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Towards first-principle studies for industry
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102 atom

103 – 106 atom

Many applications done.

There are many successes 

even for material design.

DFT calculations of thousands atoms

is still a grand challenge.

O(N3)            Low-order
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Materials properties

Materials properties of actual materials are determined by intrinsic

properties and secondary properties arising from inhomogeneous 

structures such as grain size, grain boundary, impurity, and precipitation. 

 In use of actual materials, the materials properties can be maximized by 

carefully designing the crystal structure and higher order of structures . 

http://ev.nissan.co.jp/LEAF/P

ERFORMANCE/

e.g., the coercivity of a permanent magnet of 

Nd-Fe-B is determined by crystal structure, grain 

size, and grain boundary. 



Experimental analysis of inhomogeneous materials

e.g. Grain boundary of a Nd-Fe-B permanent magnet

Hono@NIMS

3D atom probeTEM

Around 

grain 

boundary



神威・太湖之光:  125 Peta flops machine

Sunway TaihuLight - Sunway 

MPP, Sunway SW26010 

260C 1.45GHz, Sunway

NRCPC Cores: 10,649,600

Rmax:  93,014,593.9 (GFLOP/sec.)

Pmax: 125,435,904 (GFLOPS/sec.)  



Top 500
http://www.top500.org/

According to Moore’s law…

2036

1 Zeta Flops (Zeta = 1021)



How large systems can be treated by Zeta machines?

Sunway TaihuLight 1 Z Flops machine

0.1 Exa FLOPS 1000 Exa FLOPS

The performance increase is 10,000 times. 

Computational 

Scaling O(Np)
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The applicability of the O(N3) DFT method is extended to 

only 22 times larger systems.



Linear scaling methods



Density functional theory

W.Kohn (1923-)

The energy of non-degenerate ground state can be expressed by 

a functional of electron density. (Hohenberg and Kohn, 1964)

The many body problem of the ground state can be reduced 

to an one-particle problem with an effective potential. 

(Kohn-Sham, 1965)



3D coupled non-linear differential equations have to be 

solved self-consistently.

Mathematical structure of KS eq.

Input charge = Output charge → Self-consistent condition

O(N3)

O(Nlog(N))



Localized vs. Delocalized

vs. 

Localized Delocalized

Is it possible to develop efficient DFT methods by making 

full use of the locality in the quantum physics ? 



Locality of Wannier functions

O-2px in PbTiO3
An orbital in Aluminum

Exponential decay

Decay almost follows a power low 

J.Battacharjee and U.W.Waghmare, PRB 73, 121102 (2006)



Locality of density matrix

Finite gap systems

exponential decay

Metals

T=0 power law decay

0<T exponential decay

D.R.Bowler et al., 

Modell.Siml.Mater.Sci.Eng.5, 199 (1997)



Keys to large-scale DFT calculations

The locality of two quantities may lead to development of 

efficient large-scale electronic structure methods. 

Basis function

Density matrix: ρ

Finite gap systems  ΔE≠0         ρ ∝ exp(-αr)

Metals                     ΔE = 0       ρ ∝ r-αp for T= 0 

ρ ∝ exp(-αr)     for 0<T
Ismail-Beigi and Arias, PRL 82, 2127 (1999).

Goededecker, PRB 58, 3501 (1998).



Density functionals as a functional of ρ

Density functionals can be rewritten by the first order reduced density matrix: ρ

where the electron density is given by ρ



Two routes towards O(N) DFT

Conventional 

representation

Density matrix

representation

Wannier function

representation

ψ: KS orbital

ρ: density

φ: Wannier function

n: density matrix



Various linear scaling methods

Wannier functions (WF)

Density matrix (DM)

Variational (V)

Perturbative (P)

At least four kinds of linear-scaling methods can be 

considered as follows:

DM+PDM+V

Orbital 

minimization 
by Galli, Parrinello, 

and Ordejon

Hoshi

Mostofi
Density matrix
by Li and Daw

Krylov subspace
Divide-conquer

Recursion

Fermi operator

WF+V WF+P



O(N) DFT codes

OpenMX: (Krylov)  Ozaki (U. of Tokyo) et al.

Conquest: (DM)  Bowler(London), Gillan(London), 

Miyazaki (NIMS)

Siesta: (OM)  Ordejon et al.(Spain)              

ONETEP: (DM) Hayne et al.(Imperial)

FEMTECK: (OM) Tsuchida (AIST)

FreeON: (DM) Challacombe et al.(Minnesota)



O(N) DFT method in OpenMX

1. Variationally optimized local orbitals

2. O(N) Krylov subspace method for diagonalization

• Reasonably accurate with relatively small # of functions

• O(N) non-zero matrix elements

• High compatibility with O(N) methods

• Numerically very robust

• Applicable to insulators and metals

• Suitable for parallel computation
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One-particle KS orbital

is expressed by a linear combination of atomic like orbitals in the method.

Features:

• It is easy to interpret physical and chemical meanings, since the KS 

orbitals are expressed by the atomic like basis functions.

• It gives rapid convergent results with respect to basis functions due to 

physical origin

• The memory and computational effort for calculation of matrix elements 

are O(N).

• It well matches the idea of linear scaling methods.

LCPAO method
(Linear-Combination of Pseudo Atomic Orbital Method)



Variational optimization of basis functions

One-particle wave functions Contracted orbitals

The variation of E with respect to c with fixed a gives

Regarding c as dependent variables on a and assuming KS

eq. is solved self-consistently with respect to c, we have 

Ozaki, PRB 67, 155108 (2003)

→



Comparison between primitive and optimized basis functions

Ozaki, PRB 67, 155108 (2003).



Science 351, aad3000 (2016)

Reproducibility in DFT calcs

15 codes

69 researchers

71 elemental bulks

GGA-PBE

Scalar relativistic



Comparison of codes by Δ-gauge

The mean Δ-gauge of OpenMX is 2.0meV/atom.



O(N) DFT method in OpenMX

1. Variationally optimized local orbitals

2. O(N) Krylov subspace method for diagonalization
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• O(N) non-zero matrix elements

• High compatibility with O(N) methods
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• Suitable for parallel computation



Basic idea behind the O(N) method

Assumption

Local electronic structure of each atom is mainly determined 

by neighboring atomic arrangement producing chemical 

environment.



Convergence by the DC method

Insulators, semi-conductors

Just solve the truncated clusters → Divide-Conquer method

W.Yang, PRL 66, 1438 (1991)

Metals

For metals, a large cluster size is required for the convergence.

→ Difficult for direct application of the DC method for metals



TO, PRB 74, 245101 (2006)

O(N) Krylov subspace method

Two step mapping of the whole Hilbert space into subspaces



Development of Krylov subspace vectors

|K0> |K1> |K5>

The Krylov vector is generated by a multiplication of H by |K>, 

and the development of the Krylov subspace vectors can be 

understood as hopping process of electron. 

The information on environment can be included from near sites 

step by step, resulting in reduction of the dimension.



Generation of Krylov subspaces

The ingredients of generation of Krylov subspaces is 

to multiply |Wn) by S-1H. The other things are made only 

for stabilization of the calculation.

Furthermore, in order to assure the S-orthonormality of the 

Krylov subspace vectors, an orthogonal transformation is 

performed by 

For numerical stability, it is crucial to generate 

the Krylov subspace at the first SCF step.



Embedded cluster problem

Taking the Krylov subspace representation, the cluster eigenvalue

problem is transformed to a standard eigenvalue problem as:

where HK consists of the short and long range contributions.

updated fixed

Green:   core region

Yellow: buffer region

• The embedded cluster is under the Coulomb interaction from the other parts.

• The charge flow from one embedded cluster to the others is allowed.



Relation between the Krylov subspace 

and Green’s funtion

A Krylov subspace is defined by

A set of q-th Krylov vectors contains up to information of (2q+1)th moments.

Definition of moments

The moment representation of G(Z) gives us the relation. 

One-to-one correspondence between the dimension of Krylov subspace 

and the order of moments can be found from above consideration.



Convergence property

The accuracy and efficiency can be controlled by the size of 

truncated cluster and dimension of Krylov subspace.

In general, the convergence property is more complicated.

See PRB 74, 245101 (2006).



Comparison of computational time

Carbon diamond

The computational time of calculation for each cluster does not depend

on the system size. Thus, the computational time is O(N) in principle. 



Parallelization

How one can partition atoms to minimize 

communication and memory usage?

Requirement: 

• Locality

• Same computational 

cost

• Applicable to any 

systems

• Small computational 

overhead

T.V.T. Duy and T. Ozaki, CPC 185, 777 (2014).

Recursive atomic 

partitioning



Modified recursive bisection

If the number of MPI processes is 19, then the following binary 

tree structure is constructed. 

In the conventional recursive bisection, the bisection is made so that 

a same number can be assigned to each region. However, the 

modified version bisects with weights as shown above.



Reordering of atoms by an inertia tensor



Diamond 16384 atoms, 19 processes

Allocation of atoms to processes

Multiply connected CNT, 16 processes



Parallel efficiency on K

The parallel efficiency is 68 % using 131,072 cores.

Diamond structure consisting 

of 131,072 atoms



Applications of the O(N) method

1. Interface structure between BCC Iron and carbides

2. Desolvation of Li+

3. Electronic transport of graphene nanoribbon

H. Sawada et al., Modelling Simul. Mater. Sci. Eng. 21, 045012 (2013).

T. Ohwaki et al., J. Chem. Phys. 136, 134101 (2012).

T. Ohwaki et al., J. Chem. Phys. 140, 244105 (2014).

M. Ohfuchi et al.,  Appl. Phys. Express 7, 025101 (2014).

H Jippo, T Ozaki, S Okada, M Ohfuchi, J. Appl. Phys. 120, 154301 (2016).



Coherent

precipitation

Semicoherent

precipitation

Incoherent

precipitation

Precipitation in bcc-Fe

Precipitating materials:

TiC, VC, NbC

In collaboration wit Dr. Sawada (Nippon Steel)

Pure iron is too soft as structural 

material. Precipitation of carbide 

can be used to control the hardness 

of iron.  
HRTEM image
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TiC precipitate steel

3D atom 

probe image

Resistance force and precipitate diameter
Y. Kobayashi, J. Takahashi and K. Kawakami, Scripta Mater. 67 (2012) 854

Diameter of precipitates R (nm)



Expt.

2.2nm

Crossover from coherent to semi-coherent

H. Sawada et al., Modelling Simul. Mater. Sci. 

Eng. 21, 045012 (2013).



Numerically exact 

low-order scaling 

method



Main difficulty: ‘diagonalization’

O(N3) method - Numerically exact diagonalization

Householder+QR method

Conjugate gradient (CG) method

Davidson method
Even if basis functions are localized in real space, Gram-Shmidt (GS) type method is needed to 

satisfy orthonormality among eigenstates, which results in O(N3) for the computational time. 

O(N) method - can be achieved in exchange for accuracy.

O(N) Krylov subspace method, 

DC, DM, OM methods, etc..

O(N2~) method

Is it possible to develop O(N2~) methods without     

introducing approximations? → No more GS process.



Possible ways to avoid orthogonalization

1. Green’s function method 

2. Density matrix method 

3. Iterative method 

LNV, PRB 47, 10891 (1993)



Numerically exact low-order scaling method

 Numerically exact

 Applicable to insulators and metals

 Suitable for parallel computation

 Applicable to 1D, 2D, 3D systems

 Applicable to any local basis functions  

TO, PRB 82, 075131 (2010)



Numerically exact low-order scaling method

1. Direct evaluation of the selected elements of ρ via a 

contour integration of the Green’s function

2. Nested dissection of sparse matrix

TO, PRB 82, 075131 (2010)



Continued fraction rep. of Fermi function

TO, PBR 75, 035123 (2007)



Contour integration

All the poles are located 

on the imaginary axis.

The form has a special pole structure, 

that is, the interval between neighboring 

poles increases in a faraway region from 

the real axis,  which is very  

advantageous for the contour integration 

of Green’s function.

Continued fraction



Convergence of ρ w.r.t.  poles

The calculation of ρ can be expressed by a contour integration: 

The analysis shows that the number of poles for each eigenstate for a sufficient 

convergence does not depend on the size of system if the spectrum radius does not 

change. → The scaling property is governed by the calculation of G. 

Lehmann rep.



Convergence property of the contour integration

Total energy of aluminum as a function of the number of poles 

by a recursion method at 600 K. 

The energy completely 

converges using only 80 

poles within double 

precision.

Nicholson et al., PRB 50, 

14686  (1994).



How can Green’s funtion be evaluated ?

・ The Green’s function is the inverse of a sparse matrix (ZS-H).  

・ Selected elements of G(Z), which correspond to non-zero elements

of the overlap matrix S, are needed to calculate physical properties. 

1. Nested dissection of (ZS-H)

2. LDLT decomposition for the structured matrix

→ a set of recurrence relations 

Our idea

TO, PRB 82, 075131 (2010)



Nested dissection of a sparse matrix
George, SIAM J. Numer. Anal. 10, 345 (1973).

The hierarchical structure of 

interactions of domains.
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Nested dissection of a sparse matrix
George, SIAM J. Numer. Anal. 10, 345 (1973).

The hierarchical structure of 

interactions of domains.



Nested dissection of a sparse matrix

(i) Ordering:

(iv) Growth of the nucleus:

(ii) Screening:

(iii) Finding of a starting nucleus:

The basis functions are ordered by coordinates along each direction.

The basis functions with a long tail are assigned as part of the separator. 

Find a basis function having the smallest number of  nonzero overlaps.

Minimize |N0-N1| + Ns by the growth of the 

nucleus.

Find a direction with the smallest  |N0-N1| + Ns,, make the dissection along the 

direction.

N0: # of bases in domain 0 

N1: # of bases in domain 1

Ns: # of bases in separator

(v) Dissection:

The processes (i)-(v) are recursively applied to each domains with 

computational cost of O(N(log2N)2) in total.



Square lattice for the nested dissection



Inverse by LDLT block factorization

A matrix X can be factorized using a Schur complement into a LDLT form.

Then, the inverse of X is given by 



Analysis of the computational cost

1D    O(N(log2N)2)

2D    O(N2)

3D    O(N7/3)

→ O(N7/3)



Timing result

1D

2D

3D

For the inverse calculation of 

model TB hamiltonians 



SCF convergence

Conventional  -4130.938589871644
New method   -4130.938589871899

Total energy (Hartree)

DNA, 650 atoms

700K, 80 poles



Parallel efficiency

1 SCF on Cray-XT5



O(N) nearly exact 

exchange functional



Exchange as density matrix functional

Hartree-Fock exchange

Exchange hole

• Exponential decay at finite temperature

• Sum rule: integration of ρx over space is -1

• Negativity



O(N) computation of exact exchange

Accuracy:       Comparable to OEP

Self-Int.:      Nearly Self-Int. free

Asymptotic exchange potential:               -1/r 

Cost(local basis):                                     O(N)

Thus, it may be possible to estimate the long range exchange 

hole by making use of the sum rule and the decaying property 

of exchange hole.   → The long range exchange hole is replaced 

by a model hole. 

Feature

M. Toyoda and T. Ozaki, PRA, 83, 032515 (2011).



Range-separation of exchange hole

0th moment:      Sum rule for the short-range part.

1st moment:  Exchange potential for the short range part.

where a and b are determined by matching the 0th and 1st moments.

The model long range hole we used is the hole of hydrogenic atom.

Exchange

hole

distance

The long range behavior can be 

easily estimated by referring the 

short range part.

The short range part is 

exactly calculated.
The long range part is 

approximately calculated.



Self-consistent field equation

Ours

The variational eq. can be analytically derived. 
→ The SCF calc. and calculation of forces are possible.

Total energy of rare gases

Screening length

5.3Å 2.6Å 1.8Å

The accuracy is comparable to OEP.



Exchange potential

He atom

The asymptotic behavior is 

correctly reproduced. 

Ours



• Software package for density functional calculations of molecules and bulks

• Norm-conserving pseudopotentials (PPs)

• Variationally optimized numerical atomic basis functions

• SCF calc. by LDA, GGA, DFT+U

• Total energy and forces on atoms

• Band dispersion and density of states

• Geometry optimization by BFGS, RF, EF

• Charge analysis by Mullken, Voronoi, ESP

• Molecular dynamics with NEV and NVT ensembles

• Charge doping 

• Fermi surface

• Analysis of charge, spin, potentials by cube files

• Database of optimized PPs and basis funcitons

• O(N) and low-order scaling diagonalization

• Non-collinear DFT for non-collinear magnetism

• Spin-orbit coupling included self-consistently

• Electronic transport by non-equilibrium Green function

• Electronic polarization by the Berry phase formalism

• Maximally localized Wannier functions

• Effective screening medium method for biased system

• Reaction path search by the NEB method

• Band unfolding method

• STM image by the Tersoff-Hamann method

• etc.

OpenMX Open source package for Material eXplorer

Basic functionalities Extensions

http://www.openmx-square.org



Outlook

The locality of density matrix and basis function is a key 

to develop a wide variety of efficient electronic structure 

methods. 

We have demonstrated three methods: 

• O(N) Krylov subspace method 

• Low-order scaling exact method

• O(N) exact exchange method

Plenty of developments of new efficient methods might be still 

possible. 


