Anderson-Bogoliubov phonon in inner crust of neutron stars

Interdisciplinary symposium on modern density functional theory

19-23 June 2017, RIKEN

INAKURA Tsunenori MATSUO Masayuki (Niigata Univ.)

Neutron stars

the smallest and densest stars known to exist.

Neutron star: Radius ~ 10-12 km Mass ~ 1-2 M_{\odot} Inner crust: Thickness ~ 1 km Mass ~ 1 % of NS

https://www.nasa.gov

(a)

Its properties impact many phenomena, such as

- Cooling process (connected with specific heat, heat conductivity),
- Glitch (sudden change of rotational speed),
- Quasi-periodic oscillation (starquake).

Inner crust of neutron star:

surrounded by superfluid neutron sea

Two components: neutron and proton

Lattice of nuclear cluster

Anderson-Bogoliubov phonon as a new heat carrier.

- Superfluid phonon (Anderson-Bogoliubov mode) <u>coupled with</u> <u>nuclear excitation</u> (lattice phonon) is a new agent of heat carrier.
- Thermal conductivity by AB mode can be comparable to that by electrons under strong magnetic field, i.e. in magnetars.

www.mpq.univ-paris7.fr

Aguilera+, PRL102, 091191 Cirigliano+, PRC84, 045809 Chamel+, PRC87, 035803, etc.

Anderson-Bogoliubov mode: Collective excitation mode. Nambu-Goldstone mode associated with the gauge symmetry broken spontaneously by the pair condensate.

Anderson-Bogoliubov phonon as a new heat carrier.

- Superfluid phonon (Anderson-Bogoliubov mode) <u>coupled with</u> <u>nuclear excitation</u> (lattice phonon) is a new agent of heat carrier.
- Thermal conductivity by AB mode can be comparable to that by electrons under strong magnetic field, i.e. in magnetars.

www.mpq.univ-paris7.fr

Aguilera+, PRL102, 091191 Cirigliano+, PRC84, 045809 Chamel+, PRC87, 035803, etc.

Anderson-Bogoliubov mode: Collective excitation mode. Nambu-Goldstone mode associated with the gauge symmetry broken spontaneously by the pair condensate.

A limited number of microscopic calculations. Dynamics of inner crust is not well understood.

Motivation:

- Clarify dynamical properties of inner crust by microscopic calculation.
- (in near future, calculate thermal conductivity and so on.)

Method:

1D real-space HFB + QRPA.

- Spherical Wigner-Seitz cell with Neumann-Derichlet boundary condition.
- Temperature T = 0.
- Hartree-Fock-Bogoliubov (Bogoliubov-de Gennes) with Skyrme EDF.
- **Quasiparticle RPA** (linear response TDHFB) for **dipole mode** which is responsible for coupling of displacement motion and AB mode.
- Systematic studies with varying inner crust configurations.

A model inner crust and ground state

Spherical box with $R_{box} = 20$ fm Dirichlet-Neumann condition:

 $\mathbf{E} = \mathbf{0}$

Single particle energy

0

HF potential

10 12

Raidus [fm]

14

16

18 20

<u>Inputs</u>

- Proton number **Z**
- Neutron chemical potential λ_n (neutron density)

Excitation of inner crust

Transition density

Transition density

λ_n -dependence of AB mode

Coupling of AB mode & lattice phonon

λ_n -, Z-dependence of AB mode

<u>Summary</u>

Anderson-Bogoliubov mode (superfluid phonon) in inner crust of neutron stars, using the nuclear density functional theory, treating explicitly the presence of nuclear cluster, under the Wigner-Seitz approximation.

- AB mode appears in inner crust in low energy region below 2Δ .
- AB mode does not penetrate nuclear cluster.
- At high λ_n , AB mode looks to couple displacement motion.
- *Z* do not effect energy of AB mode.

Perspective

- Quantitative evaluation of AB mode lattice phonon coupling.
- Monopole mode, quadrupole mode.
- Impact on observables in neutron star cooling process.