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A. What	is	density functional	theory?
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The electronic structure problem

• Use atomic units
• Born-Oppenheimer 

approximation
• Wavefunctions

antisymmetric and 
normalized

• Only discuss ground-
state electronic 
problem here, but 
many variations.

• All non-relativistic, 
non-magnetic here

Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):
Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = ≠1
2

Nÿ

i=1
Ò2

i
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1
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and di�erence between systems is N and the one-body potential

V̂ =
Nÿ

i=1
v(r

i

)

Often v(r) is electron-nucleus attraction

v(r) = ≠
ÿ

–

Z–

|r ≠ R–|

where – runs over all nuclei, plus weak applied E and B fields.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 7 / 39

June	20,	22017 iDFT,	RIKEN 5

Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ } = E  ,  antisym

The one-particle density is much simpler than  :

n(r) = N
ÿ

‡1

. . .
ÿ

‡
N

⁄
d3r2 . . . d3r

N

| (r‡1, r2‡2, . . . , r

N

‡
N

)|2

and n(r) d3r gives probability of finding any electron in d3r around r.
Wavefunction variational principle:

I E [ ] © È |Ĥ| Í is a functional
I Extrema of E [ ] are stationary states, and ground-state energy is

E = min
 

È |T̂ + V̂ee + V̂ | Í

where  is normalized and antisym.
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Thomas/Fermi Theory 1927
• Derived in 1926 without Schrodinger eqn.

• Thomas-Fermi Theory (TF):
– T ≈ TTF

– Vee≈ U = Hartree energy
– V = ∫dr r (r) v(r)
– E0 = T + Vee + V
– Minimize E0[n]  for fixed N

• Properties:
– Typical error of order 10%
– Teller’s unbinding theorem:  Molecules don’t bind.
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Ts
loc =

3(3π )2/3

10
d3r n5/3(r)∫

U =
1
2

d3r∫ d3r ' n(r)n(r ')
| r − r ' |∫



Constrained search proofHohenberg-Kohn theorem (1964)

1 Rewrite variational principle (Levy 79):

E = min
 

È |T̂ + V̂ee + V̂ | Í

= min
n

;
F [n] +

⁄
d3r v(r)n(r)

<

where

F [n] = min
 æn

È |T̂ + V̂ee| Í

I The minimum is taken over all positive n(r) such that
s

d3r n(r) = N
2 The external potential v(r) and the hamiltonian Ĥ are determined to

within an additive constant by n(r)

P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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KS equations (1965)
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„
j

(r) = ‘
j

„
j

(r),
Nÿ

j=1
|„

j

(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d3r n(rÕ)

|r ≠ r

Õ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 14 / 39

KS potential of He atom
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Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a

Accurate exchange-correlation

potentials and total-energy components for

the helium isoelectronic series, C. J.
Umrigar and X. Gonze, Phys. Rev. A 50,
3827 (1994).
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Today’s commonly-used functionals
• Local density approximation (LDA)

– Uses only n(r) at a point.

• Generalized gradient approx (GGA) 
– Uses both n(r) and |Ñn(r)|
– Should be more accurate, corrects overbinding of LDA
– Examples are PBE and BLYP

• Hybrid:
– Mixes some fraction of HF
– Examples are B3LYP and PBE0 
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A few recent applications

• Computers, codes, algorithms always improving
• Making bona fide predictions
• E.g., a new better catalyst for Haber-Bosch process 

(‘fixing’ ammonia from air) was predicted after 
about 25,000 failed experiments (Jens Norskov’s
group)

• Now scanning chemical and materials spaces using 
big data methods for materials design (materials 
genome project).

• World’s hottest superconductor (203K) is hydrogen 
sulfide, predicted by DFT calculations, then made.
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Perdew’s systematic approach to XC

Jacob’s ladder

to DFT heaven
(or hell?)

Increasingly sophisticated
and expensive density
functional
approximations.

EXC =
⁄

d3r f (n, Òn, ·, . . .)

JCTC 2009 Vol. 5, Iss. 4.

Kieron (UC Irvine) Basics of DFT CAMD12 62 / 66
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• Idea:  Successively 
refine 
approximations

• Use exact conditions
• Avoid fitting of 

parameters to data 
sets

• Each rung is more 
sophisticated, but 
costs more



Condensed	
matter	physics

Big picture
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TF	theory
Lieb et	al
Atoms

Non-empirical
use	of	QM;
Perdew

Empiricism
Becke,	TruhlarExact	

conditions	
Perdew,	Levy

Modern	DFT
Kohn-Sham	
EXC[n↑,n↓]

Materials	
science

Astrophysics,	
protein	folding,	
soil	science,…



DFT papers
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DFT:	A	Theory	Full	of	Holes,		Aurora	Pribram-Jones,	David	A.	Gross,	Kieron	Burke,	
Annual	Review	of	Physical	Chemistry	(2014).
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In reality…
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Several DFT approaches to excited states

• Most popular: linear response TDDFT

• Ensemble DFT for ensembles of ground and 
excited states

• Delta SCF

• Min-max principle

June	20,	22017 iDFT,	RIKEN 15



Excitations from a `new’ ensemble
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excitation energy [24, 25]. Thus the DEC of Eq. (8)
can be viewed as a generalization of such results to an
arbitrary excitation.
The exact EGOKII

XC
of Eq. (8) can be obtained numeri-

cally for simple cases [24, 25], but in practical calculations
EGOKII

XC
must be approximated. In general, the EGOKII

XC

of Eq. (8) must account for the state ordering and dif-
ferences in multiplet structure between the real and KS
systems, which poses a challenge for the development of
approximations.
SEHX is an explicit orbital-dependent ensemble-

density functional analogous to the exact-exchange ap-
proximation (EXX) of ground-state DFT. The full ex-
pression [24, 25] is long, and given in the supplemen-
tal material [26]. In the GOK ensemble, SEHX removes
ghost interactions to yield accurate excitation energies
[19]. Inserting SEHX into Eq. (8), all the contributions
from excitations below I cancel, yielding an approxima-
tion that depends only on a difference between a contri-
bution from the I-th multiplet and the ground state:

∆ωSEHX
I = HI/gI −H0/g0. (9)

Here Hi = Horb
i

+Hdens
i

, where

Horb
i =

1

2

∫

d3rd3r′

|r− r′|
tr {U(r, r′) ·Bi +V(r, r′) ·Di} ,

(10)
and

Hdens
i = −

∫

d3r vHX(r)ni(r). (11)

Here U and V are matrices constructed from KS orbital
densities, while Bi and Di are matrices formed from the
expression of the spin-symmetric KS eigenfunctions in
terms of Slater determinants, as given in the supple-
mental material, while vHX(r) is just the ground-state
Hartree-exchange potential. We denote calculations with
Eq. (9) as DEC/SEHX. Unlike Eq. (8), Eq. (9) depends
only on the ground and excited states in question, so
the state ordering problem is bypassed and calculation is
highly efficient. The ordering-independency of Eq. (9)
is due to SEHX, yielding reasonable excitation energies
even if the KS state ordering is different from the real
one. On the other hand, the approximate state ordering
might not be correct.
To illustrate the performance of DEC/SEHX, we cal-

culated excitation energies of small atoms. To see exclu-
sively the effect of the excitation method [28], we use the
exact KS potential and energies for the He and Be atoms
[29, 30]. We compare with TDDFT using the adiabatic
local density approximation (ALDA) [9]. For simplicity,
we use the Tamm-Dancoff approximation (TDA) [31] in
TDDFT calculations, and we checked to make sure that
the results only change slightly with and without TDA.
The results are shown in Figs. 1 and 2. More results for
atoms are available in the supplemental material [26].
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FIG. 1. Exact KS and true excitations of the He atom
(black). Experimental values from the NIST atomic spec-
tra database [32, 33]. DEC/SEHX excitation energies in red
and TDDFT/ALDA results within TDA in blue.
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FIG. 2. Same as Fig. 1, but for Be[32, 34]. Configurations
denoted without core. The 2p2 configuration corresponds to
two doubly-excited states (33P and 11D).

Figure 1 shows the He results. These are all single exci-
tations (as all doubles in He are in the continuum). The
DEC/SEHX gives results that are qualitatively similar
to those of standard TDDFT. In fact, the mean absolute
errors are typically about 30% smaller, despite the lack
of approximate correlation in the DEC calculation.
Figure 2 shows the results for Be, again with the ex-

act KS potential. For single excitations, the results are
quantitatively similar to those of He, again with DEC er-

[B180]	Direct	extraction	of	excitation	energies	from	ensemble	density-functional	
theory Zeng-hui	Yang,	Aurora	Pribram-Jones,	Kieron	Burke,	Carsten	A.	
Ullrich, Submitted (2017).
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Thermal DFT

• Created by Mermin, 1966.
• Can do constrained search over free energy to 

fiind equilibrium density at non-zero 
temperature

• Huge, rapid development for use in warm 
dense matter over the last 2 decades, such as 
modelling inertial confinement fusion.
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Simplest possible model?
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Maybe	
should	be	
called:		The	
many-body	
theorists	
companion	
to	DFT

Justin	Smith

Jaime	Ferrer (Oviedo)

Diego	Carrascal (Oviedo)
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1. Introduction

In condensed matter, the world of electronic structure theory 
can be divided into two camps: the weakly and the strongly 
correlated. Weakly correlated solids are almost always 
treated with density-functional methods as a starting point 
for ground-state properties [28, 31, 36, 49, 110]. Many-body 
(MB) approximations such as GW might then be applied to 

find properties of the quasi-particle spectrum, such as the gap 
[14, 182, 228]. This approach is ‘first-principles’, in the sense 
that it uses the real-space Hamiltonian for the electrons in 
the field of the nuclei, and produces a converged result that 
is independent of the basis set, once a sufficiently large basis 
set is used. Density functional theory (DFT) is known to be 
exact in principle, but the usual approximations often fail 
when correlations become strong [44].

The Hubbard dimer: a density functional 
case study of a many-body problem

D J Carrascal1,2, J Ferrer1,2, J C Smith3 and K Burke3

1 Department of Physics, Universidad de Oviedo, 33007 Oviedo, Spain
2 Nanomaterials and Nanotechnology Research Center, Oviedo, Spain
3 Departments of Chemistry and of Physics, University of California, Irvine, CA 92697, USA

E-mail: dj.carrascal@gmail.com

Received 9 April 2015, revised 24 July 2015
Accepted for publication 4 August 2015
Published 17 September 2015

Abstract
This review explains the relationship between density functional theory and strongly 
correlated models using the simplest possible example, the two-site Hubbard model. The 
relationship to traditional quantum chemistry is included. Even in this elementary example, 
where the exact ground-state energy and site occupations can be found analytically, there is 
much to be explained in terms of the underlying logic and aims of density functional theory. 
Although the usual solution is analytic, the density functional is given only implicitly. We 
overcome this difficulty using the Levy–Lieb construction to create a parametrization of the 
exact function with negligible errors. The symmetric case is most commonly studied, but 
we find a rich variation in behavior by including asymmetry, as strong correlation physics 
vies with charge-transfer effects. We explore the behavior of the gap and the many-body 
Green’s function, demonstrating the ‘failure’ of the Kohn–Sham (KS) method to reproduce 
the fundamental gap. We perform benchmark calculations of the occupation and components 
of the KS potentials, the correlation kinetic energies, and the adiabatic connection. We test 
several approximate functionals (restricted and unrestricted Hartree–Fock and Bethe ansatz 
local density approximation) to show their successes and limitations. We also discuss and 
illustrate the concept of the derivative discontinuity. Useful appendices include analytic 
expressions for density functional energy components, several limits of the exact functional 
(weak- and strong-coupling, symmetric and asymmetric), various adiabatic connection results, 
proofs of exact conditions for this model, and the origin of the Hubbard model from a minimal 
basis model for stretched H2.

Keywords: density functional theory, Hubbard model, strongly correlated electron systems

(Some figures may appear in colour only in the online journal)

Topical Review

IOP

0953-8984/15/393001+34$33.00

doi:10.1088/0953-8984/27/39/393001J. Phys.: Condens. Matter 27 (2015) 393001 (34pp)



Orbital-free DFT

• An old dream of DFT
• Since Ts[n] is also a density functional, if we 

knew it well-enough, we would not need to 
solve KS equations.

• Make everything much faster 
• TF is this kind of theory
• No-one has found a universal approximation 

sufficiently accurate for this purpose.
• Most modern research focuses on XC
• Thermal DFT at higher temperature uses TF
June	20,	22017 iDFT,	RIKEN 19



B. Exact	conditions	in	DFT

• Used to constrain good-quality approximations
• Some of the most powerful are very simple to 

deduce.
• See Mel Levy’s talk:

June	20,	22017 iDFT,	RIKEN 20



Kohn-Sham elementary facts
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Kohn-Sham elementary facts

T and V
ee

are both positive, trying to rip system apart, but overcome
by more negative V .
Kinetic energies are positive, and T > TS by definition.
U is positive and dominates the electron-electron repulsion.
EX only has contributions from same-spin electrons and is negative.
This part is given exactly by a HF calculation.
The electron-electron repulsion of the KS wavefunction is just

È�[n]|V̂
ee

|�[n]Í = U[n] + EX[n]

EC contains both kinetic and potential contributions:

EC = È [n]|T̂ + V̂
ee

| [n]Í ≠ È�[n]|T̂ + V̂
ee

|�[n]Í
= (T ≠ TS) + (V

ee

≠ U ≠ EX) = TC + UC

Kieron (UC Irvine) Basics of DFT SanSeb10 16 / 36



Uniform coordinate scalingUniform coordinate scaling

Figure: A one-dimensional density (blue) being squeezed by “ = 2 (red)

A very handy way to study density functionals, especially in limits:
n“(r) = “3 n(“r), 0 Æ “ Æ Œ

I For “ > 1, squeezes up the density, preserving norm; for “ < 1,
stretches it out.

Exchange: Require EX[n“ ] = “ EX[n]
Correlation: EC[n“ ] = B[n] + C [n]/“ + ... for high density limit of
finite systems. (Violated by LDA!)
Kieron (UC Irvine) Basics of DFT SanSeb10 31 / 36June	20,	22017 iDFT,	RIKEN 22

[172]	Exact	conditions	on	the	temperature	dependence	of	density	functionals
Kieron	Burke,	Justin	Smith,	Paul	E.	Grabowski,	Aurora	Pribram-Jones,	Phys Rev	B 93,	
195132	(2016)



C. Very	fundamental
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• In any event, the result is extraordinarily powerful, for it 
enables us to calculate (approximate) allowed energies 
without ever solving the Schrödinger equation, by 
simply evaluating one integral. The wave function itself 
has dropped out of sight. 

• Griffiths, Quantum Mechanics, about semiclassical approximations. 



Original KS idea: Simple metals
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v(x) v(x)v(x)

µ

v(x)

v(x) v(x)v(x)

n(x)

WKB	for	one	level=>sum	over	many=>TF	theory
Corrections	to	WKB	=>	sum	over	many	=>	gradient	expansion		
As	Ћ ->	0,	TF	becomes	relatively	exact	(asymptotic	expansion)



v(x)

Chemistry and most materials

June	20,	22017 iDFT,	RIKEN 25

• TF	theory	STILL	relatively	exact	in	limit	Ћ ->	0.
• Leading	corrections	come	from	turning	points,	yielding	quantum	

oscillations.

µ

v(x)

n(x)



Lieb-Simon limit

Outline Density functional theory Semiclassical analysis of DFT Toy model: SNIFs Closing

Semiclassical analysis and density functional theory

Consider scaling to continuum limit:

v ⇣(r) = ⇣1+1/d v(⇣1/d r) , N ! ⇣N.

where d is spatial dimension.

Lieb and Simon (1973) proved that Thomas-Fermi theory is
relatively exact as ⇣ ! 1, i.e.,

ETF � E0

E0
! 0

Equivalent to changing Z = N for neutral atoms.

Schwinger and Englert showed LDA exchange is relatively
exact for atoms as Z ! 1

8 / 19June	20,	22017 iDFT,	RIKEN 26



KS version of Lieb-Simon statement

Outline Density functional theory Semiclassical analysis of DFT Toy model: SNIFs Closing

Conjecture on KS-DFT Exc

Almost certain that

ELDA
xc is relatively exact in the ⇣ ! 1 limit

lim
⇣!1

�ELDA

xc

EXC

=
ELDA

xc � Exc

EXC

= 0

Kieron’s instinct:

Success of simple local-type approximations is because they
are crude attempts to capture leading corrections to
asymptotic limit (LDA)

9 / 19
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[173]	Locality	of	correlation	in	density	functional	theory Kieron Burke,	Antonio	
Cancio,	Tim	Gould,	Stefano	Pittalis,	The	Journal	of	Chemical	Physics	145,	054112	
(2016).



Motivation

• Local density approximation is semiclassical
limit of all systems

• What are leading corrections in an expansion in 
hbar?

• Are these approximated by our GGA’s, and is 
this why GGA’s work?

• Gradient expansion of slowly-varying gas 
(discussed in HK and KS papers) is violated by 
most real systems, even metals.
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Early work
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Hydrogenic atoms

• Consider many same-spin `electrons’ in a -1/r 
potential

• Still fermions, satisfying exclusion principle
• Occupy 1s, 2s and 2p, 3s, 3p, 3d, etc.
• Kinetic energy = - total energy (virial theorem)
• T = -(1+1/4+1/4+1/4+…)/2
• Example of Ts[v].
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Little math exercise

Mar	4,	2015 MPI	Halle 31

• Given a sequence: ai
– ai=1, ¼, ¼, ¼, ¼, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/16,…

• Find partial sums of N terms SN:
– SN   = Σ ai
– SN = 1,1.25,1.5,1.75,2,2.11111,2.2222,2.33333,…



Exact partial sums up to 10

 0

 1

 2

 3

 0  1  2  3  4  5  6  7  8  9  10

S N

N

exact
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Exact partial sums up to 300
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 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250  300

S N

N

exact



Expand for large N

• SN = B0(N) + B1(N) + B2(N)+…

• Find B0(N) = (3N)1/3

• Find B1(N) = -1/2

• …

Mar	4,	2015 MPI	Halle 34



Leading large-N behavior
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 0
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 10

 0  50  100  150  200  250  300

S N

N

exact
B0(N)



Leading plus first correction up to 300
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N
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B0(N)
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Leading plus first correction up to 4

Mar	4,	2015 MPI	Halle 37

 0

 1

 2

 0  1  2  3  4

S N

N

exact
B0(N)
B1(N)



Include 2nd correction up to 3
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 0

 1

 2

 0  1  2  3

S N

N

exact
B0(N)
B1(N)
B2(N)



Include 2nd correction up to 1
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-0.2
 0
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 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

S N

N

exact
B0(N)
B1(N)
B2(N)



Results for expansion

• Performed expansion for N->infinity.
• For N=1:

– S1=1
– B0=1.442249570
– B0+B1=0.9422495703
– B0+B1+B2=1.000029677

• TF theory yields B0; first correction is Scott 
term

• No existing approximate density functional 
gets this and the slowly-varying gas right.
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A new continuum

• Consider some simple problem, e.g., harmonic 
oscillator.

• Find ground-state for one particle in well.
• Add a second particle in first excited state, but 

divide ħ by 2, and resulting density by 2.
• Add another in next state, and divide ħ by 3, 

and density by 3
• …
• →∞

Jan	24,	2011 BIRS 41



Continuum limit

Jan	24,	2011 BIRS 42

Leading	corrections	to	local	
approximations Attila	Cangi,	
Donghyung Lee,	Peter	Elliott,	
and	Kieron	Burke,	Phys.	Rev.	
B	81,	235128 (2010).

Attila	Cangi



Getting to real systems

• Include real turning points and evanescent 
regions, using Langer uniformization

• Consider spherical systems with Coulombic
potentials (Langer modification)

• Develop methodology to numerically calculate 
corrections for arbitrary 3d arrangements

Jan	24,	2011 BIRS 43



Classical limit for neutral atoms

• For interacting 
systems in 3d, 
increasing Z in 
an atom, 
keeping it 
neutral, 
approaches the 
classical 
continuum, ie
same as ħ→0	
(Lieb 81)

Jan	24,	2011 BIRS 44

[158]	Atomic	correlation	energies	and	the	generalized	gradient	approximation,	
Kieron	Burke,	Antonio	Cancio,	Tim	Gould,	Stefano	Pittalis,	submitted	and	
ArXiv:1409.4834	(2014)



What about energy differences?

• wikipedia
May	23,	2012 IPAM 45



Z→∞	limit	of	ionization	potential
• Shows even energy 

differences can be 
found

• Looks like LDA exact 
for EX as Z-> ∞.

• Looks	like	finite	EC
corrections

• Looks	like	extended	TF	
(treated	as	a	potential	
functional)	gives	some	sort	
of	average.

• Lucian Constantin, John 
Snyder, JP Perdew, and 
KB, JCP (2010).
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Ionization density for large Z
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Ionization density as Z→∞
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Leading corrections to n[v](r)
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Corrections to Thomas-Fermi densities at turning points and beyond

Raphael F. Ribeiro,1 Donghyung Lee,2 Attila Cangi,3 Peter Elliott,3 and Kieron Burke1

1Department of Chemistry, University of California, Irvine, CA 92697
2Samsung SDI Inc., SMRC, Samsung-ro 130, Yeongtong-gu,

Suwon-si, Gyeonggi-do, Republic of Korea, 443-803
3Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale),Germany
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Uniform semiclassical approximations for the number and kinetic-energy densities are derived for
many non-interacting fermions in one-dimensional potentials with two turning points. The resulting
simple, closed-form expressions contain the leading corrections to Thomas-Fermi theory, involve
neither sums nor derivatives, are spatially uniform approximations, and are exceedingly accurate.

PACS numbers: 03.65.Sq 05.30.Fk 31.15.xg 71.15.Mb

Semiclassical approximations are both ubiquitous in
physics [1, 2] and notoriously di�cult to improve upon.
Most of us will recall the chapter on WKB in our quan-
tum textbook[3], yielding a simple and elegant result for
the eigenvalues of a particle in a one-dimensional poten-
tial. The more sensitive will have recoiled at the surgical
need to stitch together various regions (allowed, turning
point, and forbidden) to find the semiclassical eigenfunc-
tion. Summing the probability densities in the allowed
region yields the dominant contribution to the density,
but what are the leading corrections?

A little later, we should have learned Thomas-Fermi
(TF) theory[4, 5]. Thomas derived what we now call
the TF equation in 1926, without using Schrödinger’s
equation[6]. He calculated the energies of atoms, finding
results accurate to within about 10%. TF theory has
since been applied in almost all areas of physics[7]. For
the electronic structure of everyday matter, TF theory is
insu�ciently accurate for most purposes, but gave rise to
modern density functional theory (DFT)[8]. The heart
of TF theory is a local approximation, and the success of
semilocal approximations in modern DFT calculations of

electronic structure can be traced to the exactness of TF
in the semiclassical limit[9, 10]. So, what are the leading
corrections?
Despite decades of development in quantum theory,

the above questions, which are intimately related, remain
unanswered. Both the WKB and the TF approximations
can be derived from any formulation of non-relativistic
quantum mechanics, but none yields an obvious proce-
dure for finding the leading corrections. Mathematical
di�culties arise because ~ multiplies the highest deriva-
tive in the Schrodinger equation. Physically, the problem
is at the dark heart of the relation between quantum and
classical mechanics.
Here we derive a definitive solution to both these ques-

tions in a limited context: Non-interacting fermions in
one dimension. Researchers from solid-state, nuclear,
and chemical physics have sought this result for over 50
years [11–21]. The TF density for the lowest N occupied
orbitals is

n

TF(x) = pF(x)/(~⇡), pF(x) � 0 (1)
where pF(x) is the classical momentum at the Fermi en-
ergy, EF, chosen to ensure normalization, and vanishes
elsewhere. This becomes

n

sc(x) =
pF(x)

~

" 
p
zAi2(�z) +

Ai
0
2(�z)p
z

!
+

✓
~!

F

csc[↵
F

(x)]

p

2

F(x)
� 1

2z3/2

◆
Ai(�z) Ai0(�z)

#

z=zF(x)

, (2)

where pF(x) is analytically continued into evanescent re-
gions, !F is the classical frequency at EF, and zF(x) and
↵F(x) are related to the classical action from the nearest
turning point, and Ai and Ai0 are the Airy function and
its derivative (details within). Eq. (2) contains the lead-
ing corrections to Eq. (1) for every value of x, without
butchery at the turning points. The primary importance
of this work is the existence of Eq. (2) and its deriva-
tion. A secondary point is the sheer accuracy of Eq. (2):
For N > 1, its result is usually indistinguishable (to the

eye) from exact, as in Fig. 1. Generalization of Eq. (2)
could prove invaluable in any field using semiclassics or
in orbital-free DFT[22].

The crucial step in the derivation is the use of the Pois-
son summation formula[23, 24]. While long-known[24–
26] for the description of semiclassical phenomena, it has
been little applied to bound states. Although the bare
result of its application appears quite complicated, each
of the resulting terms, which include contributions from
every closed classical orbit at the EF, can be simplified
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and summed. We assume only that the potential v(x) is
slowly-varying with dynamics lying on a topological cir-
cle. Accuracy improves as the number of particles grows
except when EF is near a critical point of v(x).
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)

FIG. 1. Thomas-Fermi (dashed) and semiclassical (dotted)
approximations to the density (solid) of 2 particles in a Morse
potential, v(x) = 15(e�x/2 � 2 e�x/4).

To begin, at energy E, the left (x�) and right (x
+

)
classical turning points satisfy v(x±) = E. The action,
measured from the left turning point, is

S(x,E) =

Z
x

x�(E)

dx p(x,E) (3)

where p(x,E) =
p
2m[E � v(x)] is the classical momen-

tum. The WKB quantization condition [2, 25, 27] is then

S [x
+

(E
j

), E
j

] = ⇡~
✓
j +

1

2

◆
, j 2 N. (4)

The accuracy of WKB quantized energies generally im-
prove as either j or m grows, ~ shrinks, or the potential
is stretched such that its rate of change becomes smaller
[2, 28]. But the WKB wavefunction is singular in the
turning point region [2, 27, 29–31]. Langer [32] obtained
a semiclassical wavefunction for the case where turning
points are simple zeroes of the momentum:

�

j

(x) =

s
2m!

j

p

j

(x)
z

1/4

j

(x) Ai [�z

j

(x)] , (5)

where !

j

= ~�1

@E

�

/@�|
�=j

is the frequency of the

corresponding classical orbit, and z

j

= [3S
j

(x)/2~]2/3.
In a classically-forbidden region, �p(x) = �i|p(x)| =
e

3i⇡/2|p(x)|, ensuring continuity through the turning
point. The Langer solution can also be used for prob-
lems with two turning points [33]. In this work we match
Langer functions from each turning point at the mid-
phase point x

j

m

where S

j

(xj

m

) = ~(j + 1/2)⇡/2. This
procedure ensures continuity everywhere.

Our task is to use Langer orbitals to find the asymp-
totic behavior of the density of N occupied orbitals,

n(x) =
N�1X

j=0

|�
j

(x)|2. (6)

We use the Poisson summation formula:

N�1X

j=0

f

j

=
1X

k=�1

Z
N�1/2

�1/2

d� f(�)e2⇡ik�, (7)

where f(�) is essentially any continuous function with
bounded first derivatives (except for a finite number of
points) that matches the f

j

when � 2 N [23, 24, 34].
Write

n(x) = n

0

(x) + n

1

(x), (8)

where n

0

(x) is the contribution from k = 0, and n

1

(x) is
all the rest. Then, for m = 1,

n

0

(x) = 2

Z
N�1/2

�1/2

d�
!

�

p
z

�

(x)

p

�

(x)
Ai2[�z

�

(x)]. (9)

The lower bound of the integral corresponds to the stable
fixed point of the potential well, and the upper bound
defines E

F

as that obtained by solving Eq. (4) for j =
N�1/2, whereN is the number of particles in the system.
Hereinafter, a subscript F denotes evaluation at EF, and
x is treated as a parameter. For instance, to approximate
the integral in Eq. 9 we employ the transformation � !
p

�

(x). Integrating by parts, using the Airy di↵erential
equation [35], changing variables, and neglecting higher-
order terms from the lower-bound of the integral in Eq.
9, we find:

n

0

(x) ⇠ ~�1

pF(x) g+[zF(x)] +

Z
zF (x)

z�1/2(x)

dz
p
z

@f

@z

g�(z),

(10)
where

g±(z) = z

1/2 Ai2(�z)± z

�1/2 Ai0
2

(�z) (11)

f(z) = p(z)/
p
z, and Ai0(z) = dAi(z)/dz.

Eq. (10) is useful for the extraction of the domi-
nant terms in an asymptotic expansion for n

0

(x). As
N grows, the coe�cients

p
z@f/@z become ever more

slowly-varying functions of the energy. Integrating by
parts, ignoring the remaining higher-order contribution,
and using

@f

@z

����
EF ,x
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!F
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� pF(x)

2~z3/2F (x)
, (12)
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F

R
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dx0
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) < x < x
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). We find
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EF ,x

A

0

[zF(x)], (13)

where A

0

(z) = Ai(�z)Ai0(�z).
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Kieron	Burke,	Phys.	Rev.	Lett.	114,	050401	(2015).	
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Summary

• Underlying success of DFT approximations is 
because they are semiclassical.

• I defy you to find semiclassical approximations in 
your many-body book (this specific limit).

• Very difficult to generate general forms:
– Standard methods often useful only in 1d
– Often fail in presence of Coulomb potentials
– Can reverse-engineer to deduce forms, but very difficult.
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Holy grail?

• What formulation of QM might directly yield 
expressions for density functionals?

• Within such a formulation, it should be natural 
to show LDA exact in Lieb-Simon limit.

• It should be possible to isolate leading 
corrections.

• It may be possible to capture essential features 
with simple density functionals.
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D Machine	learning

• An entirely different approach to finding 
approximate density functionals.
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Machine learning

• Powerful branch of artificial intelligence
• Essentially fitting and interpolating
• Maps problem into much higher-dimension 

feature space, using a simple kernel
• Higher-dimension often means more linear
• Perform regression in feature space
• Project back to original problem
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Kernel ridge regressionMethod

http://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-Ridge.pdf

f̂(x) =
MX

j=1

�jk(xj ,x)

k(x,x0
) = exp(�kx� x

0k2/(2�2
))

• Kernel ridge regression (KRR).  Given {xj , fj}

• Minimize:

C(↵) =
MX

j=1

(f̂(xj)� fj)
2 + ⇥2⇥�⇥2

↵ = (K + �2I)�1f
noise level

length scale
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Fitting a simple function
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Too high noise level: underfit
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Medium noise level
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Small noise level: overfit
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Average over samples
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Exact function and best fit
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Basic idea

• For a limited variety of one-body potentials, construct 
functionals via ML that are sufficiently accurate to do 
the job.

• Typically, require accuracy of 1 kcal/mol =0.0015 Ha.
• For kinetic energy, also need functional derivative.
• Most useful when multiple slightly different uses of 

DFT, eg during an MD run.
• Functional could be disposable, i.e., thrown away at 

end of run.
• Totally irrelevant that it does not apply to other 

systems.
• Is completely non-local in general, so best advantage 

when bonds break, as local functionals fail.June	20,	22017 iDFT,	RIKEN 62



ML applications in electronic structure

• Most with Klaus Mueller of TU Berlin, 
computer science.

• ML now being applied directly to, e.g., 
molecular energies from geometries for 
drug design, many by Matthias Rupp (FHI 
Berlin).

• Our efforts are focused on finding Ts[n] 
from examples, work by John Snyder 
(Humboldt fellow at TU Berlin/MPI Halle)
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Demo problem in DFT

• Represent the density on a grid with spacing

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

Prototype

• N non-interacting same-spin fermions confined to 1d box

• ML-DFA for KE:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

• Define class of potential:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing
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Performance for Ts
Performance

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kcal/mol

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

kcal/mol
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functional derivative?

Functional derivative 3

the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1

�x
⌅nT̂ (n) =

M�

j=1

�⇥
j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .

0 0.5 1

�75
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150

x

�
� n

T⇤ �n⇥⇤⇥
x

ML�DFA
Exact

FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1

�x
⌅nT̂ (n) =

M�

j=1

�⇥
j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by
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ical of the ML-DFA’s performance on the test set, and does
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by
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where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
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the derivative, it is drowned out by oscillations. This is typ-
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
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X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1

�x
⌅nT̂ (n) =

M�

j=1

�⇥
j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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Using standard methods from machine learning, we introduce a novel technique for density functional
approximation. We use kernel ridge regression with a Gaussian kernel to approximate the non-interacting
kinetic energy of 1d multi-electron systems. With fewer than 100 training densities, we can achieve
mean absolute errors of less than 1 kcal/mol on new densities. We determine densities for which our
new functional will fail or perform well. Finally, we use principle component analysis to extract accurate
functional derivatives from our functional, enabling an orbital-free minimization of the total energy to
find a self-consistent density. This empirical method has two parameters, set via cross-validation, and
requires no human intuition. In principle, this general technique can be extended to multi-dimensional
systems, and be used to approximate exchange-correlation density functionals.

More than 10,000 papers per year report solutions to
electronic structure problems using Kohn-Sham (KS) den-
sity functional theory (DFT) [1, 2], all approximating the
exchange-correlation (XC) energy as a functional of the elec-
tronic spin densities. The quality of the results depends
crucially on these density functional approximations (DFAs)
[]. Present DFAs often fail for strongly correlated systems[],
rendering the methodology useless for some of the most
interesting problems.

There is a never-ending search for improved XC approxi-
mations. The original local density approximation (LDA) of
Kohn and Sham [2] is uniquely defined by the properties of
the uniform gas, and has been argued to be a universal limit
of all systems [3, 4]. But the refinements that have proved
useful in chemistry and materials are not, and di�er both in
their derivations and details. Traditionally, physicists have
championed a non-empirical approach, deriving approxima-
tions from quantum mechanics and avoiding fitting to spe-
cific finite systems[]. But chemists typically use a few [5, 6]
or several dozen [7] parameters to improve accuracy on a
limited class of molecules. Non-empirical functionals can be
considered controlled extrapolations that work well across a
broad range of systems and properties, bridging the divide
between molecules and solids. Empirical functionals are lim-
ited interpolations that are more accurate for the molecular
systems they are fitted to, but often fail for solids. A re-
cent example is the van der Waals functional of Langreth
and Lundquist [8], and an empirical derivative for which no
derivation was deemed necessary[]. Passionate debates are
fueled by this cultural divide.

Machine learning (ML) is a powerful tool for finding pat-
terns in high-dimensional spaces. It employs algorithms by
which the computer learns from empirical data via induc-
tion. ML has been very successful in many applications,
including neuroscience ?? and chemistry [9]. In this work,
we apply ML methodology to a prototype density functional
problem: non-interacting spinless fermions confined to a
1d box, subject to a smooth potential. The accuracy we
achieve in approximating the kinetic energy (KE) of this
system is far beyond the capabilities of present human-
designed approximations and is su⇥cient to produce highly

accurate self-consistent densities—the functional derivative
is extremely accurate. We also define key technical concepts
needed to apply ML to DFT problems.
Empirical DFAs employ the basic types of approximations

derived from general principles, fitting the parameters to
training sets of energy di�erences[]. They explore only an
infinitesimal fraction of all possible functionals and use rel-
atively few data points. The ML-derived DFA (ML-DFA)
achieves chemical accuracy using many more inputs, with-
out reference to any of the underlying physics. Intuition
is kept to a minimum but remains necessary to specify the
basic mechanism and representation of data.
We illustrate the accuracy of the ML-DFA in Fig. 1, in

which the functional was constructed from 100 densities on
a dense grid. The successful construction of this functional
opens up a new approach to functional approximation, en-
tirely distinct from previous approaches: The ML-DFA con-
tains on the order of 104 empirical numbers and satisfies
none of the standard exact conditions.
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FIG. 1. Comparison of a sample projected (see within) func-
tional derivative of the ML-DFA with the projected exact
derivative.

The prototype DFT problem we consider is N non-
interacting spinless Fermions confined to a 1d box, 0 �

m = 15, � = 5
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j ↵j a1 b1 c1 a2 b2 c2 a3 b3 c3
1 14.34267159730358 1.180270056381577 0.07195101071267996 0.5299345325943254 9.01320520984288 0.092675711955144 0.5396431787675333 7.21030205171728 0.0740833092851918 0.4120341150720884
2 5.175360849250056 6.168993733519782 0.082993252991643 0.5167227315230085 8.30495143619142 0.0890145060213322 0.4169122081529295 8.80487613349391 0.0965994509648079 0.5711057094413816
3 0.835534193378979 9.08090433047071 0.07685302774688097 0.5622686436063149 3.911674577648888 0.07551832009012722 0.5086649497775319 1.809709070880952 0.095976684502697 0.4024220371493795
4 �5.373806223157635 8.69723148795899 0.06384871663070496 0.5859464293596277 8.67330877015531 0.0876928787020957 0.4850650257010839 4.189229162595343 0.04518368077127609 0.5819244871260409
5 �0.3190730633815225 1.880199805158718 0.03425540298495952 0.4874044587130534 3.541514636747403 0.0983660639956121 0.4515151404198366 9.82668062409708 0.03264617089733192 0.4352642564533179
6 0.4351315890942081 3.522977833467916 0.07218055206599771 0.4489170887611125 3.332712157375289 0.07852548530734836 0.5852941028010116 8.14461268619626 0.04848929881736392 0.5484789894348707
7 �5.783654943336363 5.286896436167961 0.04973324501652048 0.4653609943491444 7.135152688153955 0.0956349249199585 0.4408949440211174 2.243825016881491 0.05865588304821763 0.5687481170088626
8 5.857253335721763 1.896112874949486 0.03260897886438952 0.4501033283280557 5.885541925485173 0.06240932269593134 0.5618611754744713 6.486450948532671 0.07293633775145438 0.5695359084287562
9 0.3627795973240678 7.516612508143043 0.0993184090181399 0.5699793290550055 5.262683987610352 0.0972169632428748 0.4726711603381638 8.89032075863951 0.05632091198742537 0.4056148051043074
10 29.95678925033907 8.49309248159469 0.0647507853307116 0.4481376527388373 3.62263291813646 0.04018659271978259 0.5253173968297499 1.155756643175955 0.0910615024672208 0.5870317055827734
11 �8.10086522849575 7.105439309279282 0.0843184446680493 0.4223871323591302 4.606936643431428 0.06326693058647106 0.5381643193286885 2.832289239384128 0.07970384658584057 0.4171275695759011
12 �1.631527652578485 8.53955034289036 0.07284904722467074 0.5839058233689045 1.340024891088614 0.0781592051575039 0.5383353695983426 7.396341414064901 0.05945110164542845 0.4924043842188951
13 11.0617514474351 7.853417776611835 0.07070077317679758 0.5080787363762617 4.408481706562826 0.06298528328388489 0.4611686076617371 7.90542867326401 0.03887933278705098 0.5872227397532248
14 4.44089329011033 6.39698431139937 0.05730660668578378 0.5964415398755241 5.472334579600375 0.06570186368826426 0.5473728709183074 4.715521015256764 0.0803629674069167 0.5354179520994888
15 2.731504789238804 4.228544205571447 0.06071899009977901 0.4135235776817701 2.550224851908171 0.06424771468342688 0.5203395167113864 4.842862964307187 0.06333995603635176 0.5244121975227667
16 �12.35513145514341 2.579686666551495 0.0664318905447018 0.4888525450630048 3.764107410086705 0.06576720199559433 0.5481686020053234 1.399253719979948 0.07540490302513119 0.4655456988965731
17 11.55095248921101 1.107700596345898 0.05955381913217193 0.5359207521608914 2.706093393731662 0.06561841006617781 0.4269114966922994 1.501048590877154 0.06352034496843162 0.4331821043592771
18 0.1703484854064119 8.26435624701031 0.04624196264776803 0.4236237608297072 7.025290029097274 0.07980750197266955 0.4683927184025036 2.822503099972245 0.05222522416667061 0.4810998521431096
19 �0.13017855474333 8.74124547878586 0.0628793144768381 0.4736196423196364 8.59166251408243 0.084738261964188 0.4564662508099403 8.22877749776242 0.03727774324972055 0.4697350798193826
20 �1.646528531854399 4.545173787725101 0.03433189693421491 0.4919021595234177 1.726935494533148 0.03135796595505673 0.580800322296872 2.502191185545461 0.0856788809687475 0.5909621331611888
21 �2.371179702223466 1.015154584908506 0.07726595708511765 0.4008988537732911 6.688534202733123 0.0869544063742346 0.403293222827825 6.297133313147086 0.03345369328197418 0.5433070470097552
22 13.69383242214402 3.283098134816701 0.06841617803957927 0.4304195496937475 5.887062834756559 0.05152399439496422 0.4321995606997443 3.207122477750064 0.07371808389404321 0.4967284534354185
23 �2.216419772035322 2.056773486230531 0.0825699915945694 0.479224783903814 6.945590707033352 0.07408636456892297 0.4957750456547108 5.846222671659907 0.0836452454472081 0.4094720200825416
24 �6.00076435563604 2.03703352205463 0.07605517542793995 0.4501291515683585 1.45256356478288 0.07433692379389613 0.4233969076404344 8.95059302019488 0.05703615620837187 0.4679023659842935
25 8.16409108667899 6.400475835681034 0.03425589949139343 0.5544095818848655 6.086484474478635 0.07282844956128038 0.4272596897186396 5.36207646433345 0.05780634160661002 0.5503173198658324
26 �22.3897314906413 3.751807395744921 0.0852624107335768 0.4453450848668749 7.559337237177321 0.05840909867970421 0.4990223467101435 4.729884445483556 0.0929218712306724 0.5590503374710945
27 5.595799173773367 4.522456026868127 0.03620201946841309 0.5050210060676815 1.885091277540955 0.06521780385848891 0.4961601035955842 9.47421945496329 0.0556740133396159 0.4834045749740091
28 1.94645582566549 2.751346713386582 0.0948195528516815 0.4901204212506473 7.863592227266858 0.0951797983951825 0.5196620049802691 9.51608680035275 0.07785377315463609 0.5806015592262945
29 �1.105559822533069 5.725277193011525 0.03097303116261406 0.5511177785567803 7.988513342309234 0.0928323179868588 0.5146415116367569 1.101098863639624 0.0882939028519791 0.5265108634130272
30 �3.886381532577754 4.95871172966177 0.06823254438777603 0.5645951313008806 9.08135225317634 0.04472856905840844 0.4299117124064201 8.24973637849809 0.08854431361856 0.5416193648861009
31 �1.341930696378109 6.451869235304859 0.05482804889270922 0.5694170176403242 4.416924333519995 0.04212208612720639 0.5897125000677342 8.86521100790565 0.0866581794842557 0.5311744230227635
32 �10.16467121571373 6.705508349541454 0.0934749698077619 0.4420693171728495 2.858371131410651 0.03722557506068529 0.4216580500297413 6.670274811535954 0.0977332470946321 0.538756085129185
33 �1.107633246744663 7.390220519784453 0.07970661674181083 0.5081940602224835 3.815123656821275 0.04965529863397879 0.497023655525965 9.69945245311718 0.07039341131023045 0.4990744291774679
34 10.39451871866851 1.478170300165134 0.03602109509210016 0.5799113381048154 2.105782960173057 0.0861928382367878 0.4812528298377607 7.010226383015251 0.03535327789989237 0.4969989664577149
35 �0.139925361351959 4.045190240200832 0.03579955552582782 0.5678362348598895 9.32386837735074 0.0858648976559044 0.5698752996855582 9.81895903799508 0.04704020956533079 0.5708692337579542
36 3.656124569605117 4.944179742822627 0.0931916525333049 0.4834640277977335 9.3847979419491 0.0840810063497973 0.4090254720704045 3.673880603434117 0.07158934023489803 0.5598196803643543
37 8.06734679112684 2.988178201634472 0.07482186947515447 0.4950144569660614 1.910770315838324 0.03877152903045122 0.5786659568499292 4.285706479098184 0.05940487550770145 0.4844513368813702
38 0.3011566621835722 8.78996207364355 0.04833452393773747 0.459203937360375 9.93467757777873 0.0973964303071365 0.4280349684453508 4.931948094146255 0.0969410287755626 0.4560660353529726
39 �0.2469178958324283 6.242957525364009 0.0989568314234112 0.4205662570527381 4.73983230004983 0.0450110225161678 0.559400017887981 9.11978947943194 0.06189826031162779 0.493100819449519
40 �5.704905642148452 4.447521595114223 0.06770523205457797 0.5047965897298675 3.987888630073714 0.03595136615254331 0.5929011044925536 5.22121823715344 0.04029431905467698 0.514129411681418
41 0.1425795779687519 6.919606258393273 0.0821756368975312 0.5976799418614426 8.04099037018168 0.03129262110881438 0.4686530881925831 3.421695873368174 0.05166215779587051 0.4208560803818513
42 0.6843702894502789 8.27200587323167 0.0547013388431661 0.4453254786423237 7.433883810628654 0.04612202343826998 0.5269730370279639 8.3641619521824 0.07996879390804805 0.5036755718396144
43 �14.06571757369153 6.220712308892191 0.04765956545437692 0.4898959293071353 8.72249431241257 0.05059967705235588 0.4421274052875277 2.416276423317733 0.07373660930828208 0.5403850652535799
44 8.32346109443768 9.29716067662943 0.0656810603414827 0.4960066859011466 6.796263459296078 0.04037116107097755 0.4389885737869158 2.206183147865627 0.0804910989081056 0.5806221323132373
45 �5.252317079780442 3.424683176707511 0.0867529985575643 0.4322548560407479 6.859255296971943 0.0955962752949951 0.517620399931194 5.826144942819697 0.0910408442631135 0.4167014408128501
46 6.18641388898792 3.789578783769164 0.07617326304382499 0.5418490045761073 1.363177133649232 0.03197249245240319 0.5284999992906743 4.9879001955338 0.04126125322920861 0.4895167206754735
47 0.4821906326173532 1.195769022526768 0.04928749082970199 0.5286859472378347 8.76714063033632 0.0870852412295278 0.5989638152903285 2.489565114307663 0.05568685410478115 0.5787056957942209
48 5.707663438868804 4.058614230578957 0.04743875933294599 0.4981149890354436 1.015171237842736 0.085826684646538 0.5470349320774566 6.343764732282688 0.0878769436185823 0.5449452367497044
49 �0.1857958679022612 5.159763617905121 0.0850570422587659 0.5311491284465588 7.238990148015965 0.05867048711393652 0.5662410781222187 8.70600609334284 0.04088387548046445 0.5305143392409284
50 2.321594443893878 3.319181325761367 0.05391080867981007 0.5914435434600773 9.11776045377491 0.03583354001918901 0.4669413688494417 6.117669336479262 0.04553014156422459 0.4131324263527175
51 2.451069994722774 4.005247740100538 0.07620861067494449 0.5759225433332955 6.743529978394792 0.0967347280360008 0.4980631985926895 5.505849306951131 0.0971440363586883 0.45173467721102
52 �0.961350897030818 7.710615861039985 0.07131617125307138 0.4007362522722102 3.372061685311945 0.04579335436967417 0.4845503268496217 8.6021995929235 0.0634681851083368 0.4207242810824543
53 �10.67971490671366 4.728468083127391 0.06509200806253813 0.4959400801351127 9.81266481664175 0.0951346706530719 0.5047212015277842 3.180268423645401 0.06891913385037023 0.5758580789792047
54 1.375998039323297 2.740626958875014 0.06438323836566841 0.5077158168564866 1.813952930718781 0.0845523320869031 0.407247659218711 1.054506345314588 0.0998274789144316 0.5956344420441539
55 �4.330863793299111 3.209443235555092 0.05150806767094947 0.5932432195310449 4.682408324655706 0.03641376226612134 0.4491940043173043 9.57800470422746 0.089704223465467 0.4702887735348434
56 6.961655278126058 3.013659237176324 0.0802684211883349 0.5733460791404235 7.441047648005995 0.0924462539370359 0.5216671466381739 8.15403131934562 0.05611934350568269 0.4910483719005932
57 �5.30540083281513 2.088882156026381 0.07464091227469428 0.4740072756248339 4.228694369663863 0.03993178348974601 0.4402946238148492 4.912298433960689 0.06528359492264517 0.4923580906843156
58 3.395104400983763 7.9733680986292 0.0911843583955236 0.5314007871406556 6.375772536276909 0.0933026364108379 0.447244215655568 7.387561983870292 0.0977643384454912 0.479824590293356
59 1.330224789015745 5.105339790874075 0.06331718284342962 0.5503804706506275 9.5740821641842 0.07463500644132846 0.5814481952546582 5.810342341443878 0.03327635127803191 0.5550216356360829
60 �0.2920604955263079 6.773414983805557 0.07595819905259191 0.5210834626114553 4.229974804881476 0.03532177545633547 0.5725615130215063 8.88452823254966 0.0932985710685446 0.5046388124857028
61 �26.41840990525562 6.41701161854283 0.06246944646172664 0.4258923441426071 1.379491105318868 0.06306367927818108 0.4531443030507202 2.189456974183496 0.098078005933584 0.5174384564079299
62 6.630393088825135 6.476325542442256 0.07599435647188182 0.4345528705798566 6.969363897694016 0.06669302037176108 0.517427894398595 3.961825639220393 0.0929115322244988 0.4621043570336795
63 3.065748817227897 1.300093759156537 0.06741885075599173 0.4866345116967513 6.942052331590217 0.07107963920756023 0.4930672781311588 7.834870626014938 0.06446115603870624 0.5367219218216266
64 �1.743105697039855 3.145607697855832 0.0415292992761004 0.5859414343226601 5.945295724435049 0.07414379406386953 0.4548629476738681 1.062923665624632 0.07636214080338054 0.4330291254331895
65 �1.631255302904965 3.121291975208031 0.03133561741752311 0.524510056949801 8.03118879837252 0.0987376029412809 0.5128559599511593 7.572783963151993 0.0936192481138518 0.4523240987335903
66 �9.50982692642515 7.367027947839741 0.07398108515426552 0.4753257600466925 1.589160147317211 0.07398588942349949 0.4644105814910987 1.719981611302808 0.04986976063479617 0.5394709698394433
67 �4.496736421068983 8.56498650586069 0.0870950155799119 0.4807004710871501 8.85815411069566 0.0936690521145114 0.4120764594786555 2.422694718173737 0.05651923264880363 0.4832351547748815
68 �1.002977917543076 9.43121814362608 0.03689894383172801 0.4801850915018365 6.762463110315146 0.0977990134875495 0.5880377299069773 8.48288777357423 0.05983735955021298 0.4837560035001434
69 �9.23106545170694 8.47929696159459 0.05472141225455761 0.4949989702352598 4.776138672418544 0.03835162624659654 0.5785166211495689 4.459069855546714 0.06892772167363432 0.5908529311844791
70 14.99926304831282 4.708917711658332 0.0907364284065382 0.4550033334959929 5.373320800648651 0.03739924536269347 0.4468132406615605 1.831662246071428 0.05825558914206748 0.566434199642786
71 4.189181104505013 7.583635162152007 0.0936829708421792 0.4110679099121856 6.09002215219153 0.05895044789139901 0.5451253692040614 6.851478307492325 0.04763840334231468 0.5010633160850224
72 8.32837188138842 3.414315967033806 0.05054048464274665 0.5043307410524706 3.070996567281799 0.06968276328974509 0.5702669702356848 5.360783854112533 0.0388888383066967 0.5784155467566237
73 �21.84200888491582 1.625552430388586 0.04546236831654488 0.5426078576324179 4.091176923293506 0.03836885039652842 0.504879512949007 4.527748284314512 0.05975894102927981 0.4670598506496871
74 6.604738977945651 3.42187897931262 0.0894449950697187 0.4941485628974172 4.96749741331263 0.06031151123783582 0.4119028637456998 4.581927607849956 0.0871948963692279 0.4176805754532423
75 15.27988423246628 6.229538426957454 0.0821521091215863 0.4118748449252315 2.377028497509498 0.0963110933106458 0.4746736556808109 5.398545541594487 0.0822574656780643 0.5258947233190487
76 1.377130763885458 9.15176346333775 0.04818682488618507 0.574408949666749 2.366656226877287 0.05059199769749539 0.4731074949729489 4.34290365370739 0.07492904049493838 0.4038656375892337
77 �0.7756959351484244 8.1525112801581 0.0812975344211981 0.5112853751964107 4.530310672134927 0.06652912486134806 0.5946245231853162 1.568860626254933 0.04256882025605258 0.5491027801043556
78 �9.50432792804336 4.670517118870347 0.04398267799553492 0.4519472673718893 2.155276187476066 0.0489411436180854 0.5694756278652033 1.947130206816878 0.06321309041201674 0.4122312147733568
79 3.754137123031758 6.801389212739803 0.07003309342623426 0.5129214842481318 9.92433910143913 0.0931392820982872 0.4104016495146404 5.23036608102518 0.0919529182014262 0.4465294974738288
80 �4.499804654067136 4.406584351091798 0.0970211159011626 0.4772975938521527 2.270764431848441 0.0853562757122116 0.4669596920988839 4.42557413334857 0.0517800509473799 0.5645191809121128
81 �13.9999061688152 8.30408622139241 0.0903948738093222 0.5053209583744364 2.454354187669313 0.0857681690400504 0.576877467653029 7.167289037979035 0.0831206320171505 0.4221339680792799
82 �4.878405649764898 7.975675712689654 0.0809649515974139 0.5831990158889571 1.696376490191135 0.06783046119270637 0.5788560723486603 5.118512758012828 0.06554617006512321 0.5571586558825978
83 �8.70611662690158 3.078380132262833 0.06327626752293522 0.4017988981679418 2.138629261588504 0.05374733302715019 0.5432443229891937 7.596013793576791 0.0999924467044729 0.5115245622576321
84 3.578654662113496 4.294915349281119 0.0664706641817281 0.5566289165852036 3.387516420897519 0.06654228293431248 0.4304935498494862 8.43232828156106 0.06121769693920587 0.5527076848906498
85 0.0423259541153967 9.56936665353494 0.06825963823641594 0.5532353068476618 7.233942984150266 0.07736032999103362 0.4274316541541941 8.96022693099 0.03996347733060968 0.5091073130786462
86 �6.387446031119123 5.052123646744015 0.05306973453715137 0.4657297418468141 1.261670338009784 0.05392235260994765 0.4355571344074666 9.81884128475822 0.0434164193614162 0.546118275633825
87 3.029693711282459 1.767169254935782 0.0386273054889003 0.4174202422881018 9.99189882836594 0.0347107535224807 0.5316587974869709 4.794411329362948 0.04866392717198935 0.5202815575942617
88 �0.791031105864576 8.38082427065573 0.0552127907704862 0.5821800194923659 3.864226559651998 0.05464216708052787 0.5051543239785165 4.445064096761643 0.03386907179361738 0.4659081177469465
89 2.97083681738158 9.22706363472046 0.06912140386549836 0.5630023378185795 2.929880196570098 0.07966659968684009 0.4992263633935188 6.920427033384797 0.03123407491202272 0.4077156601519876
90 �7.110772604917624 3.106633667560681 0.04873990025387701 0.5697049535893381 8.30700777463754 0.05249501630989304 0.5669783762910612 1.13457393933062 0.07200760153994357 0.444672072474744
91 �7.162305080703513 5.387619660361665 0.04581500385875453 0.5197835066282974 8.22551991773337 0.0831226693907787 0.4274987667560087 6.828948529150043 0.05943349593138421 0.5115861497137036
92 1.720368406482304 6.780548897314363 0.0870012111933092 0.5984908484842784 6.587571277412653 0.05694105237128053 0.5226697825342788 5.99005641944593 0.07837921322316456 0.4668236040752577
93 0.1494884045649762 8.09818524171748 0.0976595255928496 0.4848535596042637 2.153483785757176 0.04734211110674212 0.4077222220507315 7.143110762448606 0.04682210332386052 0.509084643832387
94 �0.962821097034532 7.260437643310942 0.05083396575279076 0.54745303715986 8.38162990306018 0.05791050943688269 0.5794395625497382 2.722302743095399 0.083744615781603 0.5395428417251624
95 0.935122045036145 2.31788301454997 0.05976249487823031 0.5809204376238206 8.19172407354263 0.06806778195768599 0.5479374417815378 9.93990336225375 0.04266977230181523 0.5959901705863791
96 0.4328277236540677 4.113414259206836 0.07988404513340022 0.5262079910925557 7.436994191324823 0.07641699196144898 0.4316282085515486 9.59671807016201 0.07198966517052108 0.4563024970288369
97 0.853043516035702 3.229317247568396 0.04664288308967379 0.4916641780174803 9.19533615142581 0.0944216012526871 0.5792638413577232 6.980966479991427 0.07647312161060935 0.5407763967437385
98 �3.516191871248886 9.20769534239692 0.07214599607965883 0.4111312070946356 7.568725646832963 0.0806902033322297 0.4952042950743076 8.94919747461644 0.04263443777290076 0.5735261960865083
99 19.67243760549639 2.270663590855083 0.0971170179967765 0.4613017967987272 8.22480560472966 0.0536024772561282 0.4745303011865644 3.970009703387312 0.0982032349257953 0.5029128207513967
100 1.544060514744405 4.017102041449901 0.04437090645089548 0.5073655615301741 3.724036679477685 0.07622772645899346 0.4368882837991222 5.350822342112657 0.07659119397629786 0.4056243763991382

TABLE III. All the necessary information to construct our

MLA, trained from 100 densities with N = 1 on a grid of

500 points, with � = 12 ⇥ 10

14
and � = 43. For purposes

of saving space, we do not list these densities. They may be

reconstructed from these potentials via Numerov’s method.
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Lessons

• Exact noise-free data infinitely available for 
Ts[n], every cycle of every KS calculation in the 
world provides examples.

• Need very accurate derivatives to get accurate 
density from Euler equation.

• Can find ways to bypass this.
• Functionals can be made arbitrarily accurate 

with sufficient data.
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E.Recent results
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• All on arXiv

Li	Li Thomas	E.	BakerFelix	Brockherde



2 new papers

• By-passing the KS equations with ML (on arXiv)
– Felix Brockherde, Li Li, Klaus Muller, KB,…
– Avoids functional derivative
– Applied in 3D
– Still doing KS problem, Ts[n]

• Pure Density Functional for Strong Correlations 
and the Thermodynamic Limit Using Machine 
Learning. in Phys Rev B.
– Li Li, Thomas E. Baker, Steven R. White and KB
– Do interacting functional (ie. Exact Exc)
– Do strong correlation
– Do thermodynamic limit
– Still in 1d
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By-passing KS
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Figure 1. A. Overview of the mappings we used in this paper. The bottom arrow shows a conventional electronic structure
calculation, e.g. KS-DFT. The ground state energy is solved by KS equations given the external potential. It is named as
KS mapping E[v]. The right arrow, OF mapping is a total energy density functional. The red arrow HK mapping, n[v], is
a mapping from external potential to its ground state density. B top. Comparison of how �ED depends on M for ML-OF
and ML-HK with di↵erent basis function systems. B bottom. Comparison of errors of the ML Orbital-Free map and the
ML Hohenberg-Kohn map for di↵erent numbers of training data points M (in kcal/mol). Due to cancellation of errors �ED

for ML-HK can be significantly lower than the error of our most accurate Ẽ[n] (�E for M = 200): The errors in kinetic
energy (T̃ [ñ]� T̃ [n]) are consistently corrected by errors in the potential energy (

R
ñv �

R
nv). C. How our Machine Learning

Hohenberg-Kohn map makes predictions. The molecular geometry is represented by a Gaussian blob potential. From there,
many independent Kernel Ridge Regression models predict on basis coe�cient each. We analyze the performance of data-driven
(ML) and common physical basis representations for the electron density.

statistics (i.e., fermions or bosons). A follow-up claim is
that the ground-state energy of an electronic system can
be found from

E[v] = min
n

⇢
F [n] +

Z
d

3rn(r)v(r)

�
(2)

where F [n] is a density-functional containing all many-
body e↵ects. The minimizing density is the solution to
the Euler equation:

@F

@n(r)
+ v(r) = const (3)

It is the direct map between densities and potentials that
we will machine-learn in this paper. We call it the HK
density map, n[v(r)](r).

The KS scheme avoids direct approximation of F by
imagining a fictitious system of non-interacting electrons
with the same density as the real one. The KS equations
are:

⇢
�1

2
r2 + vs(r)

�
�i(r) = ✏i�i(r) (4)
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Performance of ML for HK map

6

Table I. Comparison of errors of the ML Orbital-Free map and the ML Hohenberg-Kohn map for di↵erent numbers of training
data points M (in kcal/mol). Due to cancellation of errors �ED for ML-HK can be significantly lower than the error of our
most accurate Ẽ[n] (�E for M = 200): The errors in kinetic energy (T̃ [ñ] � T̃ [n]) are consistently corrected by errors in the
potential energy (

R
ñv �

R
nv) [? ]. Values in brackets show the �E error trained on 200/M training points.

ML-OF ML-HK �ED

M �E �EF �ED Grid Fourier KPCA
avg max avg max avg max avg max avg max avg max

20 7.7 47 7.7 60 8.8 87 2.1 [2.2/3.5] 12 [11/27] 1.7 9.8 0.37 5.5
50 1.6 30 1.3 7.3 1.4 31 0.26 [0.26/1.2] 2.4 [2.4/7.1] 0.26 2.4 0.061 0.96

100 0.74 17 0.2 2.6 0.75 17 0.081 [0.083/0.19] 0.82 [0.82/2.1] 0.083 0.81 0.033 0.43
200 0.16 2.9 0.039 0.6 0.16 2.9 0.019 [0.042/0.042] 0.45 [0.059/0.059] 0.02 0.45 0.026 0.26

energy and to evaluate the accuracy of the underlying
HK map. This map E

ML[n] is trained on 100 data points
for H2 and 300 data points for H2O. Both yields errors
far smaller than any of the maps being tested. Then the
accuracy of the HK mapping n

ML[v] can be measured on
a hold-out test set of K data points,

1

K

KX

k=1

|EML[nk] � E

ML[nML[vk]]|. (25)

For comparison, we also learn E

ML[vk] as the ML approx-
imated KS map, the accuracy of which can be measured
by

1

K

KX

k=1

|EML[vk] � Ev|. (26)

All the methods applied in the previous section to the
box problem become prohibitively expensive in 3D, due
to the large number of training data required. So here we
compare performance with the most obvious approach,
that of using a direct KS map from external (one-body)
potential to energy, E

ML[v]. To do this and to create
our ML-HK map, we must characterize the Hamiltonian
by its external potential. Because the Coulomb potential
diverges, it is not a good feature to measure the distance
in ML. So we use an artificial Gaussian blob potential in
the form of

v(r) =
NaX

↵=1

Z↵ exp

✓
�kr � Rik2

2�

2

◆
(27)

where Ri are the positions and Z↵ are the nuclear charges
of the N

a atoms. Since this artificial potential is only for
ML model and not used for any physics equations, the in-
troduction of this potential will never bring any physical
problems. The width � is a hyperparameter of our algo-
rithm. The choice is arbitrary but can be cross-validated.
We find good results with � = 0.2 angstrom. The idea
of using Gaussian blobs to represent the external poten-
tial has been previously used[37]. The Gaussian blob
potential is discretized on a course grid with grid spacing
� = 0.08 angstrom.

Prototype: H2

For H2, 150 reference calculations are run by vary-
ing the atomic distance of the H between 0.5 and 1.5
angstrom. 50 of them are selected as out of sample test
set to measure the performance of our ML model. Those
data are unseen during the training process. The re-
maining 100 data points are the grand training set, from
which M equi-distant training data points are chosen [?
]. For E

ML[n] we use all of these 100 points. H2 molecules
can be calculated exactly with the Full Configuration In-
teraction method (FCI) in Molpro Quantum Chemistry
Software[38]. Using the FCI results for the same geome-
tries of H2 molecules as a ground truth, the MAE of DFT
with PBE is 2.29 kcal/mol. The ML error can be con-
sidered as accurate as long as it is smaller than the error
made by DFT.

In order to compare the performance of directly learn-
ing the HK map, we train E

ML[v] that maps from Gaus-
sian blob potential to total energy and n

ML[v] that maps
from Gaussian blob potential to the ground-state density
in Fourier basis representation (l = 25). We evaluate the
models as in Eq. 26 and 25. The prediction errors for
H2 are listed in Table II. With M = 7 training data,
the MAE of the ML HK map is one order of magnitude
smaller than KS map. This indicates that density is an
good representation of the system comparing to artificial
potentials or other geometry-based representations. [FB:
Is it not rather easier to learn? We make no statement

about how easy it is to go n 7! E compared to v 7! E.]

H2O

Then we move to more complicated molecules with
more degrees of freedom. We take the equilibrium con-
figuration of H2O and change each bond length by a uni-
formly sampled value between ±0.1 angstrom. We also
change the bond angle by a uniformly sampled value be-
tween ±0.2 radians. After all, 1000 configurations are
sampled. The extend of the sampled configurations is
shown in Figure ??.
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Convergence of different HK maps
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Figure 1. A. Overview of the mappings we used in this paper. The bottom arrow shows a conventional electronic structure
calculation, e.g. KS-DFT. The ground state energy is solved by KS equations given the external potential. It is named as
KS mapping E[v]. The right arrow, OF mapping is a total energy density functional. The red arrow HK mapping, n[v], is
a mapping from external potential to its ground state density. B top. Comparison of how �ED depends on M for ML-OF
and ML-HK with di↵erent basis function systems. B bottom. Comparison of errors of the ML Orbital-Free map and the
ML Hohenberg-Kohn map for di↵erent numbers of training data points M (in kcal/mol). Due to cancellation of errors �ED

for ML-HK can be significantly lower than the error of our most accurate Ẽ[n] (�E for M = 200): The errors in kinetic
energy (T̃ [ñ]� T̃ [n]) are consistently corrected by errors in the potential energy (

R
ñv �

R
nv). C. How our Machine Learning

Hohenberg-Kohn map makes predictions. The molecular geometry is represented by a Gaussian blob potential. From there,
many independent Kernel Ridge Regression models predict on basis coe�cient each. We analyze the performance of data-driven
(ML) and common physical basis representations for the electron density.

statistics (i.e., fermions or bosons). A follow-up claim is
that the ground-state energy of an electronic system can
be found from

E[v] = min
n

⇢
F [n] +

Z
d

3rn(r)v(r)

�
(2)

where F [n] is a density-functional containing all many-
body e↵ects. The minimizing density is the solution to
the Euler equation:

@F

@n(r)
+ v(r) = const (3)

It is the direct map between densities and potentials that
we will machine-learn in this paper. We call it the HK
density map, n[v(r)](r).

The KS scheme avoids direct approximation of F by
imagining a fictitious system of non-interacting electrons
with the same density as the real one. The KS equations
are:

⇢
�1

2
r2 + vs(r)

�
�i(r) = ✏i�i(r) (4)
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Figure 1. A. Overview of the mappings we used in this paper. The bottom arrow shows a conventional electronic structure
calculation, e.g. KS-DFT. The ground state energy is solved by KS equations given the external potential. It is named as
KS mapping E[v]. The right arrow, OF mapping is a total energy density functional. The red arrow HK mapping, n[v], is
a mapping from external potential to its ground state density. B top. Comparison of how �ED depends on M for ML-OF
and ML-HK with di↵erent basis function systems. B bottom. Comparison of errors of the ML Orbital-Free map and the
ML Hohenberg-Kohn map for di↵erent numbers of training data points M (in kcal/mol). Due to cancellation of errors �ED

for ML-HK can be significantly lower than the error of our most accurate Ẽ[n] (�E for M = 200): The errors in kinetic
energy (T̃ [ñ]� T̃ [n]) are consistently corrected by errors in the potential energy (

R
ñv �

R
nv). C. How our Machine Learning

Hohenberg-Kohn map makes predictions. The molecular geometry is represented by a Gaussian blob potential. From there,
many independent Kernel Ridge Regression models predict on basis coe�cient each. We analyze the performance of data-driven
(ML) and common physical basis representations for the electron density.

statistics (i.e., fermions or bosons). A follow-up claim is
that the ground-state energy of an electronic system can
be found from

E[v] = min
n

⇢
F [n] +

Z
d

3rn(r)v(r)

�
(2)

where F [n] is a density-functional containing all many-
body e↵ects. The minimizing density is the solution to
the Euler equation:

@F

@n(r)
+ v(r) = const (3)

It is the direct map between densities and potentials that
we will machine-learn in this paper. We call it the HK
density map, n[v(r)](r).

The KS scheme avoids direct approximation of F by
imagining a fictitious system of non-interacting electrons
with the same density as the real one. The KS equations
are:

⇢
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Figure 1. A. Overview of the mappings we used in this paper. The bottom arrow shows a conventional electronic structure
calculation, e.g. KS-DFT. The ground state energy is solved by KS equations given the external potential. It is named as
KS mapping E[v]. The right arrow, OF mapping is a total energy density functional. The red arrow HK mapping, n[v], is
a mapping from external potential to its ground state density. B top. Comparison of how �ED depends on M for ML-OF
and ML-HK with di↵erent basis function systems. B bottom. Comparison of errors of the ML Orbital-Free map and the
ML Hohenberg-Kohn map for di↵erent numbers of training data points M (in kcal/mol). Due to cancellation of errors �ED

for ML-HK can be significantly lower than the error of our most accurate Ẽ[n] (�E for M = 200): The errors in kinetic
energy (T̃ [ñ]� T̃ [n]) are consistently corrected by errors in the potential energy (

R
ñv �

R
nv). C. How our Machine Learning

Hohenberg-Kohn map makes predictions. The molecular geometry is represented by a Gaussian blob potential. From there,
many independent Kernel Ridge Regression models predict on basis coe�cient each. We analyze the performance of data-driven
(ML) and common physical basis representations for the electron density.

statistics (i.e., fermions or bosons). A follow-up claim is
that the ground-state energy of an electronic system can
be found from

E[v] = min
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where F [n] is a density-functional containing all many-
body e↵ects. The minimizing density is the solution to
the Euler equation:

@F

@n(r)
+ v(r) = const (3)

It is the direct map between densities and potentials that
we will machine-learn in this paper. We call it the HK
density map, n[v(r)](r).

The KS scheme avoids direct approximation of F by
imagining a fictitious system of non-interacting electrons
with the same density as the real one. The KS equations
are:
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H2O

7

Table II. Prediction errors for H2. We choose M equi-distant
training points. We measure the error on a hold-out set for
EML[v] via Eq. 26 and EML[nML[v]] via Eq. 25 in kcal/mol.
For the geometries, we optimize EML[nML[v]]. Reported er-
rors are given in angstrom for bond-length and radians for
angles. Values in brackets are results obtained from optimiz-
ing EML[v].

H2 EML[v] EML[nML[v]]
M avg max |H1 � H2| avg max |H1 � H2|
5 1.7 5.5 0.026 0.25 0.99 0.0017
7 0.37 1.4 0.0023 0.038 0.21 0.00070

10 0.060 0.33 0.0018 0.024 0.14 0.00071

Figure 3. Comparison EML[v] and nML[v] errors on the H2

dataset. The models were trained on M = 7 training points.
The shaded curve shows the PBE total energies for H2 (with
RHS scale). The mean absolute error of PBE in this range is
2.29 kcal/mol.
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CCSD(T) [39] can give enough accuracy for H2O
molecules around equilibrium geometry. The error of
binding energy made by DFT with PAW and PBE ap-
proximation is 1.2 kcal/mol (mean absolute error over
the dataset). Again, our ML error is much smaller that
that.

The model performance is tested on 200 out-of-sample
configurations. We train models just as for H2. The
results for energies and geometry optimization are given
in Table III.

As expected, due to the higher degree of freedom in
H2O compared to H2, a larger training set size M is re-
quired. However, the ML-HK map works consistently
better than the ML-KS map.

GEOMETRY OPTIMIZATION

Our ML HK mapping can also be used to find the
minimum energy geometry configuration. We minimize

Table III. Prediction errors for H2O. We choose M equi-
distant training points. We measure the error on a hold-
out set for EML[v] via Eq. 26 and EML[nML[v]] via Eq. 25
in kcal/mol. For the geometries, we optimize EML[nML[v]].
Reported errors are average errors over 5 random starting ge-
ometries (from the training set) and are given in angstrom for
bond-length and radians for angles.

H2O EML[v] EML[nML[v]]
M avg max avg max |H� O| \H1OH2

15 0.20 1.5 0.086 0.98 0.0015 0.011
20 0.080 1.1 0.046 0.18 0.00026 0.0013

Figure 4. (Top) Energy landscape of the EML[nML[v]] map.
(Bottom) Distribution of errors against PBE for EML[nML[v]]
and EML[v]. All trained on M = 15 training points. Ener-
gies and errors in kcal/mol. A black cross marks the PBE
equilibrium position.
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the total energy as the geometry varies with (a) di↵erent
H � H distance for H2 and (b) di↵erent H � O distance
and \H1OH2 angle for H2O. For optimization, we use
Powell’s method [40]. Powell’s method just requires a
starting point and a evaluation function to be minimized.
As starting point we use a random geometry from the
training set. The evaluation function is E

ML[nML[v]].
We parameterize v (by H�H distance for H2 and H�O
distance and \H1OH2 angle for H2O) and optimize these
parameters.

For E

ML[nML], the geometry optimization consistently
converges to the same minima, regardless of starting
point. This shows that for H2 and H2O E

ML[nML] yields
convex maps. Using n

ML, we get improvements on the

June	20,	22017 iDFT,	RIKEN 79



Malondialdehyde

Jun	16,	2017 CECAM	DFT	school 80

B175:	By-passing	the	Kohn-Sham	equations	with	machine	learning Felix	Brockherde,	
Leslie	Vogt,	Li	Li,	Mark	E	Tuckerman,	Kieron	Burke,	Klaus-Robert	
M�uller, (submitted) (2016).



2nd paper: ML of exact functionals
• Use DMRG to solve continuum problems in 1d.
• Much success in past, showing failures of DFT 

approximations for strong correlation.
• Here use DMRG to generate much data of exact 

densities and  energies
• All restricted to 1d.
• We train and test a machine learning F[n], the universal 

part of the electronic density functional, to within 
quantum chemical accuracy. We (a) bypass the standard 
Kohn-Sham approach, (b) include the strong correlation 
of highly-stretched bonds and (c) create a model for the 
infinite chain limit. 
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Guaranteed	Convergence	of	the	Kohn-Sham	Equations	
Lucas	O.	Wagner,	E.	M.	Stoudenmire,	Kieron Burke,	Steven	
R.	White,	Phys.	Rev.	Lett.	111,	093003	(2013).

One-Dimensional	Continuum	Electronic	Structure	with	the	
Density-Matrix	Renormalization	Group	and	Its	Implications	
for	Density-Functional	Theory	E.M.	Stoudenmire,	Lucas	O.	
Wagner,	Steven	R.	White,	Kieron Burke,	Phys.	Rev.	Lett.	
109,	056402	(2012).



Convergence for H2

higher accuracy can be achieved by approximating only this component. The cost of the KS

scheme is formally N3, the cost of solving for the orbitals. Much of modern DFT research is

devoted to improving approximations to EXC, within which all quantum-many body e↵ects

are contained (by definition). The smaller field of pure DFT, also known as ‘orbital-free’,

aspires to approximate Ts directly, as in the old TF theory, and thus bypass the need to solve

the KS equations.

Figure 5.2: (Color online) Binding curve for a 1d H2 molecule[]. Black: highly accurate
DMRG result using a fine grid: Orange: ML F , evaluated on ML-optimized density, using
only 5 training points; Red: same as orange, but with 20 points; Blue: restricted local
density approximation.

Many modern approximations are local or semilocal, i.e., use the density and its gradient

to approximate the XC energy density at a point. While remarkably useful results can be

obtained with such approximations, there remains a classic failure that can be understood

in terms of the simple H2 molecule. Those approximations work well in the vicinity of the

equilibrium bond length, but as the bond is stretched, they fail more and more badly. In the

limit of a large but finite bond length (which we call stretched), a spin-restricted calculation

yields the highly inaccurate energy of two unpolarized H atoms. On the other hand, an

unrestricted calculation yields an accurate stretched energy, but has broken spin symmetry.

Neither situation is satisfactory, and most modern approximations fail in this way. An
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PCA basis for atomic densities
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DMRG on a uniform grid with spacing 0.04. Because of the cusp in the exponential potential,

each atom must sit on top of a grid point. For long chains, the total density on grid is an

ine�cient representation. Inspired by the localized atomic bases used in most quantum

chemical codes, we developed a data-driven basis set using Hirshfeld partitioning[42] and

principal component analysis (PCA).

Figure 5.4: (a) Partition density of each H atom in H8. (b) Single H atom densities for H
atoms in di↵erent chains and atomic distance (gray). The average density is plotted in red.
(c) First 7 principal components of the densities shown in (b), from top to bottom.

We first extract the Hirshfeld partitioning density of all single hydrogen atoms in every chain

with every di↵erent atomic distance R. Fig. 5.4 shows these partition densities of atoms. The

single atom partition densities reflect the diverse behaviors of these hydrogen atoms inside

the chains, as shown in Fig. 5.4(b). Then PCA is applied on those atomic densities to find

a subspace of the grid with the maximum variance. Each atomic density can be represented

by the base density (red in Fig. 5.4(b)) and 7 principal components (Fig. 5.4(c)). This new

basis set is completely data-driven and greatly reduces the number of variables in the density

representation while preserving the physics.

The learning curve of finite chains are shown in Fig. 5.3. Although they have close slopes,

the intercepts are di↵erent. This indicates that our ML model is able to learn the long chain
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Improved convergence from basis
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is indistinguishable from the exact one, and the error at equilibrium is only 0.0018 kcal/mol,

and shrinks with increasing R. This calculation applies all the principles discussed in Ref.

[111], but is now applying them to the many-body problem, not just the KS problem. Even

in the stretched limit, where the system is strongly correlated, there is no loss of accuracy.

Here, machine-learning has entirely bypassed the di�culty of solving the many-fermion prob-

lem. The machine learns the characteristics of the solution without ever solving the di↵eren-

tial equation. Moreover, the HK theorem is a statement of the minimal information needed

to characterize the ground-state of the system. In some ways, this ML approach is the purest

embodiment of the HK theorem.

Figure 5.3: (Color online) Learning curves for several 1d H chains. Upper figure: ML using
the total density. Lower figure: ML using the bulk partition densities (see text).

We next repeated these calculations for a sequence of chains of increasing length. In each

case, we train FML[n] on a limited training set, and then compare on a test set, with the

accurate results supplied by DMRG. The ML functional is optimized to find the density.

The performance of the error per electron is shown in Fig. 5.3. In almost every case, the

error drops with increased training, but unfortunately it also increases with increasing chain

length, making the calculation prohibitively expensive for the larger chains.

To overcome this di�culty, we introduce a basis set. Our reference data is generated by
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Origin of error for chain
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Convergence for infinite chain
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Pure	density	functional	for	strong	correlations	and	the	thermodynamic	limit	from	
machine	learning	Li	Li,	Thomas	E.	Baker,	Steven	R.	White,	Kieron	Burke,	to	appear	
Phys	Rev	B.



Lessons

• Can learn exact functional from exact data.
• Can learn F[n] instead of Ts[n] so accurately you 

can even get density.
• Created a new data-driven basis by using 

atoms in molecules; greatly reduced 
computational cost.

• Extrapolate to infinite chain limit to within 1 
kcal/mol.

• No problem in principle to do in 3d.
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Summary

• DFT is a great physics success story
• Although very useful, DFT has lots of issues
• ML functionals can even

– find accurate densities
– break bonds
– Do the full functional for solids (in 1d)
– Can now do KS-MD for small molecules in 3d

• Thanks to 
– Funders: NSF from chem, DMR, math

June	20,	22017 iDFT,	RIKEN 89


