iDFT @ Riken 23. Jun. 2017

Computational materials database toward discovering novel semiconductors

Yu Kumagai

MCES, Tokyo Institute of Technology PREST, JST

Why computational materials database?

① Screening of materials at an early stage

② Rediscovery of reported materials

•11 new compounds

We synthesized a new semiconductor CaZn₂N₂

- •2 theoretically reported
- •8 experimentally reported

Out of 4 had not been considered as semiconductors

Extract full potential of reported materials

Ca₂N:2-D electride

Lee et al., Nature (2013)

Hinuma, Hatakeyama, YK et al., Nat. Comm. (2016)

Why computational materials database?

Available databases

Curtarolo et al., Comp. Mat. Sci., 58, 218 (2012).

-0.8

Available databases

OQMD: The database now contains **471857** entries.

The Open Quantum Materials Database

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD), Saal, Wolverton, *et al.*, JOM 65, 1501 (2013).

Computational data repository

High Performance Computing Center Materials Database

CMDB from NREL group

Problems of existing databases for researching semiconductors

① Lack of physical properties (e.g., ionization potential, point-defect properties)

2 Lack of accuracy of some properties (e.g., crystal structures, band gaps)

We need a new computational materials database toward investigating/discovering novel semiconductors

Crystal structures in available databases

ex. 1) Materials Project

ex. 2) Layered materials: c-axis in SnS₂

exp.Materials
ProjectaflowOQMDNoMadNREL
MatDB5.90 Å6.986.676.23NA6.3

ex. 3)) Layered materials: c-axis in h-BN

exp.	Materials Project	aflow	OQMD	NoMad	NREL MatDB
6.661 Å	7.71	7.88	6.43 (LDA)	NA	7.6

Importance of reproducibility of structures

ex. 1) Electronic structure of SnS₂

ex. 2) Formation energy of interstitials in SnS₂

Structures are of crucially importance for semiconductor researches

PBEsol+U

Errors of interlayer distances in layered oxides

	PBE+U	PBEsol+U		
ME	5.9%	0.4%		
RMSE	5.5%	3.0%		

Hinuma, Hayashi, <u>YK</u>, Tanaka, Oba., submitted.

c-axis in SnS₂

c-axis in *h*-BN

exp.	Materials Project aflow my D		my DB	exp.	Materials Project	aflow	my DB	
5.90 Å	6.98	6.67	5.91	6.661 Å	7.71	7.88	6.69	

Flowchart

- 1. Remove entries with partial occupancies
- Search for symmetries and transform the unit cell based on crystallography★
- 3. Remove redundant structures \star
- 4. Remove entries with lanthanide and/or actinide elements
- 5. Remove entries containing more than 100 atoms
 - \rightarrow # of remaining entries: 46,969
- 6. Classify entries by space groups \star

Analysis of the structures

Acta Cryst. (1976). A32, 751

Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances

Flowchart

Applications related to band gaps

Solar cell

Lee, <u>YK</u>, Walsh, Oba, J. Mat. Chem. A (2017).

Transparent conductors

Nomura, et al., Nature (2004).

Power devices

non-selfconsistent (nsc) HSE06

nsc HSE06

Band gaps for wide gap materials

	PBE	nsc-HSE06	nsc-hybrid($\varepsilon_{\infty}^{ ext{PBE}- ext{RPA}}$)	nsc-hybrid($\varepsilon_{\infty}^{\mathrm{PBE0}}$)	GW_0 @PBE	Experiment
			:			
CdS	1.22	2.21	2.35	2.51	2.35	2.42
CdSe	0.57	1.46	1.39	1.57	1.60	1.73
CdTe	0.49	1.27	1.17	1.28	1.44	1.45
MAE	1.30	0.34	0.23	0.19	0.14	

Further properties…

• Dielectric constant

• Optical absorption

• Ionization potential

Automatic construction of surface models Hinuma, <u>YK</u>, Oba, Tanaka, Comput. Mater. Sci. (2016).

Point defects

Automatic construction of point defect calculations, <u>YK</u>, and Oba, in preparation

Summary

- Construction of computational materials database
- PBEsol+U functional works well for reproducing the experimental structures
- non-selfconsistent HSE06 works well for predicting the band gaps
- Further semiconductor properties will be calculated in the future
- Collaborators
 - Prof. Fumiyasu Oba
 - Prof. Yoyo Hinuma
- Financial support
 - MEXT Elements Strategy Initiative
 - Grants-in-Aid for Young Scientists APRESTO

Automatic construction of surface models

Molecular model approximation

YK, Butler, Walsh, Oba, Phys. Rev. B (2017)

Automation of point defect calculations

様々な欠陥モデルの計算 「「」」」 「」」」 「」」」 定孔 R子間 アンチサイト

<u>YK</u> et al., Phys. Rev. B (2014) *ibid* (2014), Phys. Rev. Appl. (2016)

フェルミ準位

