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What can be done and what will come out 
with the (large-scale) shell-model studies 

at present and near future ?
Could this challenge be feasible 
in a cooperative way with DFT ?From UNEDF 
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Nuclear shapes



oblate (b 2 <0)
spherical

prolate (b 2 >0)

1 + 0.6 b 2

b 2
+0.４-0.４ 0

1 – 0.3 b 2

Ellipsoidal shape of atomic nuclei

deformation parameter b 2

1.24

example: b 2 =0.4

0.88
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Ex (2+) : 
excitation energy of first 2+ state R 4/2 = Ex (4+) / Ex(2+)

2+ and 4+ level properties of 62Sm isotopes
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shape transition
(D N = 8) 

Nuclear shape evolution



proton

Protons and neutrons are 
orbiting in the mean 
potential like a vase
→ single-particle energies

Lower orbits form the 
inert core
(shaded parts in the figure)

Upper orbits are only 
partially occupied
(valence orbits and 
nucleons).

shell structure and nucleon-nucleon interaction

neutron

nucleon-nucleon
interaction

Valence nucleons are the major source of
nuclear dynamics at low excitation energy,
because the inert core is dead.



Magic numbers 
by

Mayer and 
Jensen (1949)
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Atomic nucleus is a quantum 

Fermi liquid (of Landau) :

The nucleus is composed of

almost free nucleons 

interacting weakly via 

residual forces

in a (solid) (mean) potential

Surface deformation produced 
by additional deformed mean field 

à Nilsson model 

Aage Bohr Ben Mottelson Sven Nilsson

Actual shell structure



Nilsson model Hamiltonian “Nuclear structure II” by Bohr and Mottelson

A=186   0.91

A=100   1.12

A=  68   1.28

Spin-orbit force

quadrupole deformed field spherical field
constant within a region

Additional deformed field : Nilsson model



deformation =
quadrupole force

resistance power

resistance power   ß For instance, pairing force.
What else ?

This effect becomes stronger as the nucleus 
moves away from the closed shell.

Intuitively speaking, the quadrupole deformation is determined by

- The quadrupole force is a part of nuclear forces :
quadrupole-quadrupole component in the spin-tensor decomposition.

- Driving force for the rotational spectrum in Elliott’s SU(3)
- Its mean-field effect       Nilsson model

- Pairing + QQ interaction model

Main subject of this talk



Numerical methodology 
of 

many-body problems



Two types of shell-model calculations

dim. <~ 1010

~100 dim.

For even bigger problem,

Direct diagonalization

Selected
important basis vectors



+ +

Possible configurations: 1023 ways at maximum for Zr isotopes to be discussed

Superposition of original orbits => Select most important ~100 ones

+ … 
+

+ …+
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Minimize	E(D) as	a	function	of	D utilizing	
qMC	and	conjugate	gradient	methods
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Step	1 :	quantum	Monte	Carlo	type	method	
à candidates	of	n-th basis	vector	(s :	set	of	random	numbers)

“	s ”	can	be	represented	by	matrix	D	
Select	the	one	producing	the	lowest	E(D) (rate	<	0.1	%)	

fsf sb )0()()( ×Õ= ×De h

Step	2	:	polish	D by	means	of	the	conjugate	gradient	method	
“variationally”.		

Advanced	Monte	Carlo	Shell	Model

steepest
descent
method

conjugate
gradient 
method

NB : number of basis vectors (dimension)

Projection op.

Nsp : number of single-particle states

Np : number of (active) particles

Deformed single-particle state

n-th basis vector
(Slater determinant)

amplitude a



Step	3：Energy	variance	extrapolation

<H>1
<DH2>1

<H>2
<DH2>2

<H>3
<DH2>3

Eexact
0

・・・

・・・

Hij =

64Ge in pfg9-shell, 1014 dim
Energy	variance：

02 ®DH

As	the	number	of	basis	vectors	increases,	
the	approximated	w.f.	approaches	the	exact	one
and	the	energy	variance	approaches	zero.

222 HHH -=D

Extrapolate	to	1014
...	impossible

Number	of	MCSM	basis	states	(dimension)

Extrapolate	to	
Variance	0

Extrapolate	towards

Energy Variance [MeV2]
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MCSM (Monte Carlo Shell Model  -Advanced version-)
1. Selection of important many-body basis vectors 

by quantum Monte-Carlo + diagonalization methods
basis vectors : about 100 selected Slater determinants 

composed of “deformed” single-particle states 
2. Variational refinement of basis vectors

conjugate gradient method 
3.  Variance extrapolation method  -> exact eigenvalues

K computer (in Kobe)   10 peta flops machine
Þ Projection of basis vectors

Rotation with three Euler angles 
with about 50,000 mesh points

Example : 8+ 68Ni  7680 core x 14 h  

+ innovations in algorithm and code (=> now moving to GPU)



Development of shell-model calculation

~ Avogadro
number
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MCSM	wave	function	on	Potential	Energy	Surface	(T-plot)

• PES is	calculated	
by	CHF

• Location of	circle	:	
quadrupole
deformation	of	
unprojected MCSM
basis	vectors

• Area of	circle	:
overlap	probability
between	each
projected	basis	and	
eigen wave	function

0+
1 state of 68Ni

oblate

prolatespherical

triaxial

eigenstate Slater determinant
intrinsic deformation

amplitude projection on Jp
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3-dimensional T-plot 

T-plot invented by
Yusuke Tsunoda

~ Alpine villages 





General properties of T-plot :
Certain number of large circles in a small region of PES 

ó pairing correlations
Spreading beyond this can be due to shape fluctuation

0+
1

2+
2

0+
3

0+
2

similar pattern
(band structure)

Example : shape assignment to various 0+ states of 68Ni



Quantum Phase Transition



Phase Transition :
A macroscopic system can change qualitatively from a stable state (e.g. ice for H2O) 
to another stable state (e.g., water for H2O) as a function of a certain parameter
(e.g., temperature).  
The phase transition implies this kind of phenomena of macroscopic systems
consisting of almost infinite number of molecules, 
where thermodynamics can be applied.

Quantum Phase Transition (QPT)
The concept of the phase transition cannot be applied to microscopic systems 
as it is.  In the QPT, the ground state of a quantum (microscopic) system 
undergoes abrupt and qualitative change (of order parameter) 
as a (control) parameter changes.

Can the shape transition be a “Phase Transition” ?



The shape transition occurs rather gradually. 

The definition of Quantum Phase Transition :
an abrupt change in the ground state of a many-body system
by varying a physical parameter at zero temperature. (cf., Wikipedia) 

The usual shape transition may not fulfill the condition being abrupt.
Where can we see it ?
If it occurs in atomic nuclei, what is the underlying mechanism ?

possible scenario

parameter = N (neutron number)

(almost) no mixing

completely different shapes

Note that sizable mixing occurs usually in finite quantum systems.



An example : shapes of Zr isotopes 
by Monte Carlo Shell Model

- Effective interaction: 
JUN45 + snbg3 + VMU

known effective interactions

+ minor fit for a part of
T=1 TBME’s

0g9/2

1d5/2

2S1/2

1d3/2
0g7/2

1f7/2

2p3/2

proton neutron
0f5/2

1p3/2

1p1/2

0h11/2

56Ni

VMU

snbg3

JUN45 0g9/2

1d5/2

2S1/2

0g7/2

1d3/2

Nucleons are excited fully 
within this model space
(no truncation)

We	performed	Monte	Carlo	Shell	
Model	(MCSM) calculations,	where	
the	largest	case	corresponds	to	the	
diagonalization of	3.7	x	10	23

dimension matrix.
Togashi, Tsunoda, TO et al. PRL
117, 172502 (2016)
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2+
1 systematics

abrupt change
Quantum Phase Transition

Neutron number



Deformation parameter b 2 varies as the neutron number N

Neutron number



First and second

by crossing 
without mixing

A = Z + N  with Z=40 for Zr isotopes  



!

A = Z + N  with Z=40 for Zr isotopes  
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0+1

2+1
0+2

2+2

0

500

1000

1500

co-existence
experimentally
confirmed



30

Basic mechanism



Relevant neutron single-particle 
levels get closer as a combined 
effect of nuclear forces (tensor and 
central) and particular configurations.
The resistance power against 
deformation is then reduced.
Large difference in ESPEs and
configurations è crossing w/o mixing

sph.
def.

g9/2

p3/2.1/2, f5/2

d3/2

d5/2

proton neutron

g7/2

h11/2

Underlying mechanism :
Type II shell evolution

g9/2

f5/2

p3/2

monopole
interaction
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Reminder I :  Jahn –Teller effect for nuclear deformation

d3/2

d5/2

g7/2

(Self-consistent) quadrupole deformed field ∝Y2,0 (q,f) mixes the orbits below

Y (Jz=1/2) = c1 |g7/2; jz=1/2> + c2 |d3/2; jz=1/2> + c3 |d5/2; jz=1/2> 

Mixing depends not only on the strength of the Y2,0 (q,f)  field, but also
the spherical single-particle energies e1, e2, e3, etc.

e1

e2
e3

closer to degeneracy

larger deformation for the same deformed field

stronger mixing = larger quadrupole deformation



Reminder II  :  Monopole interaction

Any effective nucleon-nucleon interaction can be decomposed in terms of
the spin-tensor decomposition, independently as to how it was derived.
The monopole interaction is one of such components.

Schematically, K=0 piece of V＝ S K f K ( U(K) U(K) )

g9/2

f5/2

f5/2

f7/2

v(j, j’) np
j nn

j’ between a proton in the orbit j and a neutron in the orbit j’

Ex. Monopole effect from tensor force １．Proportional to occupation
number  (linear effect)

２．Single-particle energies are
changed effectively

３．Also for holes with the   
opposite sign

４．We need to know the forces

U(K) : rank K one-body op.  ;    K=2 -> quadrupole interaction



Type I Shell Evolution : different isotopes

Type II Shell Evolution : within the same nucleus

: holes

: particles

: particles

Monopole effects on the shell structure   - tensor force as an example -

TO and Y. Tsunoda, J. Phys. G: Nucl. Part. Phys. 43 (2016) 024009

Shell Evolution - Type I and Type II -

single-particle
levels on top of

closed shells





Frozen monopole monopole active
(original result)

98Zr  0+
1

98Zr  0+
2

Anatomy of this effect : example by 98Zr  spherical 0+
1 and deformed 0+

2

Effective SPE
- configuration dependent -

Use them as constant SPEs independent of 
configurations, putting monopole int. aside
è Frozen monopole treatment 

98Zr  0+
1spherical 

ground state 
do not change
(overlap~0.98) 

PES with T-plot

prolate
minimum 
is gone



Frozen monopole by 0+
4

monopole active
(original result)

100Zr  0+
1

100Zr  0+
4

prolate minimum
is weakened.

spherical shape
becomes lower

100Zr  prolate 0+
1 and spherical 0+

4 (T-plot) 

spherical ground state

oblate states

100Zr  0+
1oblate minimum

is more profound

No quantum phase transition 

prolate state





Frozen monopole by 0+
1

monopole active
(original result)

100Zr  0+
1

100Zr  0+
4

prolate minimum
remains.

100Zr  prolate 0+
1 by frozen S.P.E. (T-plot) 

100Zr  0+
1



Quantum Self Organization

deformation =
quadrupole force

resistance power

resistance power   ß pairing force

single-particle energies

Atomic nuclei can “organize” their single-particle energies 
by taking particular configurations of protons and neutrons
optimized for each eigenstate, thanks to orbit-dependences of 
monopole components of nuclear forces (e.g., tensor force).

à an enhancement of Jahn-Teller effect. 

Type II shell evolution is a simplest and visible case of



Variation of monopole matrix element from a central force : A=70

mean values  ~0.8 MeV      ~1.3 MeV

variations    ~0.1 MeV       ~0.3 MeV

difference ~ 0.5 MeV

S=1, T=0



variations    0.5 ~ 1 MeV

Variation of monopole matrix element from tensor force : A=70



Sm isotopes
proton      8 orbits
neutron  10 orbits

2+ levels of Sm isotopes

X exp.

ー MCSM

Interaction VMU  (gaussian central + p+r tensor) 

0+
1

148Sm

0+
1

154Sm

0+
1

144Sm



181Hg proton ESPE (MeV)
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Shape coexistence in Hg/Pb region

1/2- levels

Very Preliminary

11 proton orbits, 13 neutron orbits
nn, pp  Brown (PRL85, 5300), pn VMU



Summary
• The Monte Carlo Shell Model calculations can handle cases corresponding to the 

diagonalization of 1023-dimension Hamiltonian matrix or more.
• The Monte Carlo Shell Model can bridge from the shell-model (CI) calculation to 

mean-field (DFT) calculation because of deformed basis vectors.
• The atomic nuclei are not necessarily like simple rigid vases containing almost 

free nucleons.            Naïve Fermi liquid picture (a la Landau)  
• Nuclear forces are rich enough to change single-particle energies for each 

eigenstate, leading to quantum self-organization.  This effect becomes visible for
(i)  two quantum liquids (protons and neutrons), 
(ii) two major forces : e.g., quadrupole interaction : to drive collective mode

monopole interaction : to control resistance
• Relevance to shape coexistence and quantum phase transition, with actual cases 

in Ni, Sm, Hg/Pb, …..., island of stability, ....
• Prolate deformation is favored by this, whereas oblate shape is not much.   Any 

relevance to the dominance of prolate shapes in nuclei ?
• What about mesoscopic systems ?
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deformation =
quadrupole force

resistance power

resistance power   ß pairing force

single-particle energies

current =
voltage

resistance

Analogy to electric current,



Additional remark:

The atomic nucleus can optimize its single-particle properties
for actual mode/shape (or any final form of the structure), 
by choosing favorable configurations.

This aspect of the quantum self-organization may be
(one of) the missing correlations Nakatsukasa-san mentioned
this morning.



Thank you


