Some interesting quantities that

can be extracted from lattice simulations are the transition temperature Tc, the QCD

equation of state and, for small chemical potentials, the phase diagram in the µ−T plane:

we review the results on these observables that have been obtained by our collaboration

using the staggered stout action with physical light and strange quark masses, thus

ms/mud ≃ 28 [2, 3]. For all details we refer the reader to Refs. [4, 5, 6].

2. QCD transition temperature and Equation of State

We present here the results for the chiral condensate, and extract the value of Tc

associated to this observable; for the values of Tc obtained from other observables, which

reflects the nature of the crossover transition, we refer the reader to Ref. [4]. The chiral

condensate is defined as ⟨ψ̄ψ⟩q = T∂ lnZ/(∂mqV ) for q=u,d,s. It is an indicator for the
remnant of the chiral transition, since it rapidly changes around Tc. We calculate the

quantity ∆l,s, which is defined as [⟨ψ̄ψ⟩l,T −ml/ms⟨ψ̄ψ⟩s,T ]/[⟨ψ̄ψ⟩l,0 −ml/ms⟨ψ̄ψ⟩s,0]

for l=u,d. Since the results at different lattice spacings are essentially on top of each

other, we connect them to lead the eye (see the left panel of Fig. 1). The value of Tc

that we obtain from the inflection point of this observable is Tc = 157(3)(3).

Next we present our results regarding the equation of state; in the right panel of
Figure 1, the T dependence of the interaction measure is shown for the 2 + 1 flavor

system. We have results at four different lattice spacings. Results show essentially

no dependence on “a”, they all lie on top of each other. Only the coarsest Nt = 6

lattice shows some deviation around ∼ 300 MeV. On the same figure, we zoom in to

S. Borsanyi et al.
JHEP 1011 (2010) 077

⟨ψ̄ψ⟩T
⟨ψ̄ψ⟩T=0

temperature

Tc ≃ 155MeV

Crossover 
transition temperature
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PIONS  and  NUCLEI  
in the context of  LOW-ENERGY QCD

LOW-ENERGY QCD:    

Effective  Field  Theory  of  weakly interacting 

Nambu-Goldstone Bosons (PIONS) 

representing QCD at (energy and momentum) scales

CONFINEMENT of quarks and gluons in hadrons

Spontaneously broken  CHIRAL SYMMETRY
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Q < 1GeV

Recent reviews:     J.W. Holt, N. Kaiser,  W. W. :   Prog. Part. Nucl. Phys. 73 (2013) 35
   J.W. Holt, M. Rho,  W. W. :      Physics Reports 621 (2016) 2

M. Drews,  W. W. :                 Prog. Part. Nucl. Phys. 93 (2017) 69



Interacting systems of 
PIONS  (light / fast)  and  NUCLEONS  (heavy / slow):   

Leff = Lπ(U, ∂U) + LN (ΨN , U, ...)

U(x) = exp[iτaπa(x)/fπ]

CHIRAL  EFFECTIVE  FIELD  THEORY

Construction of Effective Lagrangian: Symmetries
short 

distance 
dynamics:

contact terms

Interface of QCD and Nuclear Physics
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Sinya Aoki: Nucleon-nucleon interactions via Lattice QCD: Methodology 7

Fig. 2. Three examples of the phenomenological NN potential
in the isospin-triplet (spin-singlet) sector (V I=1

C (r) ), Bonn[32],
Reid93[33] and Argonne v18[34]. Taken from Ref. [4].
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Fig. 3. The multi-Gaussian fit of the central potential V I=1
C (r)

with NGauss = 5 at t = 9. Taken from Ref. [29].

state saturation were achieved. A clear r-dependence of
the second term tells us that contaminations of excited
states indeed exist and are non-negligible.

The potential in Fig. 1 has a similar structure to the
know phenomenological NN potentials, namely the repul-
sive core at short distance surrounded by the attractive
well at medium and long distances, as shown in Fig. 2.
The first result for the NN potential, obtained in quenched
QCD by the HAL QCD method[4], also reproduces this
structure, and this success has received general recognition[35].
Note however that lattice artifacts may be large at very
short distance ( i.e. r  0.1 fm).

4.2 Scattering phase shift

To calculate the NN scattering phase shift by solving the
Schrödinger equation with the potential in the infinite vol-
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Fig. 4. The scattering phase in 1S0 channel in the laboratory
frame obtained from the lattice NN potential, together with
experimental data[36]. Taken from Ref. [29].

ume, the central potential V I=1
C (r) is fitted with multi-

Gaussian functions as g(r) ⌘
PNgauss

n=1 Vn · exp(�⌫nr2),
where Vn and ⌫n(> 0) are used as fit parameters, Ngauss

denotes the number of Gaussian functions. The fit with
multi-Gaussians but without a Yukawa-function works well,
as shown in Fig. 3[29], presumably due to the heavy pion
mass.

We then solve the Schrödinger equation in 1S0 channel
with this potential, in order to extract the scattering phase
�(k), which is shown in Fig. 4, together with the experi-
mental data for comparison[29]. Qualitative feature of the
phase shift as a function of k is well reproduced, though
the strength is weaker, most likely due to the heavy pion
mass (m⇡ ' 701 MeV) in this calculation. In fact, the re-
cent 3-flavor QCD simulations show that the NN phase
shift approaches toward the physical value as the quark
mass decreases [11]. The scattering length at m⇡ ' 701
MeV in the present method, calculated from the deriva-
tive of the scattering phase shift at Elab = 0, leads to
a(1S0) = limk!0 tan �(k)/k = 1.6 ± 1.1 fm, which is still
smaller than the experimental value at the physical point,
a(exp)(1S0) ⇠ 20 fm ( strong attractive in our sign con-
vention), as seen from a comparison in Fig. 4.

4.3 Tensor potential

Using the same gauge configurations generated by the
PACS-CS collaboration, the LO potentials for the isospin-
singlet (spin-triplet) have been extracted. In Fig. 5 we
show V I=0

C (r) and V I=0
T (r), together with V I=1

C (r) for a
comparison[37]. While central potentials for both sectors
look similar, the tensor potential V I=0

T (r) is negative for
the whole range of r, so that no repulsive core appears in
this sector. The tensor potential seems finite at r = 0, but
we have to be careful to conclude such a short distance

S. Aoki
Eur. Phys. J.  A49 (2013) 81

NN Central Potential  (S = 0,  I = 1) 
deduced from LQCD two-nucleon (6-quark) correlation function
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Figure 5: Hierarchical organization of nuclear forces in chiral e↵ective field theory.

an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has

the form

V (2⇡)
3N =

X

i 6=j 6=k

g2A
8f4
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~�i · ~qi ~�j · ~qj
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NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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FIG. 2: Predictions for the np total cross section based on the
improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green),
N3LO (filled triangles, color online: blue) and N4LO (filled
circles, color online: red) at the laboratory energies of 50,
96, 143 and 200 MeV for the di↵erent choices of the cuto↵:
R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm and
R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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Here, Q is the expansion parameter given by

Q = max

✓
p

⇤b
,
M⇡

⇤b

◆
. (4)

For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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each other with results corresponding to larger values
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see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
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o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
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of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
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In particular, the actual size of the N4LO corrections is
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the lowest energy is to be expected and can be traced
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see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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Explicit DEGREES of FREEDOM∆(1230)

Large spin-isospin polarizability of the nucleon

β∆ =
g2
A

f2
π
(M∆ − MN)

∼ 5 fm3

M∆ − MN ≃ 2 mπ << 4π fπ

(small scale)

N N
π

π

∆

strong 3-body  
interaction

N

N

N

π

π

Dominance of 

Pionic Van der Waals - type intermediate range central potential
N. Kaiser, S. Fritsch,  W. W. ,  NP A750 (2005) 259 N. Kaiser, S. Gerstendörfer,  W. W. ,  NP A637 (1998) 395

Vc(r) = −

9g2
A

32π2 f2
π

β∆

e−2mπr

r6
P(mπr)

J. Fujita, H. Miyazawa (1957) 

Pieper, Pandharipande, Wiringa, Carlson (2001) 

1 fm 10 fm 20km

1 fm 10 fm 20km

N

∆

∆(1230) in pion-nucleon scattering

Figure 9: Left: Total cross section for ⇡+
p scattering in the region of the �(1232) resonance (adapted from [98]). Right: Di↵erence of polarized

Compton scattering cross sections [99] of the proton in the total angular momentum channels �3/2 and �1/2. Curves represent dispersion

relation and multipole analysis cited in Ref. [99].

Figure 10: Left panel: two-pion exchange involving a virtual N ! � ! N transition. Right panel: three-nucleon interaction generated by the

same mechanism.

The � isobar plays a similarly important role for nuclear interactions, where two-pion exchange processes, such as the

one shown in Fig. 10 (left), contribute significantly to the attractive isoscalar central NN interaction [100]. In one-boson

exchange models of the nucleon-nucleon interaction, such e↵ects are parametrized in terms of a fictitious “sigma” boson.

A parameter-free calculation of the isoscalar central potential generated by single and double � excitation [101] agrees

almost perfectly with phenomenological “�” exchange at distances r > 2 fm. The behavior of the 2⇡-exchange isoscalar

central potential with virtual excitation of a single � is reminiscent of a van der Waals potential:

V N�
C (r) = �3g2A ↵(�)

A

(8⇡f⇡)2
e�2m⇡r

r6
P (m⇡r) , (58)

where P (x) = 6 + 12x + 10x2 + 4x3 + x4 is a fourth-order polynomial in x = m⇡r. In the chiral limit the familiar r�6

dependence of the van der Waals interaction emerges naturally.

The � degrees of freedom also gives rise to an important e↵ective three-nucleon interaction, Fig. 10 (right), which was

suggested already more than half a century ago by Fujita and Miyazawa [102]. In chiral e↵ective field theory with explicit

� isobars, the low-energy constants c3 and c4 in Eq. (49), related to p-wave pion-nucleon scattering, are readjusted and

reduced in magnitude since then they have to account only for the remaining non-resonant background. Then important

physics of the � are actually promoted from N2LO to NLO in the chiral hierarchy of the NN interaction [13], leading to

improved convergence.
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Tc

baryon chemical potential

⟨q̄q⟩ ≠ 0

⟨qq⟩ ≠ 0

quark − gluon phase

µB1 GeV

nuclear

matter

0.2

T

[GeV] Nf = 2 (q = u,d)

critical point

hadron phase

CSC phase
superconductor

(color)

matter
nuclear

density [fm−3]0.15

baryon chemical potential

0

0

CSC phases
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0.2
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color�
superconducting

nuclear
matter

?
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?
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HADRONS

QUARKS  &  GLUONS

bulk 
properties 
of nuclei

NUCLEAR MATTER and QCD PHASES

momentum scale:
Fermi momentum 

kF ≃ 1.4 fm
−1

∼ 2mπ

NN distance:  dNN ≃ 1.8 fm ≃ 1.3 m
−1

π

Scales in N = Z nuclear matter:

energy per nucleon:  E/A ≃ −16 MeV

compression modulus: K = (260 ± 30) MeV∼ 2mπ
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π

π

+ +   ...

N N

N N N N N,∆

 

PIONS (light) and NUCLEONS (heavy) as explicit degrees of freedom

  Pion exchange processes in the presence of a filled Fermi sea

 in-medium

   IN-MEDIUM CHIRAL PERTURBATION THEORY

Short-distance dynamics: 

Small 
scales:

contact interactions

N. Kaiser,  S. Fritsch,  W. W.  (2002 - 2005) 

CHIRAL DYNAMICS and the 
NUCLEAR MANY-BODY PROBLEM

mπ, kF << 4πfπ ∼ 1GeVenergy, momentum,

24
PHYSIK
DEPARTMENT

π
π

π

+ +   ...

N N

N N N N N,∆



+⇡+
⇡

⇡

+

 

   Expansion of  ENERGY DENSITY  
powers of Fermi momentum

E(kF)

 Loop expansion of (In-Medium) Chiral Perturbation Theory

[modulo functions fn(kF/mπ)

in
]

IN-MEDIUM CHIRAL PERTURBATION THEORY

Nuclear thermodynamics:   free energy density  
(3-loop order)

N. Kaiser,  S. Fritsch,  W. W. 
 (2002-2005)

in-medium
nucleon propagators
incl.  Pauli blocking
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“Medium insertion” in the nucleon propagator:

(γµp
µ + MN)

[

i

p2 − M2
N

+ iε
− 2π δ(p2 − M2

N) θ(p0) θ(kF − |p⃗)

]
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 Chiral pion-nucleon dynamics in symmetric nuclear matter 
Preparations 

One-pion exchange 
 (Fock term) 

Iterated pion-exchange 
(2nd order tensor force)
 + exchange terms 

Short-distance 
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Figure 7: Saturation curve of nuclear matter obtained from 1π-exchange and iterated 1π-exchange
together with a fine-tuned short-distance term linear in density. The dashed line stems from the many-
body calculation of ref. [46].

Let us now give an explanation for how saturation of nuclear matter is achieved in the framework
of in-medium chiral perturbation theory. For that purpose it is instructive to consider the following
simple parametrization of the energy per particle [42]:

Ē(kf) =
3k2

f

10MN
− α

k3
f

M2
N

+ β
k4
f

M3
N

, (43)

which includes an attractive k3
f -term and a repulsive k4

f -term. This two-parameter form has generically
a saturation minimum if α, β > 0. Its striking feature is than once α = 5.27 and β = 12.22 are adjusted
to the empirical saturation point ρ0 = 0.16 fm−3, Ē0 = −16 MeV the compressibility K ≃ 240MeV
comes out correctly. Moreover, such a parametrized curve for Ē(kf) follows the results of sophisticated
many-body calculations [46] up to quite high densities ρ ≃ 1 fm−3.

In the chiral limit mπ = 0 the leading interaction contributions calculated from 1π- and iterated
1π-exchange turn into exactly such a two-parameter form with the coefficient β of the k4

f -term given by
[42]:

β =
3

70

(
gπN
4π

)4

(4π2 + 237− 24 ln 2) = 13.6 , (44)

where gπN = gAMN/fπ = 13.2 is the strong pion-nucleon coupling constant. This number is quite
close to β = 12.22 as extracted from a realistic nuclear matter equation of state. The mechanism for
nuclear matter to saturate can be summarized roughly as follows: while pion-exchange at second order
generates the necessary attraction, the Pauli-blocking effects due to the nuclear medium counteract this
attraction in the form of a repulsive contribution with a stronger density dependence (a k4

f -term).
Calculations of nuclear matter in this framework have been extended further by including the (ir-

reducible) two-pion exchange contributions in the medium [39]. A compact form of the corresponding
Fock term is given in terms of a (subtracted) spectral function representation:

Ē(kf)
(2πF ) =

1

8π3

∫ ∞

2mπ

dµ Im(VC + 3WC + 2µ2VT + 6µ2WT )
{
3µkf −

4k3
f

3µ
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Figure 20: The energy per particle Ē(ρ) of isospin-symmetric nuclear matter derived from chiral nuclear
interactions.
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Figure 21: Contributions to the strength function Fτ (ρ) as a function of the nuclear density ρ.
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Figure 22: Ratio of the effective nucleon mass M∗(ρ) to the free nucleon mass M as function of ρ.
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Figure 23: The strength function F∇(ρ) of the surface term (∇⃗ρ)2 versus the nuclear density ρ.
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Figure 24: Spin-orbit strength function Fso(ρ) as a function of the density ρ.
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Let us now give an explanation for how saturation of nuclear matter is achieved in the framework
of in-medium chiral perturbation theory. For that purpose it is instructive to consider the following
simple parametrization of the energy per particle [42]:

Ē(kf) =
3k2

f

10MN
− α

k3
f

M2
N

+ β
k4
f

M3
N

, (43)

which includes an attractive k3
f -term and a repulsive k4

f -term. This two-parameter form has generically
a saturation minimum if α, β > 0. Its striking feature is than once α = 5.27 and β = 12.22 are adjusted
to the empirical saturation point ρ0 = 0.16 fm−3, Ē0 = −16 MeV the compressibility K ≃ 240MeV
comes out correctly. Moreover, such a parametrized curve for Ē(kf) follows the results of sophisticated
many-body calculations [46] up to quite high densities ρ ≃ 1 fm−3.

In the chiral limit mπ = 0 the leading interaction contributions calculated from 1π- and iterated
1π-exchange turn into exactly such a two-parameter form with the coefficient β of the k4

f -term given by
[42]:

β =
3

70

(
gπN
4π

)4

(4π2 + 237− 24 ln 2) = 13.6 , (44)

where gπN = gAMN/fπ = 13.2 is the strong pion-nucleon coupling constant. This number is quite
close to β = 12.22 as extracted from a realistic nuclear matter equation of state. The mechanism for
nuclear matter to saturate can be summarized roughly as follows: while pion-exchange at second order
generates the necessary attraction, the Pauli-blocking effects due to the nuclear medium counteract this
attraction in the form of a repulsive contribution with a stronger density dependence (a k4

f -term).
Calculations of nuclear matter in this framework have been extended further by including the (ir-

reducible) two-pion exchange contributions in the medium [39]. A compact form of the corresponding
Fock term is given in terms of a (subtracted) spectral function representation:

Ē(kf)
(2πF ) =

1

8π3

∫ ∞

2mπ

dµ Im(VC + 3WC + 2µ2VT + 6µ2WT )
{
3µkf −

4k3
f

3µ
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Figure 20: The energy per particle Ē(ρ) of isospin-symmetric nuclear matter derived from chiral nuclear
interactions.
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Figure 21: Contributions to the strength function Fτ (ρ) as a function of the nuclear density ρ.
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Figure 22: Ratio of the effective nucleon mass M∗(ρ) to the free nucleon mass M as function of ρ.
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Figure 22: Ratio of the effective nucleon mass M∗(ρ) to the free nucleon mass M as function of ρ.
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Figure 24: Spin-orbit strength function Fso(ρ) as a function of the density ρ.
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3

have to be used, i.e., interactions with restricted resolution in coordinate space (corresponding to an ul-
traviolet cuto↵ in momentum space). The various sets of N3LO (i.e., fourth order in the chiral expansion)
two-body and N2LO three-body chiral low-momentum interactions used in Ref. [12] correspond to di↵er-
ent regularization methods, resolution scales ⇤, and low-energy constants. For interactions constructed
at resolution scales ⇤  450MeV appropriate perturbative behavior was found. The SNM equation of
state obtained from the sets of two- and three-body potentials denoted by n3lo414 (⇤ = 414MeV) and
n3lo450 (⇤ = 450MeV), respectively, (see Refs. [11, 42, 43] for details) agree with empirical constraints
from the zero-temperature saturation energy, density and incompressibility [44–47], and with estimates
for the critical point of the nuclear liquid-gas phase transition obtained through the analysis of data
from multifragmentation, fission and compound nuclear decay experiments [48–51]. The values of these
quantities obtained from n3lo414 and n3lo450 in Ref. [12] are displayed in Table I. 1
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Figure 1: (Color online) Results for the free energy per nucleon F̄ (T, ⇢, � = 0), the pressure P (⇢, T, � = 0), the
entropy per nucleon S̄(T, ⇢, � = 0) and the internal energy per nucleon Ē(⇢, T, � = 0) in isospin-symmetric nuclear
matter. The uncertainty bands correspond to calculations using two di↵erent sets of chiral low-momentum two-
and three-body interactions, n3lo414 (solid lines) and n3lo450 (dash-dot lines). The unstable spinodal region is
marked out explicitly. The critical point is shown as a circle (full circle for n3lo414, open circle for n3lo450). The
zero-temperature endpoint of the low-density part of the spinodal is located at ⇢ ' 2 · 10�4 fm�3.

From the free energy per nucleon the pressure and the entropy per nucleon follow via standard ther-
modynamic relations:

P (T, ⇢, � = 0) = ⇢

2

@F̄ (T, ⇢, � = 0)

@⇢

, S̄(T, ⇢, � = 0) = �@F̄ (T, ⇢, � = 0)

@T

. (5)

The internal energy per nucleon is given by Ē = F̄ + T S̄. The results for these quantities are shown in
Fig. 1 for temperatures in the range T = 0� 25MeV. The spinodal region2 where the homogeneous (i.e.,

1 Note that the value of the so-called critical compressibility factor is Zc = Pc/(Tc ⇢c) ' 0.29 for both n3lo414 and n3lo450;
this is very similar to the values of Zc of various atomic or molecular fluids [52], but di↵ers from the value Zc = 0.375
corresponding to equations of state of the van der Waals–Berthelot type [53].

2 In SNM the unstable spinodal region corresponds to (@P/@⇢)T  0, with (@P/@⇢)T = 0 on the spinodal, cf. Sec. VB.
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Symmetric nuclear matter :  liquid-gas phase diagram

Kohn-Luttinger-Ward many-body perturbation theory (2nd order)

Critical  
temperature 

of 
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first-order 
 transition :

Tc =

Empirical position of liquid-gas critical point : J. B. Elliot et al. : Phys. Rev. C87 (2013) 054622

17.4 MeV

Tc = 17.9± 0.4 MeV ⇢c = 0.06± 0.01 fm�3
Pc = 0.31± 0.07 MeV fm�3
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FIG. 2. The equation of state for different proton fractions x at van-
ishing temperature. The dashed curve denotes the absolute minimum
of the energy per particle. The dotted line results from a Maxwell
construction.
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FIG. 3. The liquid-gas coexistence regions for different proton frac-
tions x.

at non-vanishing density, which can be obtained in a Maxwell
construction from the energy per particle, as depicted by the
dotted line in Fig. 2 for x = 0.1. Finally, for x smaller than
a critical value of x = 0.045 the energy per particle is rais-
ing monotonously as a function of density. There is no longer
a second minimum and the coexistence region vanishes alto-
gether as is seen in Fig. 3.

If the temperature is increased, the phase coexistence re-
gion melts until it disappears at a certain x-dependent crit-
ical temperature, which is characterized by a second-order
critical endpoint. From the behavior of the coexistence re-
gions one can read off the critical endpoint for symmetric
matter, which is located at a temperature T = 18.3 MeV and
a critical density n = 0.053 fm�3. These values are in ex-
cellent agreement with analyses of compound nuclear reac-
tions and multifragmentation experiments, which give criti-
cal temperatures of T = 17.9± 0.4 MeV and critical densi-
ties � = 0.06± 0.01 fm�3 [40, 41]. The fate of the critical
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FIG. 4. The equation of state for pure neutron matter with
Esym = 32 MeV. The gray band shows QMC results [11] with
32.0 MeV  Esym  33.7 MeV
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FIG. 5. The equation of state for pure neutron matter. The gray
band are our results with 29 MeV  Esym  33 MeV. For reference
predictions from ChEFT (full line, [5]), QMC based on realistic po-
tentials (dashed, [39]), QMC based on chiral potentials (dotted, [13])
as well as the Akmal-Pandharipande-Ravenhall EoS (dashed-dotted,
[28]) are shown.

endpoint as the proton fraction x is varied, is indicated by the
dotted curve. We note that our idealized model ignores surface
effects as well as Coulomb repulsion. In realistic scenarios at
low densities the effects of light clusters are not taken into ac-
count. A study in the framework of relativistic mean field and
microscopic quantum statistical models showed a moderate
influence on the position of the critical endpoint [42].

We want to study in more detail the equation of state for
pure neutron matter in comparison with the literature. First
the coupling G� is fixed to reproduce Esym = 32 MeV. The
L parameter corresponding to the slope of the symmetry en-
ergy as defined in Eq. (15) is then L = 66.3 MeV, close to the
empirical value 40 MeV ⇥ L ⇥ 62 MeV [33].

In Fig. 4 the energy per particle is shown as a function of
density (black line). In comparison, results obtained in a quan-

PHASE  DIAGRAM  of  ASYMMETRIC NUCLEAR MATTER

Trajectory of  CRITICAL POINT of Liquid - Gas transition
for asymmetric matter

. . . determined almost entirely by 
isospin dependent (one- and two-) pion exchange dynamics
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subtracted the noninteracting contributions, i.e., the quantity shown is Ē

int

= Ē � Ē

0

� Ē

rel

. The
virial results include uncertainty bands obtained from estimating the neglected third virial coe�cient
as |b

3

(T )|  |b
2

(T )|/2. We also show the perturbative results at the Hartree-Fock level [first order in
Eq. (3)]. One sees that compared to the Hartree-Fock results the inclusion of second-order contributions
leads to much closer agreement with the virial expansion. The second-order calculation still slightly
underpredicts the attractive interaction contributions, in contrast to the pseudopotential approach based
on nucleon-nucleon scattering phase shift data that was explored in Ref. [56]. We conclude that while
the perturbative approach cannot fully capture the large scattering length physics of low-density neutron
matter, the resulting errors are reasonably small when second-order contributions are included.

In recent years, the zero-temperature EoS of PNM from chiral nuclear interactions has been studied
by numerous authors within various many-body frameworks [8, 39, 43, 57–66]. We compare our results
to results obtained from perturbative calculations with various chiral interactions by the Darmstadt
group (red band in Fig. 8 in Ref. [57]) in Fig. 4. In addition to the N2LO chiral three-neutron forces,
their calculations also include all N3LO three- and four-neutron interactions. The uncertainty bands
in their results were obtained by allowing large variations of the low-energy constants parameterizing
the many-neutron forces. One sees that the (almost overlapping) results from n3lo414 and n3lo450 lie
within these bands. In Fig. 4 we also show results obtained from auxiliary-field quantum Monte Carlo
simulations with chiral N3LO two-body (AFQMC [NN]) and N3LO two-body plus N2LO three-body
forces (AFQMC [NN+3N]) by Wlaz lowski et al. [58]. The perturbative and the AFQMC results are very
similar at densities ⇢ . 0.006 fm�3, where both are in close agreement with the (fixed-node) quantum
Monte Carlo calculations (based on the AV18 potential) of Gezerlis and Carlson [67]. However, at higher
densities the EoS predicted by the AFQMC calculations (with three-body forces included) is significantly
more repulsive. This discrepancy may be (partly) related to systematic errors in the AFQMC treatment
(cf. also Ref. [66]).
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Figure 4: (Color online) Energy per particle in pure neutron matter at zero temperature, Ē(T = 0, ⇢, � = 1),
obtained from various many-body methods (see text for details). The inset magnifies the behavior at very low
densities where quantum Monte Carlo simulations, labeled “QMC [AV18]”, are expected to be most accurate.

IV. SYMMETRY FREE ENERGY, ENTROPY AND INTERNAL ENERGY

From the results for the free energy per particle in homogeneous SNM and PNM the symmetry free
energy F̄

sym

(T, ⇢) is obtained via Eq. (1). The symmetry entropy and internal energy are related to the
symmetry free energy via S̄

sym

= �@F̄

sym

/@T and Ē

sym

= F̄

sym

+ T S̄

sym

. The results for F̄

sym

, T S̄
sym

and Ē

sym

are shown as functions of density at di↵erent temperatures in the left column of Fig. 5. In the
insets we show the noninteracting contribution to these quantities, i.e.,

F̄

nonint,sym(T, ⇢) = F̄

0

(T, ⇢, 1)� F̄

0

(T, ⇢, 0) + F̄

rel

(T, ⇢, 1)� F̄

rel

(T, ⇢, 0), (8)

in the case of the symmetry free energy. In the right column of Fig. 5 we show F̄

sym

(T, ⇢), T S̄
sym

(T, ⇢),
and Ē

sym

(T, ⇢) as functions of temperature at di↵erent densities.
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neutron star mass from

increase in travel time
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J1614-2230

most edge-on binary

pulsar known (89.17°)

+ massive white dwarf

companion (0.5 Msun)

heaviest neutron star

with 1.97±0.04 Msun

Nature, Oct. 28, 2010

J. Antoniadis et al. 
Science 340 (2013) 6131

  Constraints  from  massive NEUTRON STARS

M = 2.01 ± 0.04

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⇥) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⇥ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⇥ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⇥ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ⇤ 2.1 kpc. Its relatively high apparent brightness (g⌅ = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.

2

PSR J0348+0432

P.B. Demorest et al. 
Nature 467 (2010) 1081

Shapiro delay measurement

PSR J1614+2230

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⇥) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⇥ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⇥ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⇥ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ⇤ 2.1 kpc. Its relatively high apparent brightness (g⌅ = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.
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A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron starmatter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature.We calculate the pulsarmass to be (1.976 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star thismassive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.
In March 2010, we performed a dense set of observations of J1614-

2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
theShapirodelay signal is strongest.Thesedatawere takenwith thenewly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of,1ms.
We used themeasured arrival times to determine key physical para-

meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-termdata set, parameter covariance and dispersionmeasure vari-
ation can be found in Supplementary Information.
As shown in Fig. 1, the Shapiro delay was detected in our data with

extremely high significance, and must be included to model the arrival
times of the radio pulses correctly.However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companionmass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chain Monte Carlo (MCMC) approach to
explore the post-fitx2 space andderive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7)mas yr21

Proper motion in b 230(3)mas yr21

Parallax 0.5(6)mas
Pulsar spin period 3.1508076534271(6)ms
Period derivative 9.6216(9) 310221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esinv) 1.1(3) 31027

Second Laplace parameter (ecosv) 21.29(3) 31026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16h 14min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 31026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3108G
Characteristic age 5.2Gyr
Spin-down luminosity 1.2 31034 erg s21

Average flux density* at 1.4GHz 1.2mJy
Spectral index, 1.1–1.9GHz 21.9(1)
Rotation measure 228.0(3) radm22

Timingmodel parameters (top), quantities derived from timingmodel parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s
uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an800-MHz-wide band centred at a radio frequency of 1.5GHz. The rawprofileswere polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on>1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.

RESEARCH LETTER

1 0 8 2 | N A T U R E | V O L 4 6 7 | 2 8 O C T O B E R 2 0 1 0

Macmillan Publishers Limited. All rights reserved©2010

Demorest et al., Nature 467, 1081 (2010)

Mmax = 1.65M� � 1.97± 0.04 M�

Calculation of neutron star properties require EOS up to high densities.

Strategy: 
Use observations to constrain the high-density part of the nuclear EOS.

High-density constraints from observations:

Fig. 1. Radial velocities and spectrum of the white dwarf companion
to PSR J0348+0432. (A) Radial velocities of the WD companion to PSR
J0348+0432 plotted against the orbital phase (shown twice for clarity). Over-
plotted is the best-fit orbit of the WD (blue line) and the mirror orbit of the
pulsar (green). Error bars indicate 1-s confidence intervals. (B) Details of the
fit to the Balmer lines (Hb to H12) in the average spectrumof theWD companion

to PSR J0348+0432 created by the coherent addition of 26 individual spectra
shifted to zero velocity. Lines from Hb (bottom) to H12 are shown. The red
solid lines are the best-fit atmospheric model (see text). Two models, one with
Teff = 9900 K and log10g = 5.70 and one with Teff = 10,200 K and log10 g =
6.30, each ∼ 3-s off from the best-fit central value (including systematics), are
shown for comparison (dashed blue lines).

Fig. 2. Mass measurement of the white dwarf companion to PSR
J0348+0432. (A) Constraints on Teff and g for the WD companion to PSR
J0348+0432 compared with theoretical WD models. The shaded areas depict
the c2 − c2min = 2.3, 6.2, and 11.8 intervals (equivalent to 1-, 2-, and 3-s) of
our fit to the average spectrum. Dashed lines show the detailed theoretical

cooling models of (11). Continuous lines depict tracks with thick envelopes for
masses up to ∼0.2M◉ that yield the most conservative constraints for the mass
of the WD. (B) Finite-temperature mass-radius relations for our models to-
gether with the constraints imposed from modeling of the spectrum. Low
mass–high temperature points are an extrapolation from lower temperatures.
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A Massive Pulsar in a 

Compact Relativistic Binary

John Antoniadis,* Paulo C. C. Freire, Norbert Wex, Thomas M. Tauris, Ryan S. Lynch, 
Marten H. van Kerkwijk, Michael Kramer, Cees Bassa, Vik S. Dhillon, Thomas Driebe, 
Jason W. T. Hessels, Victoria M. Kaspi, Vladislav I. Kondratiev, Norbert Langer, 
Thomas R. Marsh, Maura A. McLaughlin, Timothy T. Pennucci, Scott M. Ransom, 
Ingrid H. Stairs, Joeri van Leeuwen, Joris P. W. Verbiest, David G. Whelan

Introduction: Neutron stars with masses above 1.8 solar masses (M�), possess extreme gravitational 
fi elds, which may give rise to phenomena outside general relativity. Hitherto, these strong-fi eld devia-
tions have not been probed by experiment, because they become observable only in tight binaries 
containing a high-mass pulsar and where orbital decay resulting from emission of gravitational waves 
can be tested. Understanding the origin of such a system would also help to answer fundamental ques-
tions of close-binary evolution.

Methods: We report on radio-timing observations of the pulsar J0348+0432 and phase-resolved 
optical spectroscopy of its white-dwarf companion, which is in a 2.46-hour orbit. We used these to 
derive the component masses and orbital parameters, infer the system’s motion, and constrain its age.

Results: We fi nd that the white dwarf has a mass of 0.172 ± 0.003 M�, which, combined with orbital 
velocity measurements, yields a pulsar mass of 2.01 ± 0.04 M�. Additionally, over a span of 2 years, 
we observed a signifi cant decrease in the orbital period, P�b

obs = –8.6 ± 1.4 µs year�1 in our radio-
timing data.

Discussion: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass 
of 2 M� and independently confi rms the existence of such massive neutron stars in nature. For these 

masses and orbital period, general relativity 
predicts a significant orbital decay, which 
matches the observed value, P�b

obs/ P�b
GR = 1.05 

± 0.18.
The pulsar has a gravitational binding 

energy 60% higher than other known neu-
tron stars in binaries where gravitational-
wave damping has been detected. Because 
the magnitude of strong-field deviations 
generally depends nonlinearly on the bind-
ing energy, the measurement of orbital 
decay transforms the system into a gravita-
tional laboratory for an as-yet untested grav-
ity regime. The consistency of the observed 
orbital decay with general relativity  therefore 
supports its validity, even for such extreme 
gravity-matter couplings, and rules out 
strong-fi eld phenomena predicted by physi-
cally well-motivated alternatives. Moreover, 
our result supports the use of general rela-
tivity–based templates for the detection of 
gravitational waves from merger events with 
advanced ground-based detectors.

Lastly, the system provides insight into 
pulsar-spin evolution after mass accretion. 
Because of its short merging time scale of 
400 megayears, the system is a direct chan-
nel for the formation of an ultracompact x-ray 
binary, possibly leading to a pulsar-planet 
system or the formation of a black hole.

Artist’s impression of the PSR J0348+0432 system. 
The compact pulsar (with beams of radio emission) produces 
a strong distortion of spacetime (illustrated by the green 
mesh). Conversely, spacetime around its white dwarf com-
panion (in light blue) is substantially less curved. According 
to relativistic theories of gravity, the binary system is subject 
to energy loss by gravitational waves.
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companionwith awell-determinedmass of 0.20M◉
(15) that appears to be hot (10), suggesting that its
envelope is thick. For this reason, we base the
WD mass estimate on cooling tracks with thick
hydrogen atmospheres for masses up to 0.2M◉,
which we constructed by using the MESA stellar
evolution code (8, 16). Initial models were built
for masses identical to the ones in (11), for which
previous comparisons have yielded good agree-
ment with observations (14), with the addition
of tracks with 0.175 and 0.185 M◉ for finer
coverage (Fig. 2). For masses up to 0.169M◉, our
models show excellent agreement with (11);
however, our 0.196 M◉ model is quite different,
because it has a thick envelope instead of a thin
one. Being closer to the constraints for the WD
companion to PSR J0348+0432, it yields a more
conservative mass constraint, MWD = 0.165 to
0.185 at 99.73% confidence (Fig. 3 and Table 1),
which we adopt. The corresponding radius is
RWD = 0.046 to 0.092 R◉ at 99.73% confidence.
Our models yield a cooling age of tcool ∼ 2 Gy.

Pulsar Mass
The derived WD mass and the observed mass
ratio q imply a NSmass in the range from 1.97 to
2.05M◉ at 68.27% or 1.90 to 2.18M◉ at 99.73%
confidence. Hence, PSR J0348+0432 is only the
second NS with a precisely determined mass
around 2M◉, after PSR J1614−2230 (2). It has a
3-s lower mass limit 0.05M◉ higher than the latter
and therefore provides a verification, using a dif-
ferent method, of the constraints on the EOS of
superdense matter present in NS interiors (2, 17).
For these masses and the known orbital period,
GR predicts that the orbital period should decrease

at the rate of P
:GR
b ¼ ð−2:58þ0:07

−0:11 Þ % 10−13 s s−1

(68.27%confidence) because of energy loss through
GW emission.

Radio Observations
Since April 2011, we have been observing PSR
J0348+0432 with the 1.4-GHz receiver of the
305-m radio telescope at the Arecibo Observatory
by using its four wide-band pulsar processors (18).
In order to verify the Arecibo data, we have been
independently timing PSR J0348+0432 at 1.4 GHz
by using the 100-m radio telescope in Effelsberg,
Germany. The two timing data sets produce con-
sistent rotational models, providing added con-
fidence in both. Combining the Arecibo and
Effelsberg data with the initial GBTobservations
(7), we derived the timing solution presented in
Table 1. To match the arrival times, the solution
requires a significant measurement of orbital de-
cay, P

:
b ¼ −2:73 % 10−13 T 0:45% 10−13 s s−1

(68.27% confidence).
The total proper motion and distance estimate

(Table 1) allowed us to calculate the kinematic
corrections to P

:
b from its motion in the Galaxy,

plus any contribution from possible variations of
G: dP

:
b ¼ 0:016% 10−13 T 0:003% 10−13 s s−1.

This is negligible compared to the measurement
uncertainty. Similarly, the small rate of rotational
energy loss of the pulsar (Table 1) excludes any
substantial contamination resulting frommass loss
from the system; furthermore, we can exclude
substantial contributions to P

:
b from tidal effects

[see (8) for details]. Therefore, the observedP
:
b is

caused by GW emission, and its magnitude is
entirely consistent with the one predicted by GR:
P
:
b=P

:GR
b ¼ 1:05 T 0:18 (Fig. 3).

If we assume that GR is the correct theory of
gravity, we can then derive the component masses
from the intersection of the regions allowed by
q and P

:
b (Fig. 3): MWD ¼ 0:177þ0:017

−0:018 M◉ and
MPSR ¼ 2:07þ0:20

−0:21 M◉ (68.27% confidence). These
values are not too constraining yet. However, the
uncertainty of the measurement of P

:
b decreases

with T baseline
−5/2 (where Tbaseline is the timing base-

line); therefore, this method will yield very precise
mass measurements within a couple of years.

Discussion

PSR J0348+0432 as a Testbed for Gravity
There are strong arguments for GR not to be valid
beyond a (yet unknown) critical point, like its
incompatibility with quantum theory and its pre-
diction of the formation of spacetime singularities.
Therefore, it remains an open question whether
GR is the final description of macroscopic gravity.
This strongly motivates testing gravity regimes
that have not been tested before, in particular
regimes where gravity is strong and highly non-
linear. Presently, binary pulsars provide the best
high-precision experiments to probe strong-field
deviations from GR and the best tests of the
radiative properties of gravity (19–23). The orbital
period of PSR J0348+0432 is only 15 s longer
than that of the double pulsar system PSR J0737–
3039, but it has ∼two times more fractional grav-
itational binding energy than each of the double-
pulsar NSs. This places it far outside the presently
tested binding energy range (Fig. 4A) (8). Be-
cause the magnitude of strong-field effects gener-
ally depends nonlinearly on the binding energy,
the measurement of orbital decay transforms the

Fig. 3. System masses and
orbital-inclination constraints.
Constraints on system masses and
orbital inclination from radio and
optical measurements of PSR
J0348+0432 and its WD compan-
ion. Each triplet of curves corre-
sponds to the most likely value
and standard deviations (68.27%
confidence) of the respective pa-
rameters. Of these, two (q and MWD)
are independent of specific gravity
theories (in black). The contours
contain the 68.27 and 95.45% of
the two-dimensional probability
distribution. The constraints from
the measured intrinsic orbital decay
(P
:
b
int, in orange) are calculated as-

suming that GR is the correct theory
of gravity. All curves intersect in
the same region, meaning that
GR passes this radiative test (8).
(Bottom left) cosi-MWD plane. The
gray region is excluded by the con-
dition MPSR > 0. (Bottom right)
MPSR-MWD plane. The gray region
is excluded by the condition sini ≤ 1. The lateral graphs depict the one-dimensional probability-distribution function for the WD mass (right), pulsar mass
(top right), and inclination (top left) based on the mass function, MWD, and q.
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Fig. 9.— The upper panels give the probability distributions for the mass versus radius curves implied by
the data, and the solid (dotted) contour lines show the 2-σ (1-σ) contours implied by the data. The lower
panes summarize the 2-σ probability distributions for the 7 objects considered in the analysis. The left
panels show results under the assumption rph = R, and the right panes show results assuming rph ≫ R. The
dashed line in the upper left is the limit from causality. The dotted curve in the lower right of each panel
represents the mass-shedding limit for neutron stars rotating at 716 Hz.
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(a) (b)
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by

⇢E(1) =
1

2

X

12

n1n2h12
�

�

�

(V NN + V
med

NN /3)
�

�

�

12i, (1)

⇢E(2) = �1

4

X

1234

�

�h12
�

�V e↵

�

� 34i
�

�

2 n1n2n̄3n̄4

e3 + e4 � e1 � e2
, (2)

⇢E(3)
pp =

1

8

X

123456

h12
�

�V e↵

�

� 34ih34
�

�V e↵

�

� 56ih56
�

�V e↵

�

� 12i

⇥ n1n2n̄3n̄4n̄5n̄6

(e3 + e4 � e1 � e2)(e5 + e6 � e1 � e2)
, (3)

⇢E
(3)
hh =

1

8

X

123456

h12
�

�V e↵

�

� 34ih34
�

�V e↵

�

� 56ih56
�

�V e↵

�

� 12i

⇥ n̄1n̄2n3n4n5n6

(e1 + e2 � e3 � e4)(e1 + e2 � e5 � e6)
, (4)

⇢E
(3)
ph = �

X

123456

h12
�

�V e↵

�

� 34ih54
�

�V e↵

�

� 16ih36
�

�V e↵

�

� 52i

⇥ n1n2n̄3n̄4n5n̄6

(e3 + e4 � e1 � e2)(e3 + e6 � e2 � e5)
, (5)

where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator

3

in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1

8 = 1
23

arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by

E(⇢)(a) = � g6M2

32⇡7kf

1
Z

0

ds

1
Z

0

d



Q0(s,)

s2 + �

�3

, (7)

whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form

Q0(s,) = s� s arctan
1 + s


� s arctan

1� s



+
1

4
(1� s2 + 2) ln

(1 + s)2 + 2

(1� s)2 + 2
. (8)

The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 ·exch/2 can be
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FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.
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with the auxiliary functions Wa =
⇥

4�+ l21+ l22�2xy
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4(l21 � x2)(l22 � y2) and Wb =
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4� + l21 + l22 + 4s(s + x +

y) + 2xy
⇤2 � 4(l21 � x2)(l22 � y2).

For a modified pseudoscalar isovector boson-exchange
interaction of the form

Vdir = �g2~⌧1 · ~⌧2
~�1 · ~q ~�2 · ~q
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, (10)

the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by
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where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator

3

in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1
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arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by

E(⇢)(a) = � g6M2
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whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form

Q0(s,) = s� s arctan
1 + s


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+
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The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 ·exch/2 can be
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FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.

represented by a six-fold integral
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with the auxiliary functions Wa =
⇥

4�+ l21+ l22�2xy
⇤2�

4(l21 � x2)(l22 � y2) and Wb =
⇥

4� + l21 + l22 + 4s(s + x +

y) + 2xy
⇤2 � 4(l21 � x2)(l22 � y2).

For a modified pseudoscalar isovector boson-exchange
interaction of the form

Vdir = �g2~⌧1 · ~⌧2
~�1 · ~q ~�2 · ~q
(m2 + q2)2

, (10)

the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads

E(⇢)(a) = � 3g6M2
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The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 · exch/2 is on
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by
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where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator

3

in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1
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arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by
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whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form

Q0(s,) = s� s arctan
1 + s


� s arctan

1� s



+
1

4
(1� s2 + 2) ln

(1 + s)2 + 2

(1� s)2 + 2
. (8)

The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 ·exch/2 can be

(a)

(c)

(b)

(d)

FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.
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with the auxiliary functions Wa =
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For a modified pseudoscalar isovector boson-exchange
interaction of the form

Vdir = �g2~⌧1 · ~⌧2
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the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by
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where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator

3

in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1
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arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by
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whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form
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The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 ·exch/2 can be
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FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.

represented by a six-fold integral

E(⇢)(b) =
6g6M2

(2⇡)7kf

1
Z

0

ds

1
Z

0

d

1
Z

0

dl1

1
Z

0

dl2

l1
Z

�l1

dx

l2
Z

�l2

dy

l1l2 Q0(s,) (s2 + �)�2

[(s+ x)2 + 2][(s+ y)2 + 2]

n

⇥

(s+ x)(s+ y)� 2
⇤

⇥W�1/2
a +

⇥

(s+ x)(s+ y) + 2
⇤

W
�1/2
b

o

, (9)

with the auxiliary functions Wa =
⇥

4�+ l21+ l22�2xy
⇤2�

4(l21 � x2)(l22 � y2) and Wb =
⇥

4� + l21 + l22 + 4s(s + x +

y) + 2xy
⇤2 � 4(l21 � x2)(l22 � y2).

For a modified pseudoscalar isovector boson-exchange
interaction of the form

Vdir = �g2~⌧1 · ~⌧2
~�1 · ~q ~�2 · ~q
(m2 + q2)2

, (10)

the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by
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where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator

3

in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1
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arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by

E(⇢)(a) = � g6M2
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whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form
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The contribution to the energy per particle of symmetric
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FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.
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Vdir = �g2~⌧1 · ~⌧2
~�1 · ~q ~�2 · ~q
(m2 + q2)2

, (10)

the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by
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where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator
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in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1
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arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by

E(⇢)(a) = � g6M2
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whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form

Q0(s,) = s� s arctan
1 + s
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The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 ·exch/2 can be
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FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.

represented by a six-fold integral
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with the auxiliary functions Wa =
⇥
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For a modified pseudoscalar isovector boson-exchange
interaction of the form
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, (10)

the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by
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where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator

3

in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1
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arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by

E(⇢)(a) = � g6M2
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whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form

Q0(s,) = s� s arctan
1 + s


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+
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The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 ·exch/2 can be
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FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.

represented by a six-fold integral
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with the auxiliary functions Wa =
⇥

4�+ l21+ l22�2xy
⇤2�

4(l21 � x2)(l22 � y2) and Wb =
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4� + l21 + l22 + 4s(s + x +

y) + 2xy
⇤2 � 4(l21 � x2)(l22 � y2).

For a modified pseudoscalar isovector boson-exchange
interaction of the form

Vdir = �g2~⌧1 · ~⌧2
~�1 · ~q ~�2 · ~q
(m2 + q2)2

, (10)

the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads

E(⇢)(a) = � 3g6M2

32⇡7kf

1
Z

0

ds

1
Z

0

d



s2Q0(s,)

(s2 + �)2

�3

. (11)

The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 · exch/2 is on
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by
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where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator

3

in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1
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arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by
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whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form
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FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.
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interaction of the form
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the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by
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where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator

3

in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1
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arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by

E(⇢)(a) = � g6M2
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whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form

Q0(s,) = s� s arctan
1 + s


� s arctan

1� s



+
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4
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The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 ·exch/2 can be
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FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.

represented by a six-fold integral
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with the auxiliary functions Wa =
⇥

4�+ l21+ l22�2xy
⇤2�

4(l21 � x2)(l22 � y2) and Wb =
⇥

4� + l21 + l22 + 4s(s + x +

y) + 2xy
⇤2 � 4(l21 � x2)(l22 � y2).

For a modified pseudoscalar isovector boson-exchange
interaction of the form

Vdir = �g2~⌧1 · ~⌧2
~�1 · ~q ~�2 · ~q
(m2 + q2)2

, (10)

the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads

E(⇢)(a) = � 3g6M2
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The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 · exch/2 is on
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FIG. 1: First-, second-, and third-order diagrammatic con-
tributions to the ground-state energy density of isospin-
symmetric nuclear matter and pure neutron matter from
the (e↵ective) chiral two-nucleon potential described in the
text. The wavy line includes the (antisymmetrized) density-
dependent NN -interaction derived from the chiral three-body
force at N2LO.

ral expansion, corresponding to next-to-leading order
(NLO), next-to-next-to-leading order (N2LO), and next-
to-next-to-next-to-leading order (N3LO). The short-
range contact terms are fitted to elastic nucleon-nucleon
scattering phase shifts and deuteron properties, while the
intermediate- and long-range interaction is determined
uniquely by one- and multi-pion exchange processes con-
strained by chiral symmetry. We vary the momentum-
space cuto↵ ⇤, which sets the scale at which nuclear
forces are resolved, over the range ⇤ ' (400� 500)MeV
[39–41] suitable for many-body perturbation theory cal-
culations of the energy density. We include as well the
chiral three-nucleon force at order (q/⇤�)3, which is fit-
ted to the binding energy and beta-decay lifetime of
3H [13]. Extending to a consistent treatment at order
(q/⇤�)4 requires the refitting of the cD and cE low-energy
constants, which is currently a work in progress. In the
following we refer to this partly incomplete treatment at
order (q/⇤�)4 as N3LO*. The coarse-resolution chiral
potentials employed in the present work have also been
used to study the response functions of neutron matter
[42] as well as numerous thermodynamic properties of
symmetric nuclear matter and neutron matter [43] (for
recent reviews see Refs. [44, 45]).
The present paper is organized as follows. In Section

II we outline the calculation of the ground state energy
density of symmetric nuclear matter and pure neutron
matter at third order in perturbation theory, including
self-consistent single-particle spectra. As a benchmark
for the complicated partial-wave decomposition of the
third-order particle-hole ring-diagram for realistic NN -
potentials, we present semi-analytic results for the direct
terms from central and tensor model-type interactions.
In Section III we present a comprehensive study of the
theoretical uncertainties for the equation of state of sym-
metric nuclear matter and pure neutron matter. We ex-
tract the isospin-asymmetry energy S0 and its slope pa-
rameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power

counting. Furthermore, the third-order particle-hole dia-
grams from an S-wave contact-interaction (with two pa-
rameters as and at) allow us to examine the commonly
used quadratic approximation in the isospin-asymmetry.
We end with a summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD
ORDER IN PERTURBATION THEORY

The first-, second-, and third-order perturbative con-
tributions to the energy density of nuclear (or neutron)
matter are shown diagrammatically in Fig. 1. The wavy
line represents the (antisymmetrized) density-dependent
NN -interaction as given by the sum of the free-space
NN -potential and the in-mediumNN -interaction derived
from the next-to-next-to-leading order (N2LO) chiral
three-nucleon force. The latter is obtained by closing
two external legs and summing over the filled Fermi sea
of (free) nucleons [16, 46]. The method is equivalent
to constructing a normal-ordered Hamiltonian with re-
spect to the noninteracting ground state and neglecting
the residual three-body contribution [47]. This approx-
imation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the resid-
ual three-body force after normal ordering [33, 49]. The
first-, second-, and third-order contributions to the en-
ergy density ⇢E (with ⇢ the density and E the energy
per particle) are given by
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where nj = ✓(kf�|~pj |) is the (step-like) distribution func-
tion, n̄j = 1� nj , V = V �P12V is the (Fierz) antisym-
metrized NN -potential with P12 the exchange-operator

3

in spin-, isospin- and momentum-space. The e↵ective
NN -potential is given by the sum Ve↵ = VNN + V med

NN .
Note that the third-order particle-particle and hole-hole
Goldstone diagrams have a symmetry factor of 1
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arising from three pairs of equivalent lines, while the
third-order particle-hole diagram has no equivalent pairs
of lines and consequently an overall symmetry factor of
1.
The third-order particle-particle and hole-hole contri-

butions can be straightforwardly decomposed in terms of
partial-wave matrix elements of V and written as inte-
grals over the relative momenta of the interacting nucle-
ons. The third-order particle-hole contribution, on the
other hand, is more conveniently calculated by integrat-
ing over the individual particle-momenta, which however
leads to more complicated expressions when written in
terms of partial-wave matrix elements. We therefore pro-
vide semi-analytical expressions for several of the third-
order particle-hole ring diagrams from model-type inter-
actions, which are useful to benchmark the results of ex-
tensive numerical calculations. We begin by decomposing
the third-order particle-hole ring contribution into four
parts, shown in Fig. 2, according to the number of direct
(dir) and exchange (exch) interactions. We denote dia-
gram (a) in Fig. 2 as the dir3 term, diagram (b) as the
dir2 · exch term, diagram (c) as the dir · exch2 term, and
diagram (d) as the exch3 term. We have computed all
contributions (a)�(d) for various model-type interactions
and one-pion exchange, but the parts involving multiple
exchange terms lead to very lengthy expressions, and for
brevity we present the semi-analytic results here only for
diagrams (a) and (b) in Fig. 2.
We consider first a scalar isoscalar boson-exchange in-

teraction of the form

Vdir(q) = � g2

m2 + q2
, (6)

with q the momentum transfer. The contribution to the
energy per particle E(⇢) of symmetric nuclear matter
from diagram (a) = dir3/6 is given by

E(⇢)(a) = � g6M2

32⇡7kf
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whereM is the nucleon mass, � = m2/4k2f , and the Fermi

momentum is related to the density by ⇢ = 2k3f/3⇡
2.

The (Euclidean) polarization function Q0(s,), arising
from an individual nucleon-ring in diagram (a), has the
following analytical form

Q0(s,) = s� s arctan
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The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 ·exch/2 can be
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FIG. 2: Four ring-diagrams representing the third-order
particle-hole contribution, organized according to the num-
ber of direct and exchange interactions. Diagrams (a), (b),
(c) and (d) have 0, 1, 2, and 3 exchange interactions, respec-
tively.
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with the auxiliary functions Wa =
⇥

4�+ l21+ l22�2xy
⇤2�

4(l21 � x2)(l22 � y2) and Wb =
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4� + l21 + l22 + 4s(s + x +
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For a modified pseudoscalar isovector boson-exchange
interaction of the form

Vdir = �g2~⌧1 · ~⌧2
~�1 · ~q ~�2 · ~q
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, (10)

the contribution to the energy per particle of symmetric
nuclear matter from diagram (a) = dir3/6 reads

E(⇢)(a) = � 3g6M2
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The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = �dir2 · exch/2 is on
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E(2) E(3)

⇤ E(1) E(2) E(2HF ) E(2SC) E(3SC)
pp E(3SC)

hh E(3SC)
ph

414 �30.1 �11.0 �7.9 �9.7 0.8 �0.3 �0.3
450 �25.9 �15.9 �11.5 �13.2 1.0 �0.2 �1.5
500 �19.5 �18.7 �13.3 �15.7 2.2 �0.1 �2.1

TABLE I: The contribution to the energy per particle E(⇢0) of
symmetric nuclear matter from the first-, second-, and third-
order perturbation theory diagrams employing chiral two- and
three-nucleon forces. For the second-order contribution we
list the values using a free single-particle spectrum, E(2), a
Hartree-Fock spectrum, E(2HF ), and self-consistent single-
particle energies at second order, E(2SC). All values are in
units of MeV and the noninteracting contribution (not in-
cluded) is Ekin = 22.1MeV.

clear matter saturation density, we observe an improved
convergence pattern as the momentum-space cuto↵ ⇤ is
lowered. At second order in perturbation theory, the er-
ror estimate obtained through varying the cuto↵ scale
now encompasses the empirical saturation point.

The third-order contributions to the energy per par-
ticle of symmetric nuclear matter, with single-particle
energies computed self consistently at second order, are
shown in Fig. 5 and labeled “3rd SC”. We observe that

taken together the three contributions E
(3)
pp , E

(3)
hh , and

E
(3)
ph give rise to additional attraction at both low and

high densities. In particular, for densities less than
⇢ ' 0.08 fm�3, where a spinodal instability is expected
[55], the third-order terms cannot be neglected. At and
above saturation density, the perturbation theory expan-
sion appears to be better converged, though generically
both repulsive particle-particle and attractive particle-
hole contributions are individually on the order of (1-
3)MeV. In Table I we show the values of the three third-
order contributions at nuclear matter saturation density
including self-consistent second-order single-particle en-
ergies, for each of the three chiral potentials considered in
this section. Given the systematic cancellations that oc-
cur between the third-order particle-particle and particle-
hole diagrams (independent of resolution scale ⇤), we
suggest that these terms should be included together or
not at all. From Fig. 5 we see that the largest source
of theoretical uncertainty comes from the choice of res-
olution scale, as was found previously in Ref. [13]. The
empirical saturation point is nearly at the central value
of the error band, but there remains a �E ' 6MeV un-
certainty in the energy per particle at ⇢ = ⇢0.

We next consider the equation of state of pure neutron
matter from chiral two- and three-nucleon forces at order
N3LO*. In Fig. 6 we show the results at first, second, and
third order in perturbation theory from chiral potentials
with momentum-space cuto↵s ⇤ = (414, 450, 500)MeV.
At leading-order in perturbation theory there is again a
large dependence on the choice of resolution scale, but
at both second and third order, the variations are about
�En ' 2MeV at ⇢n = 0.16 fm�3 and �En ' 3MeV
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FIG. 6: (Color online) Neutron matter equation of state
at first, second, and third order in many-body perturba-
tion theory from N3LO* chiral two- and three-nucleon forces.
For both the second- and third-order contributions, the nu-
cleon self-energies are computed self-consistently (SC) at
second-order. Results are shown for chiral potentials con-
structed with a range of momentum-space cuto↵s: ⇤ =
(414, 450, 500)MeV.

at ⇢n = 0.25 fm�3. The inclusion of the third-order dia-
grams has relatively little e↵ect for the chiral potentials
with ⇤ = 414MeV and 450MeV, which we see give nearly
identical equations of state at each order in perturbation
theory across all densities considered. In contrast, the
equation of state from the ⇤ = 500MeV potential re-
ceives important contributions at low densities that sig-
nificantly reduces the scale dependence. In fact, for den-
sities up to ⇢n ' 0.10 fm�3, all N3LO* chiral potentials
give a nearly unique neutron matter equation of state.
At higher densities the third-order contributions do not
reduce the scale dependence in any meaningful way.

Theoretical uncertainties on the neutron matter equa-
tion of state estimated from the convergence pattern of
many-body perturbation theory and variations in the res-
olution scale are relatively small. The error estimates on
the density-dependent isospin-asymmetry energy, defined
as the di↵erence S(⇢) = En(⇢) � E(⇢), are correspond-
ingly tight, similar to what has already been reported
in previous studies with microscopic two- and three-
body forces [28, 29], which predict values of the isospin-
asymmetry energy and slope parameter that lie just out-
side of the experimental uncertainty band [30, 31]. To
better understand this discrepancy we consider now the
errors due to neglected higher-order contributions in the
chiral expansion. In particular, three- and four-body
forces at N3LO are neglected in the present treatment as
well as N4LO two- and many-body forces. The two-body
forces at N4LO have been shown to improve significantly
in particular the NN -scattering phase shifts in F and G
partial waves [56].

We show in Fig. 7 the equation of state calculated
at third order in perturbation theory from the NLO,

}
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FIG. 7: (Color online) Order-by-order convergence pattern
of the neutron matter equation of state from NLO, N2LO,
and N3LO* chiral two- and three-body potentials at third-
order in many-body perturbation theory with self-consistent
second-order single-particle energies. Two momentum-space
cuto↵s ⇤ = 450 MeV and 500MeV were chosen.

N2LO, and N3LO* chiral potentials with two choices of
the momentum-space regulating scale ⇤ = 450MeV and
500MeV. In all cases the low-energy constants in the chi-
ral two-body force are refitted [41] as a function of ⇤ to
NN -scattering phase shifts and deuteron properties. As
originally observed in Ref. [13] there is a large change
from NLO to N2LO and also from N2LO to N3LO*, in-
dicating that neglected contributions may be a very sig-
nificant source of theoretical uncertainty. Comparing the

ratio of di↵erences R⇤
4 = (E(4)

n � E
(3)
n )/(E(3)

n � E
(2)
n ) for

the two sets of chiral potentials, where E
(i)
n is the neu-

tron matter energy per particle at order (q/⇤�)i, we find
that R450

4 ' 0.4 and R500
4 ' 0.8 for all but the lowest

densities.

In Fig. 8 we show a comprehensive theoretical uncer-
tainty estimate for the neutron matter equation of state
that accounts for errors due to truncations in many-body
perturbation theory, missing terms in the chiral e↵ective
field theory expansion, and the choice of resolution scale.
The largest source of error in the present analysis is esti-
mated to arise from missing higher-order contributions in
chiral EFT. We have used the values of R450

4 and R500
4 to

calculate associated error bands on the N3LO* equations

of state according to E⇤
N3LO⇤ ± R⇤

4 (E
(4)
n � E

(3)
n ). In the

case of the N3LO* chiral potential with ⇤ = 500MeV,
the lower band on the equation of state computed ac-
cording to the above prescription would be well below
even NLO results which include no repulsive three-body
forces. We therefore limit the lower band of the uncer-
tainty estimate by the scale dependence error, namely,
E500

N3LO⇤ � (E450
N3LO⇤ � E500

N3LO⇤)/2. In comparison to a re-
cent calculation [33] of the neutron matter equation of
state and associated uncertainty estimate, our results ex-
hibit a smaller theoretical error at low densities but com-
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FIG. 8: (Color online) Theoretical uncertainty estimate for
the neutron matter equation of state from chiral e↵ective field
theory, including errors arising from the convergence in many-
body perturbation theory, missing terms in the chiral expan-
sion, and choice of resolution scale.

parable uncertainties beyond ⇢ = ⇢0. The reduction in
the low-density error is directly attributed in the present
calculation to the inclusion of third-order perturbative
contributions.

Theoretical predictions for the isospin-asymmetry en-
ergy and its density dependence can be extracted di-
rectly from our equations of state of symmetric nuclear
matter and pure neutron matter. However, due to the
large uncertainties in the symmetric matter equation of
state, it is more reliable to instead expand about the
known empirical saturation point at ⇢0 = 0.16 fm�3 and
E(⇢0) = �16MeV. We consider the three neutron mat-
ter equations of state calculated at third order in pertur-
bation theory employing N3LO* chiral two- and three-
body potentials. We include as well the minimum and
maximum on the uncertainty band shown in Fig. 8. This
gives a total of five neutron matter equations of state
from which we extract the isospin-asymmetry energy at
saturation density, S0 = S(⇢0), and the associated slope
parameter

L = 3⇢0
@S(⇢)

@⇢

�

�

�

�

⇢0

. (17)

In Fig. 9 we show the correlation between L and S0

computed from NLO, N2LO, and N3LO* chiral two-
and three-body forces at third order in many-body per-
turbation theory. The error bars on individual points
are obtained by varying the saturation density between
⇢0 = 0.155 fm�3 and 0.165 fm�3, keeping the satura-
tion energy fixed at E(⇢0) = �16MeV. The two LO re-
sults from the chiral potentials with ⇤ = 450MeV and
500MeV are shown in black and give the lowest values
of both S0 and L in the range 26 < S0 < 29MeV and
15 < L < 25MeV. The NLO results are shown in blue
and give the largest values of the isospin-asymmetry en-
ergy and its slope parameter: 34 < S0 < 36MeV and

⇤ ⇠ 400 � 500MeV

NLO � N3LO

comprehensive

uncertainty band

N3LO

⇤ ⇠ 450 � 500MeV

NEUTRON MATTER  
from CHIRAL EFT  

3rd Order  
Perturbation Theory

Convergence of  
many-body perturbation 
theory 

⇢ < 2⇢0

Uncertainties  
primarily from  
Chiral EFT expansion
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FIG. 9: (Color online) 95% confidence bands for the S0 vs. L
correlation at order N3LO* from chiral two- and three-nuclear
forces (shown in red) and including also the NLO and N2LO
points (shown in grey).

70 < L < 80MeV. Finally, the five equations of state at
N3LO* give the S0 and L values shown in red, which are
in very good agreement with the results from previous
microscopic calculations [28, 29].
In Fig. 9 we have also drawn S0 vs. L correlation

ellipses at the 95% confidence level including only the
N3LO* results (shown in red) as well as including the
values of S0 and L from the NLO and N2LO equa-
tions of state. From the N3LO* correlation ellipse we
infer a value of the isospin-asymmetry energy in the
range 28 < S0 < 35MeV and slope parameter in the
range 20 < L < 65MeV. The upper and lower data
points in the N3LO* band come from including the un-
certainty due to missing physics, which e↵ectively in-
troduces an additional error in the theoretical predic-
tion of the isospin-asymmetry energy on the order of
�S0 = ±2MeV. For the slope parameter, the e↵ect of
missing physics is to extend the theory prediction by
about �L = ±10MeV. A more conservative estimate on
the S0 vs. L correlation is obtained by replacing the up-
per and lower N3LO* points by those from the NLO and
N2LO equations of state, and the resulting correlation
ellipse is shown in gray in Fig. 9. The parameters associ-
ated with the two correlation ellipses are given in Table
II. Remarkably the inclusion of NLO and N2LO equa-
tions of state modifies only slightly the inclination angle
of the correlation ellipse, indicating a robust uncertainty
estimate.

In passing we note that the analytical calculation of the
third-order ring-diagrams from an S-wave contact inter-
action Vct = � ⇡

M [as +3at + (at � as)~�1·~�2] provides also
a check on the validity of the (commonly used) quadratic

S0(MeV) L(MeV) a(MeV) b(MeV) tan ✓
N3LO* 31.3 41.9 22.2 0.64 6.37

NLO�N3LO* 31.5 44.8 44.5 1.10 6.91

TABLE II: Parameters of the S0 vs. L correlation ellipses (at
95% confidence level) obtained at order N3LO* and including
also the NLO and N2LO points. The center values are labeled
S0 and L, the semi-major and semi-minor axes are labeled a
and b, and the inclination angle is labeled ✓.

approximation in the isospin-asymmetry � = (⇢n�⇢p)/⇢.
Introducing a pn-mixed polarization function and ex-
panding all occurring terms up to order �2, one finds
the following exact expression for the quadratic isospin-
asymmetry parameter:

S2(⇢) =
k5f

⇡4M

�

3.5124 a3s + 11.092 a2sat

+10.137 asa
2
t � 5.1014 a3t

�

. (18)

On the other hand the di↵erence between the neutron
matter and nuclear matter energy per particle (see Eqs.
(13,14)) gives:

En(⇢)� E(⇢) =
k5f

⇡4M

�

3.6330 a3s + 9.4333 a2sat

+9.4333 asa
2
t � 5.2407 a3t

�

. (19)

One observes that the numerical coe�cients of the cu-
bic terms a3s,t agree within 3%, whereas those of the in-
terference terms are underestimated by 7% and 15% in
the quadratic approximation. Moreover, when contin-
uing the expansion in � further one encounters a non-
analytical term of the form �4 ln |�|. It has also been
found in a second-order calculation with Vct in Ref. [57].

IV. SUMMARY AND CONCLUSIONS

We have computed the equation of state of symmet-
ric nuclear matter and pure neutron matter including
all diagrams of many-body perturbation theory up to
third-order with intermediate-state energies calculated
self-consistently at second order. We have derived semi-
analytical results for the third-order particle-hole ring-
diagrams from model-type interactions that provide valu-
able benchmarks for numerical calculations based on a
partial-wave decomposition. We then employed realis-
tic chiral two- and three-nucleon forces constructed at
di↵erent orders in the chiral expansion together with a
range of momentum-space cuto↵s ⇤ to compute the en-
ergy per particle of symmetric matter and pure neutron
matter, E(⇢) and En(⇢n). The main motivation was to
provide improved theoretical uncertainty estimates on
the isospin-asymmetry energy S0 at saturation density
and its associated slope parameter L. We find that the
convergence in many-body perturbation theory for the
neutron matter equation of state is well under control at

Energy per particle :

S(⇢) = En(⇢) � E(⇢)

L = 3⇢
@S(⇢)

@⇢

���
⇢0

ISOSPIN-ASYMMETRIC MATTER  and  SYMMETRY ENERGY

E(⇢, ⌘) = E(⇢, ⌘ = 0) + S(⇢) ⌘2 + . . . ⌘ =
⇢n � ⇢p

⇢

Symmetry energy :

neutron  
matter

symmetric  
nuclear matter

S0 ⌘ S(⇢ = ⇢0)

Key quantities for  
neutron-rich nuclei  
and astrophysics

J.W.  Holt,  N. Kaiser
Phys. Rev. C95 (2017) 034326
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NUCLEAR  SKYRME  PHENOMENOLOGY7.
Effective interaction 
(to be used e.g. in Hartree-Fock-Bogoliubov calculations)

vij = t0 �(~rij) +
1

2
t1

h
p2
ij �(~rij) + �(~rij) p

2
ij

i
+ t2 ~pij · �(~rij) ~pij +

exchange terms [ tn ! tn(1 + xnP�)+ ]

+ iW0 (~�i + ~�j) · ~pij ⇥ �(~rij) ~pij

~rij = ~ri � ~rj ~pij = �
i

2
(~ri � ~rj) ~r =

1

2
(~ri + ~rj)

Additional density-dependent terms :

+ pairing

t0 ! t0 +
1

6
t3 ⇢

a(~r ) t1
n

p2
ij , �(~rij)

o

!
n

p2
ij ,

⇥

t1 + t4 ⇢
b(~r )

⇤

�(~rij)
o

t2 ~pij · �(~rij) ~pij ! ~pij · [t2 + t5 ⇢
c(~r )] �(~rij) ~pij

Precision fits to nuclear masses, radii, density profiles,  
equations of state (dense nuclear matter and neutron stars)

S. Goriely,  N. Chamel,  J.M. Pearson :  Phys. Rev. C88 (2013) 024308
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FIG. 3. Comparison between experimental and HFB-24 masses.

is much stronger than for BSk24: for all the other models
the performance in the neutron-rich region correlates fairly
well with the global performance. This may be related to the
abnormal behavior of BSk25 in NeuM at subnuclear densities
noted in connection with Fig. 2, but in any case it means
that the apparent high performance of this model should be
interpreted with caution. Looking at BSk22 and BSk23, we
see from both lines 1 and 3 that J = 31 MeV works less well
than either 29 or 30 MeV, while J = 32 MeV is still more
strongly disfavored.

Lines 5–8 of Table IV show the deviations for the Sn and
β-decay energies Qβ of all measured nuclei; these differential
quantities are of greater astrophysical relevance than the
absolute masses, both for the r-process and the crust of neutron
stars. It will be seen that all models fit the Sn better than they
fit the absolute masses, while most models fit the Qβ worse.
BSk25 (J = 29 MeV) performs best for both Sn and Qβ , with
the J = 30 and 31 MeV models following in no unambiguous
order. Again, BSk22 (J = 32 MeV) is the worst performer in
both the Sn and Qβ categories.

Comparing BSk24 and BSk26 shows that for J = 30 MeV
the high-density LS2 constraint (BSk24) gives better fits than
APR (BSk26) in all but one of the four categories. This
is compatible with our observation in Sec. I that BSk21
performed better than BSk20 when run with the data of the
2012 AME.

Overall, the clearest conclusion that can be drawn from
Table IV is that model BSk22 is the worst performing of all
our models, ruling out J = 32 MeV. There are also very strong
indications that J = 29 or 30 MeV (the latter in both its LS2
and APR forms) are to be preferred to J = 31 MeV, although
we have already expressed some concerns with regards to
J = 29 MeV, i.e., to BSk25.

The last two lines of Table IV show that all models give
essentially identical high-quality fits to the charge-radius data,
as shown in Fig. 4 for HFB-24 predictions. Similarly, an
accurate prediction of the charge density of 208Pb is found,
as illustrated in the right panel of Fig. 4.

C. Properties of infinite nuclear matter

All parameters appearing in Table V, except L̃ and K̃sym, are
as defined in Ref. [1]. In particular, the first seven parameters
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are defined by first writing the energy per nucleon of INM of
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e(n, η) = e(n, η = 0) + e(1)
sym(n)η2 + O(η4), (5)

in which the first term on the right-hand side is just the energy
per nucleon of charge-symmetric INM; we have neglected
charge-symmetry breaking terms, such as those arising from
the neutron-proton mass difference. We then expand e(n, η =
0) and e(1)

sym(n) about the equilibrium density n0 in powers of
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is much stronger than for BSk24: for all the other models
the performance in the neutron-rich region correlates fairly
well with the global performance. This may be related to the
abnormal behavior of BSk25 in NeuM at subnuclear densities
noted in connection with Fig. 2, but in any case it means
that the apparent high performance of this model should be
interpreted with caution. Looking at BSk22 and BSk23, we
see from both lines 1 and 3 that J = 31 MeV works less well
than either 29 or 30 MeV, while J = 32 MeV is still more
strongly disfavored.

Lines 5–8 of Table IV show the deviations for the Sn and
β-decay energies Qβ of all measured nuclei; these differential
quantities are of greater astrophysical relevance than the
absolute masses, both for the r-process and the crust of neutron
stars. It will be seen that all models fit the Sn better than they
fit the absolute masses, while most models fit the Qβ worse.
BSk25 (J = 29 MeV) performs best for both Sn and Qβ , with
the J = 30 and 31 MeV models following in no unambiguous
order. Again, BSk22 (J = 32 MeV) is the worst performer in
both the Sn and Qβ categories.

Comparing BSk24 and BSk26 shows that for J = 30 MeV
the high-density LS2 constraint (BSk24) gives better fits than
APR (BSk26) in all but one of the four categories. This
is compatible with our observation in Sec. I that BSk21
performed better than BSk20 when run with the data of the
2012 AME.

Overall, the clearest conclusion that can be drawn from
Table IV is that model BSk22 is the worst performing of all
our models, ruling out J = 32 MeV. There are also very strong
indications that J = 29 or 30 MeV (the latter in both its LS2
and APR forms) are to be preferred to J = 31 MeV, although
we have already expressed some concerns with regards to
J = 29 MeV, i.e., to BSk25.

The last two lines of Table IV show that all models give
essentially identical high-quality fits to the charge-radius data,
as shown in Fig. 4 for HFB-24 predictions. Similarly, an
accurate prediction of the charge density of 208Pb is found,
as illustrated in the right panel of Fig. 4.
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is much stronger than for BSk24: for all the other models
the performance in the neutron-rich region correlates fairly
well with the global performance. This may be related to the
abnormal behavior of BSk25 in NeuM at subnuclear densities
noted in connection with Fig. 2, but in any case it means
that the apparent high performance of this model should be
interpreted with caution. Looking at BSk22 and BSk23, we
see from both lines 1 and 3 that J = 31 MeV works less well
than either 29 or 30 MeV, while J = 32 MeV is still more
strongly disfavored.

Lines 5–8 of Table IV show the deviations for the Sn and
β-decay energies Qβ of all measured nuclei; these differential
quantities are of greater astrophysical relevance than the
absolute masses, both for the r-process and the crust of neutron
stars. It will be seen that all models fit the Sn better than they
fit the absolute masses, while most models fit the Qβ worse.
BSk25 (J = 29 MeV) performs best for both Sn and Qβ , with
the J = 30 and 31 MeV models following in no unambiguous
order. Again, BSk22 (J = 32 MeV) is the worst performer in
both the Sn and Qβ categories.

Comparing BSk24 and BSk26 shows that for J = 30 MeV
the high-density LS2 constraint (BSk24) gives better fits than
APR (BSk26) in all but one of the four categories. This
is compatible with our observation in Sec. I that BSk21
performed better than BSk20 when run with the data of the
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Overall, the clearest conclusion that can be drawn from
Table IV is that model BSk22 is the worst performing of all
our models, ruling out J = 32 MeV. There are also very strong
indications that J = 29 or 30 MeV (the latter in both its LS2
and APR forms) are to be preferred to J = 31 MeV, although
we have already expressed some concerns with regards to
J = 29 MeV, i.e., to BSk25.

The last two lines of Table IV show that all models give
essentially identical high-quality fits to the charge-radius data,
as shown in Fig. 4 for HFB-24 predictions. Similarly, an
accurate prediction of the charge density of 208Pb is found,
as illustrated in the right panel of Fig. 4.
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is much stronger than for BSk24: for all the other models
the performance in the neutron-rich region correlates fairly
well with the global performance. This may be related to the
abnormal behavior of BSk25 in NeuM at subnuclear densities
noted in connection with Fig. 2, but in any case it means
that the apparent high performance of this model should be
interpreted with caution. Looking at BSk22 and BSk23, we
see from both lines 1 and 3 that J = 31 MeV works less well
than either 29 or 30 MeV, while J = 32 MeV is still more
strongly disfavored.

Lines 5–8 of Table IV show the deviations for the Sn and
β-decay energies Qβ of all measured nuclei; these differential
quantities are of greater astrophysical relevance than the
absolute masses, both for the r-process and the crust of neutron
stars. It will be seen that all models fit the Sn better than they
fit the absolute masses, while most models fit the Qβ worse.
BSk25 (J = 29 MeV) performs best for both Sn and Qβ , with
the J = 30 and 31 MeV models following in no unambiguous
order. Again, BSk22 (J = 32 MeV) is the worst performer in
both the Sn and Qβ categories.

Comparing BSk24 and BSk26 shows that for J = 30 MeV
the high-density LS2 constraint (BSk24) gives better fits than
APR (BSk26) in all but one of the four categories. This
is compatible with our observation in Sec. I that BSk21
performed better than BSk20 when run with the data of the
2012 AME.

Overall, the clearest conclusion that can be drawn from
Table IV is that model BSk22 is the worst performing of all
our models, ruling out J = 32 MeV. There are also very strong
indications that J = 29 or 30 MeV (the latter in both its LS2
and APR forms) are to be preferred to J = 31 MeV, although
we have already expressed some concerns with regards to
J = 29 MeV, i.e., to BSk25.

The last two lines of Table IV show that all models give
essentially identical high-quality fits to the charge-radius data,
as shown in Fig. 4 for HFB-24 predictions. Similarly, an
accurate prediction of the charge density of 208Pb is found,
as illustrated in the right panel of Fig. 4.
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is much stronger than for BSk24: for all the other models
the performance in the neutron-rich region correlates fairly
well with the global performance. This may be related to the
abnormal behavior of BSk25 in NeuM at subnuclear densities
noted in connection with Fig. 2, but in any case it means
that the apparent high performance of this model should be
interpreted with caution. Looking at BSk22 and BSk23, we
see from both lines 1 and 3 that J = 31 MeV works less well
than either 29 or 30 MeV, while J = 32 MeV is still more
strongly disfavored.

Lines 5–8 of Table IV show the deviations for the Sn and
β-decay energies Qβ of all measured nuclei; these differential
quantities are of greater astrophysical relevance than the
absolute masses, both for the r-process and the crust of neutron
stars. It will be seen that all models fit the Sn better than they
fit the absolute masses, while most models fit the Qβ worse.
BSk25 (J = 29 MeV) performs best for both Sn and Qβ , with
the J = 30 and 31 MeV models following in no unambiguous
order. Again, BSk22 (J = 32 MeV) is the worst performer in
both the Sn and Qβ categories.

Comparing BSk24 and BSk26 shows that for J = 30 MeV
the high-density LS2 constraint (BSk24) gives better fits than
APR (BSk26) in all but one of the four categories. This
is compatible with our observation in Sec. I that BSk21
performed better than BSk20 when run with the data of the
2012 AME.
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Table IV is that model BSk22 is the worst performing of all
our models, ruling out J = 32 MeV. There are also very strong
indications that J = 29 or 30 MeV (the latter in both its LS2
and APR forms) are to be preferred to J = 31 MeV, although
we have already expressed some concerns with regards to
J = 29 MeV, i.e., to BSk25.

The last two lines of Table IV show that all models give
essentially identical high-quality fits to the charge-radius data,
as shown in Fig. 4 for HFB-24 predictions. Similarly, an
accurate prediction of the charge density of 208Pb is found,
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FIG. 6. (Color online) Potential energy per particle Epot/A in each (S, T ) channel as a function of density for charge-symmetric INM. The
open symbols correspond to the “Catania 1” BHF calculations [4], and the solid symbols to the “Catania 2” BHF calculations [47].

for example, Table II of Ref. [36]. This correlation can easily
be understood [24] in terms of the droplet-model expression
(2.21) of Ref. [54] for the neutron-skin thickness of a nucleus
of atomic number Z and mass number A,

θ = 3
2
r0

J

Q
I, (16)

where r0 = (3/4π n0)1/3, I = (N − Z)/A, and Q is the
surface-stiffness coefficient, which is anticorrelated with J
if masses are fitted [55,56]; see also Ref. [38] for a recent
extensive discussion. (The fact that J is also correlated with

FIG. 7. Pressure as a function of density in charge-symmetric
nuclear matter for our forces. The shaded area represents the analysis
of heavy-ion collision experiments obtained in Refs. [11,12].

L, as noted in Sec. III C, means that L and Q are anticorrelated.
This is easy to understand, given that L measures the rate of
variation of the energy per nucleon with respect to density over
the surface, and assuming a local-density approximation.)

In Table VI we show the results of a set of measurements
of θ on 26 nuclei using antiproton scattering [57]. The same
table shows the results we calculate for these nuclei for each
of our models. In Table VII we show the rms deviations σrms
between our models and experiment, the mean deviations ϵ̄
and the model error σmod of Möller and Nix [58]. This last
quantity provides a more reliable method of assessing the
relative performance of different models, especially when the
experimental errors are large, as in the present case (see also
Appendix B of Ref. [59] for further comments). In the first
three columns of this table we show the results for the full set
of 26 nuclei, while in the next three columns we consider only
the ten nuclei for which the experimental errors are 0.04 fm or
less.

We see that all three deviations, for both the complete set of
data and the subset, lead to the conclusion that models BSk24
and BSk26 are better than model BSk23. That is, J = 30 MeV
is favored over J = 31 MeV. Likewise, BSk22 (J = 32 MeV)
gives unambiguously the worst agreement with the measured
skins (only in the case of BSk25, i.e., J = 29 MeV, is there any
ambiguity). Thus there is almost complete agreement with the
conclusions about J already drawn from the mass fits. On the
other hand, these skin data are not precise enough to lead to any
conclusions concerning the EOS of NeuM at nuclear densities.

Furthermore, we should exercise some caution in conclud-
ing that the skin data favor J = 30 MeV. A new analysis [60]
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three columns of this table we show the results for the full set
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less.

We see that all three deviations, for both the complete set of
data and the subset, lead to the conclusion that models BSk24
and BSk26 are better than model BSk23. That is, J = 30 MeV
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conclusions concerning the EOS of NeuM at nuclear densities.
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ing that the skin data favor J = 30 MeV. A new analysis [60]
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Fig. 1. Zero-temperature EoSs for neutron matter with models
BSk22-26. APR is the realistic EoS “A18 + � v + UIX⇤” in
Ref. [24]. LS2 is the realistic EoS “V18” in Ref. [25].

EoS at high densities was changed without a↵ecting the
fit to nuclear masses.

Overall, the clearest conclusion that can be drawn from
Table 2 is that model BSk22 is the worst performing of
all our models, ruling out J = 32 MeV. There are also
very strong indications that J = 29 or 30 MeV (the latter
in both its LS2 and APR forms) are to be preferred to
J = 31 MeV, although we have expressed some concerns
with regards to J = 29 MeV, i.e., to BSk25. In any case,
it will be seen that the HFB models favour a value of J
considerably higher than what we found from the simple
drop model of Eq. (1), illustrating thereby the importance
of using a model that takes account of the fine details on
nuclear structure.

In Fig. 1 we show the neutron-matter EoSs of our
five models; it will be seen how well they fit their “tar-
get” EoSs. Calculating symmetric INM for the five mod-
els enables us to calculate the symmetry energy S2(n),
as given by Eq. (6). We show in Fig. 2 the variation of
S2(n) with density for models BSk22 (J = 32 MeV, con-
strained by LS2), BSk24 (J = 30 MeV, constrained by
LS2) and BSk26 (J = 30 MeV, constrained by APR);
with this choice of models we are able to sample the in-
fluence of both the symmetry energy at nuclear densities
and the high-density behavior of NeuM. We do not show
the corresponding curves for symmetric INM, but they are
all remarkably similar (see the discussion of this point in
Section IIIA of Ref. [4]).

Neutron skins. The most extensive set of measurements
of neutron-skin thicknesses using a given method is that
of Ref. [33], which used antiproton scattering to measure
26 nuclei. In Table 3 we show the rms deviations �

rms

be-
tween our models and experiment, the mean deviations ✏̄
and the model error �

mod

of Möller and Nix [34]. This last
quantity provides a more reliable method of assessing the
relative performance of di↵erent models, especially when
the experimental errors are large, as in the present case.
In the first three columns of this table we show the results
for the full set of 26 nuclei, while in the next three columns
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Fig. 2. Symmetry energy S2(n) for models BSk22, BSk24 and
BSk26.

Table 4. J and higher-order symmetry coe�cients for the 2013
models.

BSk22 BSk23 BSk24 BSk25 BSk26

J [MeV] 32.0 31.0 30.0 29.0 30.0
L [MeV] 68.5 57.8 46.4 36.9 37.5

K
sym

[MeV] 13.0 -11.3 -37.6 -28.5 -135.6
K0

[MeV] 275.5 275.0 274.5 316.5 282.9

we consider only the 10 nuclei for which the experimental
errors are 0.04 fm or less. We see that all three deviations,
for both the complete set of data and the subset, show
that models BSk24 and BSk26 are in better agreement
with experiment than are the other models, thereby sup-
porting the conclusion drawn from masses favoring J =
30 MeV.

Correlations between J and higher-order symmetry co-

e�cients. In Table 4 we show for each of our 2013 models
the values of J and the higher-order symmetry coe�cients,
L and K

sym

defined in Eq. (5b). Although we have con-
cluded that J must have a value close to 29 or 30 MeV,
with 32 MeV definitely excluded, it is still of interest to
see what happens to L and K

sym

when we vary J over
the full range of 29 to 32 MeV. Table 4 shows that in our
models L is strongly correlated with J , confirming what
was first established at least 35 years ago [35]. In fact,
when plotted in the J �L plane all our models fall within
the elliptical region labeled “Nuclear masses” in Fig. 12
of Ref. [19]. Actually, if we compare the L-values for mod-
els BSk24 and BSk26, both of which have J = 30 MeV,
we see that there is some dependence on the constraining
EoS, the softer EoS leading, not surprisingly, to a lower
value of L.

The influence of the constraining EoS is seen to be
much stronger in the case of K

sym

, the correlation with J
(or L) being quite weak; clearly, a determination of L will
not su�ce to determine K

sym

, contrary to the assertion of
Ref. [36]. This apparent correlation between K

sym

and the
constraining EoS of NeuM might tempt one to conclude
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Fig. 6. Mass-radius relation of neutron stars for models BSk22,
BSk24 and BSk26. The dark (light) shaded regions correspond
to the 1-� (2-�) probability distributions implied by observa-
tion, as shown in the upper right panel of Fig. 9 of Ref. [39].

Table 5. Threshold density for the direct Urca process to oc-
cur, and corresponding neutron-star mass for models BSk22,
BSk24 and BSk26.

n
du

M
du

/M�

BSk22 0.33 1.14
BSk24 0.45 1.59
BSk26 1.46 -

In addition, the model BSk22 is found to be incompatible
with the constraint of Klähn et al. [46] that no direct Urca
process should occur in neutron stars with typical masses
in the range M ⇠ 1� 1.5 M�, leaving thereby BSk24 as
the only model consistent with both constraints.

We do not show here the EoSs that we have calculated
and that are implicit in all the results of this section, but
will publish them elsewhere.

4 Conclusions

We have described the main features of our most recent
HFB mass models, which have been fitted to the mass data
of the 2012 AME. Our preferred model, HFB-24, fits the
2353 measured masses of nuclei with N and Z � 8 with an
rms deviation under 0.55 MeV. A symmetry coe�cient of
J = 30 MeV is favoured, with strong indications against
a value of 32 MeV.

These mass models, taken with their underlying func-
tionals, permit a unified treatment of all regions of neu-
tron stars. We have calculated with each of our models the
composition and EoS of neutron stars. Solving then the
TOV equations we were able to calculate the mass-radius
relation for each model, which, when compared with the
observational constraints, strongly favours J = 30 MeV
over 32 MeV. Moreover, all our models lead to maximum
masses greater than the heaviest observed neutron stars.
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with known masses
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A Noise-filtering of the calculated model
masses

In Fig. 7 we show the experimental values [1] of the two-
neutron separation energy S2n and in Fig. 8 the calculated
(HFB-24) values. It will be seen in this latter figure that
despite the excellent global fit to the mass data there are
many small irregularities in the calculated masses, with
the di↵erent isotopic curves sometimes touching and even
crossing each other, while the experimental curves (Fig. 7)
are much smoother and more regularly spaced. This spu-
rious structure is a noise that inevitably occurs in the ex-
tensive numerical procedures involved in solving the HFB
equations.

There is, of course, no unambiguous way to filter out
this noise, but here we describe a procedure that we have
developed on the basis of the 21-nucleus variation of the
Garvey-Kelson relations [47], abbreviated here as 21GK,
shown by Barea et al. [48] to be well satisfied by the mass
data of the 2003 AME [26], the rms deviation for all nuclei
with A � 16 being 0.087 MeV. The degree of smoothness
displayed by the 21GK masses is thus much closer to what
is seen in the data than in the HFB results.

Our method proceeds reiteratively, with the mass of
the nucleus (Z,N) after the i’th iteration being expressed
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J = 30 MeV is favoured, with strong indications against
a value of 32 MeV.

These mass models, taken with their underlying func-
tionals, permit a unified treatment of all regions of neu-
tron stars. We have calculated with each of our models the
composition and EoS of neutron stars. Solving then the
TOV equations we were able to calculate the mass-radius
relation for each model, which, when compared with the
observational constraints, strongly favours J = 30 MeV
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A Noise-filtering of the calculated model
masses

In Fig. 7 we show the experimental values [1] of the two-
neutron separation energy S2n and in Fig. 8 the calculated
(HFB-24) values. It will be seen in this latter figure that
despite the excellent global fit to the mass data there are
many small irregularities in the calculated masses, with
the di↵erent isotopic curves sometimes touching and even
crossing each other, while the experimental curves (Fig. 7)
are much smoother and more regularly spaced. This spu-
rious structure is a noise that inevitably occurs in the ex-
tensive numerical procedures involved in solving the HFB
equations.

There is, of course, no unambiguous way to filter out
this noise, but here we describe a procedure that we have
developed on the basis of the 21-nucleus variation of the
Garvey-Kelson relations [47], abbreviated here as 21GK,
shown by Barea et al. [48] to be well satisfied by the mass
data of the 2003 AME [26], the rms deviation for all nuclei
with A � 16 being 0.087 MeV. The degree of smoothness
displayed by the 21GK masses is thus much closer to what
is seen in the data than in the HFB results.

Our method proceeds reiteratively, with the mass of
the nucleus (Z,N) after the i’th iteration being expressed
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8. From CHIRAL EFFECTIVE FIELD THEORY  
    to  ENERGY DENSITY FUNCTIONALS

For finite nuclear systems, derive energy density functional from 
nuclear interactions based on chiral pion-nucleon dynamics

Starting point :  
density matrix expansion for inhomogeneous symmetric nuclear matter
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NUCLEAR ENERGY DENSITY FUNCTIONAL

up to 2nd order in the gradient expansion :
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NUCLEAR ENERGY DENSITY FUNCTIONAL 
from CHIRAL 2- and 3-NUCLEON INTERACTIONS

J.W. Holt,  N. Kaiser,  W. W.  :  Eur. Phys. J.  A47 (2011) 128

N2LO three-body forces

N3LO chiral NN interactions

Contact terms     +     multipion exchange finite range interactions

Finite range forces
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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Figure 5: Hierarchical organization of nuclear forces in chiral e↵ective field theory.
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1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has

the form
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.

4

Two�nucleon force Three�nucleon force Four�nucleon force

LO

NLO

N2LO

N3LO

Figure 5: Hierarchical organization of nuclear forces in chiral e↵ective field theory.

an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has

the form
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has

the form
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-
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multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative
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to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.
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NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has

the form

V (2⇡)
3N =

X

i 6=j 6=k

g2A
8f4

⇡

~�i · ~qi ~�j · ~qj
(~qi

2 +m2
⇡)(~qj

2 +m2
⇡)

F↵�
ijk⌧

↵
i ⌧

�
j , (42)

16

NN force 3N force 4N force

LO

NLO

N2LO

N3LO

NN interaction

Two�nucleon force Three�nucleon force Four�nucleon force

LO

NLO

N2LO

N3LO

Figure 5: Hierarchical organization of nuclear forces in chiral e↵ective field theory.

an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical
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3.1.2. Nuclear many-body forces
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-
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multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential
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terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the
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multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative
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active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative
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receive an additional dependence on a regulator scale ⇤̃.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces
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Figure 7: Saturation curve of nuclear matter obtained from 1π-exchange and iterated 1π-exchange
together with a fine-tuned short-distance term linear in density. The dashed line stems from the many-
body calculation of ref. [46].

Let us now give an explanation for how saturation of nuclear matter is achieved in the framework
of in-medium chiral perturbation theory. For that purpose it is instructive to consider the following
simple parametrization of the energy per particle [42]:

Ē(kf) =
3k2

f

10MN
− α

k3
f

M2
N

+ β
k4
f

M3
N

, (43)

which includes an attractive k3
f -term and a repulsive k4

f -term. This two-parameter form has generically
a saturation minimum if α, β > 0. Its striking feature is than once α = 5.27 and β = 12.22 are adjusted
to the empirical saturation point ρ0 = 0.16 fm−3, Ē0 = −16 MeV the compressibility K ≃ 240MeV
comes out correctly. Moreover, such a parametrized curve for Ē(kf) follows the results of sophisticated
many-body calculations [46] up to quite high densities ρ ≃ 1 fm−3.

In the chiral limit mπ = 0 the leading interaction contributions calculated from 1π- and iterated
1π-exchange turn into exactly such a two-parameter form with the coefficient β of the k4

f -term given by
[42]:

β =
3

70

(
gπN
4π

)4

(4π2 + 237− 24 ln 2) = 13.6 , (44)

where gπN = gAMN/fπ = 13.2 is the strong pion-nucleon coupling constant. This number is quite
close to β = 12.22 as extracted from a realistic nuclear matter equation of state. The mechanism for
nuclear matter to saturate can be summarized roughly as follows: while pion-exchange at second order
generates the necessary attraction, the Pauli-blocking effects due to the nuclear medium counteract this
attraction in the form of a repulsive contribution with a stronger density dependence (a k4

f -term).
Calculations of nuclear matter in this framework have been extended further by including the (ir-

reducible) two-pion exchange contributions in the medium [39]. A compact form of the corresponding
Fock term is given in terms of a (subtracted) spectral function representation:
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Figure 20: The energy per particle Ē(ρ) of isospin-symmetric nuclear matter derived from chiral nuclear
interactions.
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Figure 23: The strength function F∇(ρ) of the surface term (∇⃗ρ)2 versus the nuclear density ρ.
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Figure 24: Spin-orbit strength function Fso(ρ) as a function of the density ρ.
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Figure 25: Strength function FJ(ρ) of the squared spin-orbit density J⃗ 2 versus ρ.
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together with a fine-tuned short-distance term linear in density. The dashed line stems from the many-
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Let us now give an explanation for how saturation of nuclear matter is achieved in the framework
of in-medium chiral perturbation theory. For that purpose it is instructive to consider the following
simple parametrization of the energy per particle [42]:
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which includes an attractive k3
f -term and a repulsive k4

f -term. This two-parameter form has generically
a saturation minimum if α, β > 0. Its striking feature is than once α = 5.27 and β = 12.22 are adjusted
to the empirical saturation point ρ0 = 0.16 fm−3, Ē0 = −16 MeV the compressibility K ≃ 240MeV
comes out correctly. Moreover, such a parametrized curve for Ē(kf) follows the results of sophisticated
many-body calculations [46] up to quite high densities ρ ≃ 1 fm−3.

In the chiral limit mπ = 0 the leading interaction contributions calculated from 1π- and iterated
1π-exchange turn into exactly such a two-parameter form with the coefficient β of the k4

f -term given by
[42]:

β =
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where gπN = gAMN/fπ = 13.2 is the strong pion-nucleon coupling constant. This number is quite
close to β = 12.22 as extracted from a realistic nuclear matter equation of state. The mechanism for
nuclear matter to saturate can be summarized roughly as follows: while pion-exchange at second order
generates the necessary attraction, the Pauli-blocking effects due to the nuclear medium counteract this
attraction in the form of a repulsive contribution with a stronger density dependence (a k4

f -term).
Calculations of nuclear matter in this framework have been extended further by including the (ir-

reducible) two-pion exchange contributions in the medium [39]. A compact form of the corresponding
Fock term is given in terms of a (subtracted) spectral function representation:
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Figure 23: The strength function F∇(ρ) of the surface term (∇⃗ρ)2 versus the nuclear density ρ.
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Figure 24: Spin-orbit strength function Fso(ρ) as a function of the density ρ.
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Figure 25: Strength function FJ(ρ) of the squared spin-orbit density J⃗ 2 versus ρ.
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Figure 7: Saturation curve of nuclear matter obtained from 1π-exchange and iterated 1π-exchange
together with a fine-tuned short-distance term linear in density. The dashed line stems from the many-
body calculation of ref. [46].

Let us now give an explanation for how saturation of nuclear matter is achieved in the framework
of in-medium chiral perturbation theory. For that purpose it is instructive to consider the following
simple parametrization of the energy per particle [42]:
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which includes an attractive k3
f -term and a repulsive k4

f -term. This two-parameter form has generically
a saturation minimum if α, β > 0. Its striking feature is than once α = 5.27 and β = 12.22 are adjusted
to the empirical saturation point ρ0 = 0.16 fm−3, Ē0 = −16 MeV the compressibility K ≃ 240MeV
comes out correctly. Moreover, such a parametrized curve for Ē(kf) follows the results of sophisticated
many-body calculations [46] up to quite high densities ρ ≃ 1 fm−3.

In the chiral limit mπ = 0 the leading interaction contributions calculated from 1π- and iterated
1π-exchange turn into exactly such a two-parameter form with the coefficient β of the k4

f -term given by
[42]:

β =
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(
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where gπN = gAMN/fπ = 13.2 is the strong pion-nucleon coupling constant. This number is quite
close to β = 12.22 as extracted from a realistic nuclear matter equation of state. The mechanism for
nuclear matter to saturate can be summarized roughly as follows: while pion-exchange at second order
generates the necessary attraction, the Pauli-blocking effects due to the nuclear medium counteract this
attraction in the form of a repulsive contribution with a stronger density dependence (a k4

f -term).
Calculations of nuclear matter in this framework have been extended further by including the (ir-

reducible) two-pion exchange contributions in the medium [39]. A compact form of the corresponding
Fock term is given in terms of a (subtracted) spectral function representation:
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Figure 20: The energy per particle Ē(ρ) of isospin-symmetric nuclear matter derived from chiral nuclear
interactions.

0 0.05 0.1 0.15 0.2
ρ  [fm-3]

0

2

4

6

8

10

12

F τ
(ρ

)  
 [M

eV
fm

2 ]

2-body
3-body
total
Vlow-k

Figure 21: Contributions to the strength function Fτ (ρ) as a function of the nuclear density ρ.

0 0.05 0.1 0.15 0.2
ρ [fm-3]

0.6

0.7

0.8

0.9

1

M
* (ρ

) /
 M

effective nucleon mass

Figure 22: Ratio of the effective nucleon mass M∗(ρ) to the free nucleon mass M as function of ρ.
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Figure 23: The strength function F∇(ρ) of the surface term (∇⃗ρ)2 versus the nuclear density ρ.
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Figure 24: Spin-orbit strength function Fso(ρ) as a function of the density ρ.
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Figure 25: Strength function FJ(ρ) of the squared spin-orbit density J⃗ 2 versus ρ.
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Figure 23: The strength function F∇(ρ) of the surface term (∇⃗ρ)2 versus the nuclear density ρ.
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Figure 24: Spin-orbit strength function Fso(ρ) as a function of the density ρ.
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Figure 25: Strength function FJ(ρ) of the squared spin-orbit density J⃗ 2 versus ρ.
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Figure 23: The strength function F∇(ρ) of the surface term (∇⃗ρ)2 versus the nuclear density ρ.
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Figure 24: Spin-orbit strength function Fso(ρ) as a function of the density ρ.
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has

the form
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by chiral symmetry of QCD for nuclear few- and many-body calculations.
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical
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by chiral symmetry of QCD for nuclear few- and many-body calculations.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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the form

V (2⇡)
3N =

X

i 6=j 6=k

g2A
8f4

⇡

~�i · ~qi ~�j · ~qj
(~qi

2 +m2
⇡)(~qj

2 +m2
⇡)

F↵�
ijk⌧

↵
i ⌧

�
j , (42)

16

NN force 3N force 4N force

LO

NLO

N2LO

N3LO

NN interaction

Two�nucleon force Three�nucleon force Four�nucleon force

LO

NLO

N2LO

N3LO

Figure 5: Hierarchical organization of nuclear forces in chiral e↵ective field theory.
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VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative
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receive an additional dependence on a regulator scale ⇤̃.
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NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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by chiral symmetry of QCD for nuclear few- and many-body calculations.
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential
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Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral
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Figure 1: Finite-range isoscalar and isovector central potentials extracted from N3LOW [22].

3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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3 Two-body contributions

In this section we work out the two-body contributions to the various density-dependent strength
functions which build up the nuclear energy density functional E [ρ, τ, J⃗ ] written in eq.(3).
Ideally, one would like to use for this task the universal low-momentum NN-potential Vlow−k [12].
However, it is generally given in terms of (off-shell) partial wave matrix elements which makes
its application to the density-matrix expansion rather cumbersome. An explicit representation
of the momentum space NN-potential in terms of spin- and isospin-operators is much better
suited for this purpose. For this reason we use (as a substitute for Vlow−k) the chiral NN-potential
N3LOW developed in refs.[21, 22] by lowering the cut-off scale to Λ = 414MeV. This value of
Λ coincides with the resolution scale inherent to the universal low-momentum NN-potential
Vlow−k. The finite-range part of the N3LOW chiral NN-potential consists of one- and two-pion
exchange pieces which can be summarized in the form:2

V (π)
NN = VC(q) + τ⃗1 · τ⃗2WC(q) + [VS(q) + τ⃗1 · τ⃗2 WS(q)] σ⃗1 · σ⃗2

+[VT (q) + τ⃗1 · τ⃗2 WT (q)] σ⃗1 · q⃗ σ⃗2 · q⃗

+[VSO(q) + τ⃗1 · τ⃗2WSO(q)] i(σ⃗1 + σ⃗2) · (q⃗ × p⃗ ) , (6)

where q⃗ denotes the momentum transfer and p⃗ the center-of-mass momentum. As usual, σ⃗1,2 and
τ⃗1,2 are the spin- and isospin operators of the two nucleons. A special and simplifying feature

of V (π)
NN is that all the occurring potentials VC(q), . . . ,WSO(q) depend only on the momentum

transfer q and that a quadratic spin-orbit component ∼ σ⃗1 · (q⃗× p⃗ ) σ⃗2 · (q⃗× p⃗ ) is absent. The rel-
ativistic 1/M2-correction to the 2π-exchange [24] which does (partially) not share this property
is so small that it can be safely neglected. In order to specify our sign and normalization conven-
tion, we give also the explicit expression for the 1π-exchange, W (1π)

T (q) = −(gA/2fπ)2(m2
π+q2)−1,

with the parameters gA = 1.3, fπ = 92.4MeV and mπ = 138MeV.
The solid and dashed lines in Figs. 1,2,3,4 show the finite-range isoscalar and isovector po-

tentials extracted from the chiral NN-interaction N3LOW [22] in the central, spin-spin, tensor,
and spin-orbit channel, respectively. In each figure the curves extend up to momentum transfers
of q = 570MeV, corresponding to the region q < 2kf within which the interaction gets probed

2Note that we associate here the tensor interaction with the operator σ⃗1 · q⃗ σ⃗2 · q⃗. This operator splits as
(q2/3)[S12(q̂) + σ⃗1 · σ⃗2] into the genuine tensor operator S12(q̂) and a spin-spin piece.
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative
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an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the
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should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has

the form

V (2⇡)
3N =

X

i 6=j 6=k

g2A
8f4

⇡

~�i · ~qi ~�j · ~qj
(~qi

2 +m2
⇡)(~qj

2 +m2
⇡)

F↵�
ijk⌧

↵
i ⌧

�
j , (42)

16

NN force 3N force 4N force

Two�nucleon force Three�nucleon force Four�nucleon force

LO

NLO

N2LO

N3LO

Figure 5: Hierarchical organization of nuclear forces in chiral e↵ective field theory.
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SUMMARY & CONCLUSIONS

New constraints from massive neutron stars for the 
equation-of-state of dense & cold baryonic matter : 

Mass - radius relation:  stiff equation of state required ! 
No ultrahigh densities (                    )

“Conventional” (non-exotic)  EoS  works remarkably well 
 (nuclear effective field theory + advanced many-body methods)

Systematic framework at the interface of QCD (with light quarks)
and the physics of  hadrons, nuclei and nuclear forces :

CHIRAL EFFECTIVE FIELD THEORY
based on spontaneously broken 

Chiral Symmetry of Low-Energy QCD

ϱcore ! 5 ϱ0
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Chiral EFT  DFT connection
New density dependent strength functions of energy functional 
from finite-range forces governed by chiral (pion) dynamics 


