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{ Plan

A. Introduction to electronic DFT

B. Exact conditions

C. Very fundamental stuff: Lieb-Simon limit
D. Machine-learning

E. Two recent papers in ML
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The electronic structure problem

» Use atomic units

* Born-Oppenheimer
approximation

Wavefunctions
antisymmetric and
normalized

* Only discuss ground-
state electronic
problem here, but
many variations.

« All non-relativistic,
non-magnetic here

June 20, 22017

Hamiltonian for N electrons in the presence of external potential v(r):
H=T+ Ve + V,
where the kinetic and elec-elec repulsion energies are

I Ay o

i=1 j#i
and difference between systems is N and the one-body potential
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N
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v

Often v(r) is electron-nucleus attraction
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where « runs over all nuclei, plus weak applied E and B fields.

(TH+Ve+VIV=FEV E = min(W|T + Ve + V)
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[ Thomas/Fermi Theory 1927

* Derived in 1926 without Schrodinger egn.

The Calculation of Atomic Fields

L. H. Tuomas (Proc. Camb. Phil. Soc. 23, p. 542-548)
Trinity College

[Received 6 November, read 22 November 1926.]

The theoretical calculation of observable atomic constants is often

° . only possible if the effective electric field inside the atom is known.

L T O I I I a S -— e r I I I I e O ry . Some fields have been calculated to fit observed data* but for many
elements no such fields are available. In the following paper a method is

given by which approximate fields can easily be determined for heavy

T F atoms from theoretical considerations alone.
— ~

3 3 2/3
— V.= U = Hartree energy T =&fd3r n* (r)

— V= [dr p () v o
— Eyp=T+V_+V U=5fd3’”f
— Minimize Eg[n] for fixed N

* Properties:
— Typical error of order 10%
— Teller’s unbinding theorem: Molecules don’t bind.

PG
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[ Constrained search proof

© Rewrite variational principle (Levy 79):

E::qu?+%¢0w>

::nw{ﬂ@+/ﬂﬂvmmq}
where

Fn] :‘wmw?+aﬂw

» The minimum is taken over all positive n(r) such that [ d3r n(r) = N

@ The external potential v(r) and the hamiltonian H are determined to
within an additive constant by n(r)

@ P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).
@ M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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KS equations (1965)

Define fictitious non-interacting electrons satisfying:

1 N
{57} a@ =g, SI6EF = ()
j=1
where vg(r) is defined to yield n(r).
Define Tg as the kinetic energy of the KS electrons, U as their

Hartree energy and

F=T+4 Ve = Ts+ U+ Exc

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

+/d3 " "/ + vxe[n](r), vxe(r) = e

an(r)

Knowing Exc[n| gives closed set of self-consistent equations.

April 5, 2017 UCSD cond mat




[ Today’s commonly-used functionals }

* Local density approximation (LD# P4 = A [ & n*4(r)
— Uses only n(r) at a point. A = —(3/4)(3/m)V3 = —0.738

* Generalized gradient approx (GGA)

— Uses both n(r) and [Vn(r)l
— Should be more accurate, corrects overbinding of LDA
— Examples are PBE and BLYP

» Hybrid:
— Mixes some fraction of HF
— Examples are B3LYP and PBEO

June 20, 22017 iDFT, RIKEN 9



A few recent applications

Computers, codes, algorithms always improving
Making bona fide predictions

E.g., a new better catalyst for Haber-Bosch process
(fixing’ ammonia from air) was predicted after
about 25,000 failed experiments (Jens Norskov'’s
group)

Now scanning chemical and materials spaces using
big data methods for materials design (materials
genome project).

World'’s hottest superconductor (203K) is hydrogen
sulfide, predicted by DFT calculations, then made.



[ Perdew’s systematic approach to XC }

b | ACY

* |ldea: Successively
refine
approximations

« Use exact conditions

* Avoid fitting of
parameters to data
sets

« Each rung is more
sophisticated, but
costs more , s

UNOCCUPIED
ORBITALS

June 20, 22017 iDFT, RIKEN 11



Big picture

Non-empirica
use of QM;
Perdew

TF theory
Lieb et al
Atoms

-

Empiricism
Exact Modern DFT Becke, Truhlar
conditions Kohn-Sham
erdew, Exc[npny]

Astrophysics,
protein folding,
oil science,...

Materials
science

Condensed
matter physics

iDFT, RIKEN



DFT papers

kilopapers
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DFT: A Theory Full of Holes, Aurora Pribram-Jones, David A. Gross, Kieron Burke,
Annual Review of Physical Chemistry (2014).
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In reality...
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Several DFT approaches to excited states }

Most popular: linear response TDDFT

Ensemble DFT for ensembles of ground and
excited states

Delta SCF

Min-max principle

une 20, 22017 iDFT, RIKEN 15



Excitations from a new’ ensemble
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[B180] Direct extraction of excitation energies from ensemble density-functional
theory Zeng-hui Yang, Aurora Pribram-Jones, Kieron Burke, Carsten A.
Ullrich, Submitted (2017).
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Thermal DFT }

* Created by Mermin, 1966.

« Can do constrained search over free energy to
fiind equilibrium density at non-zero
temperature

* Huge, rapid development for use in warm
dense matter over the last 2 decades, such as
modelling inertial confinement fusion.

[179] Warming Up Density Functional Theory, Justin C Smith, Francisca Sagredo,
Kieron Burke, Submitted.



Simplest possible model?

Diego Carrascal (Oviedo)

Jaime Ferrer (Oviedo)

Justin Smith

April 5, 2017

10P Publishing

J. Phys.: Condens. Matter 27 (2015) 393001 (34pp)

Topical Review

The Hubbard dimer: a density functi
case study of a many-body problem

D J Carrascal'?, J Ferrer'?, J C Smith® and K Burke?

1 Department of Physics, Universidad de Oviedo, 33007 Oviedo, Spain
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Abstract

This review explains the relationship between density functional theory and strongly
correlated models using the simplest possible example, the two-site Hubbard model. The
relationship to traditional quantum chemistry is included. Even in this elementary example,
where the exact ground-state energy and site occupations can be found analytically, there is
much to be explained in terms of the underlying logic and aims of density functional theory.
Although the usual solution is analytic, the density functional is given only implicitly. We
overcome this difficulty using the Levy-Lieb construction to create a parametrization of the
exact function with negligible errors. The symmetric case is most commonly studied, but

we find a rich variation in behavior by including asymmetry, as strong correlation physics
vies with charge-transfer effects. We explore the behavior of the gap and the many-body
Green’s function, demonstrating the ‘failure’ of the Kohn—-Sham (KS) method to reproduce
the fundamental gap. We perform benchmark calculations of the occupation and components
of the KS potentials, the correlation kinetic energies, and the adiabatic connection. We test
several approximate functionals (restricted and unrestricted Hartree—Fock and Bethe ansatz
local density approximation) to show their successes and limitations. We also discuss and
illustrate the concept of the derivative discontinuity. Useful appendices include analytic
expressions for density functional energy components, several limits of the exact functional
(weak- and strong-coupling, symmetric and asymmetric), various adiabatic connection results,
proofs of exact conditions for this model, and the origin of the Hubbard model from a minimal
basis model for stretched H,.

Keywords: density functional theory, Hubbard model, strongly correlated electron systems

(Some figures may appear in colour only in the online journal)

UCSD cond mat

Maybe
should be
called: The
many-body
theorists
companion

to DFT
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Orbital-free DFT

An old dream of DFT

Since T[n] is also a density functional, if we
knew it well-enough, we would not need to
solve KS equations.

Make everything much faster
TF is this kind of theory

No-one has found a universal approximation
sufficiently accurate for this purpose.

Most modern research focuses on XC
Thermal DFT at higher temperature uses TF



B. Exact conditions in DFT

* Used to constrain good-quality approximations

* Some of the most powerful are very simple to
deduce.

« See Mel Levy’s talk:

exact constraints

June 20, 22017 iDFT, RIKEN 20




Kohn-Sham elementary facts }

JUIiIE 2V, 24V 1l/ ori, \C

T and V.. are both positive, trying to rip system apart, but overcome
by more negative V.

Kinetic energies are positive, and T > T4 by definition.
U is positive and dominates the electron-electron repulsion.

Ex only has contributions from same-spin electrons and is negative.
This part is given exactly by a HF calculation.

The electron-electron repulsion of the KS wavefunction is just
(®[n]|Vee|®[n]) = U[n] + Ex[n]
E. contains both kinetic and potential contributions:

Ec = (V[n]|T + Vee|W[n]) — (®[n]| T + Vee|®[n])
(T = Ts) + (Vee = U~ Ex) = To + Uo



Uniform coordinate scaling

Figure: A one-dimensional density (blue) being squeezed by v = 2 (red)

@ A very handy way to study density functionals, especially in limits:

ny(r)=~’n(rr), 0<y<oo

» For v > 1, squeezes up the density, preserving norm; for v < 1,
stretches it out.

e Exchange: Require Ex[n,]| = v Ex[n]
o Correlation: Eq[n,] = B[n] + C[n]/v + ... for high density limit of
finite systems. (Violated by LDA!)

) [172] Exact conditions on the temperature dependence of density functionals
June 20, 22017 IDFT, R} Kieron Burke, Justin Smith, Paul E. Grabowski, Aurora Pribram-Jones, Phys Rev B 93,
195132 (2016)



C. Very fundamental

* In any event, the result is extraordinarily powerful, for it
enables us to calculate (approximate) allowed energies

without ever solving the Schrédinger equation, by
simply evaluating one integral. The wave function itself

has dropped out of sight.

* Griffiths, Quantum Mechanics, about semiclassical approximations.



L Original KS idea: Simple metals }

WKB for one level=>sum over many=>TF theory
Corrections to WKB => sum over many => gradient expansion
As R ->0, TF becomes relatively exact (asymptotic expansion)

n(x)

"N NN NN
0
VAN NN NN

v(x)

June 20, 22017 iDFT, RIKEN 24



[ Chemistry and most materials

|

pA

/. \

v(x)
* TF theory STILL relatively exact in limit k -> 0.
e Leading corrections come from turning points, yielding quantum
oscillations.

June 20, 22017 iDFT, RIKEN
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[ Lieb-Simon limit }

@ Consider scaling to continuum limit:
ve(r) = YY), NG

where d is spatial dimension.

@ Lieb and Simon (1973) proved that Thomas-Fermi theory is
relatively exact as ( — oo, i.e.,

ETF _ EO

0
E,

@ Equivalent to changing Z = N for neutral atoms.

@ Schwinger and Englert showed LDA exchange is relatively
exact for atoms as Z — oo

June 20, 22017 iDFT, RIKEN 26



[ KS version of Lieb-Simon statement }

Almost certain that
o ELDPA s relatively exact in the ¢ — oo limit
LDA LDA
AE: E — Exc

lim = =0
(—oo  Exc Exc

Kieron's instinct:

@ Success of simple local-type approximations is because they
are crude attempts to capture leading corrections to
asymptotic limit (LDA)

[173] Locality of correlation in density functional theory Kieron Burke, Antonio

Cancio, Tim Gould, Stefano Pittalis, The Journal of Chemical Physics 145, 054112
(2016).

June 20, 22017 iDFT, RIKEN 27



Motivation

Local density approximation is semiclassical
limit of all systems

What are leading corrections in an expansion in
hbar?

Are these approximated by our GGA’s, and is
this why GGA's work?

Gradient expansion of slowly-varying gas
(discussed in HK and KS papers) is violated by
most real systems, even metals.



Early work

PHYSICAL REVIEW

Bl—

FG. 4.
circle rep:
circle is d
which con

June 20, 22017

NUMBER 1

5 JANUARY 1968

Correlation Energy of an Electron Gas with a Slowly Varying

High Density*

SHANG-KENG MA AND KEITH A. BRUECKNER
Institute for Radiation Physics and Aerodynamics and Department of Physics,

University of Calfironia, San Diego, La Jolla, California
(Received 15 June 1967)

The correlation energy (the exact energy minus the Hartree-Fock energy) of an electron gas with a
high and slowly varying density is examined. The term proportional to the square of the density gradient
is evaluated by the application of perturbation theory to the external field and of the random-phase (or
high-density) approximation to the Coulomb interaction. This term has the form AE/[p]=/d%
B(p(x))|Vo(x)|?, where p () is the electron density. B(p) is found, by summing the leading divergent dia-
grams, to be [8.470X10724-0(p"121np) +0(p71/) Jo~4/# Ry, with the length measured in units of the Bohr
radius. The role of the density gradient in the correlation energy problem of atoms is discussed.
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F16. 4. (a) The %* term of the diagram (2) in Fig. 3(b). Each
circle represents a factor k-v operating on the line on which the
circle is drawn. (b) The zero-momentum-transfer vertex function
which constitutes the lower parts of the last two diagrams in (a).

iDFT, RIKEN

infinite |Vp|? and which reduces to the integrand of
(4.34) for small |Vp|2 Then the difficulty arising from
the very high density gradient may be avoided, and
we expect

E/= / dartdr f(o(r),| Vo ()| (.2)
0

to be a reasonable estimate of the correlation energy.
Since, if the density gradient is high, a higher density
gradient would imply a smaller region in space for the
distribution of the same number of electrons, and since
the correlation energy is mainly a long range effect, we
expect the correlation energy per electron to decrease
as the density gradient increases in the region of high
density gradient. Since E®(p) is roughly proportional
to the density, the function

f@,| Vo) =EL(p)/[1—B(p) | Ve |/ GEL ()] (5.3)

where y is an adjustable constant greater than zero,
satisfies the above requirements. We found, if y=0.32,

29



Hydrogenic atoms }

Consider many same-spin “electrons’ in a -1/r
potential

Still fermions, satisfying exclusion principle

Occupy 1s, 2s and 2p, 3s, 3p, 34, etc.

Kinetic energy = - total energy (virial theorem)
=-(1+1/4+1/4+1/4+...)/2

Example of T[v].

une 20, 22017 iDFT, RIKEN 30
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Little math exercise

* Given a sequence: a.

—a=1, Va, Va, Ya, Ya, 1/9,1/9,1/9,1/9,1/9,1/9, 119, 1/9, 1/9, 1/16,...

* Find partial sums of N terms Sy
— SN = Z ai
- Sy =1,1.25,1.5,1.75,2,2.11111,2.2222,2.33333, ...

Mar 4, 2015 MPI Halle

31



Exact partial sums up to 10

exact —a—

012345678910
N

Mar 4, 2015 MPI Halle



Exact partial sums up to 300

Mar 4, 2015

nNn ~ O 0 O

-

O 50 100 150 200 250 300
N

MPI Halle

33



Expand for large N

* Sy = Bp(N) + B4(N) + B5(N)+...

- Find By(N) = (3N)'/3

+ Find B,(N) = -1/2

Mar 4, 2015 MPI Halle

34



Leading large-N behavior

Mar 4, 2015

nNn ~ O 0 O

-

0 50 100 150 200 250 300
N

MPI Halle

35



[Leading plus first correction up to 300}

nNn ~ O 0 O

Z
0p)
exact
Bo(N) ——
ol . L BiN) —— |
0 50 100 150 200 250 300
N

Mar 4, 2015 MPI Halle 36



L Leading plus first correction up to 4 }

0 1 2 3 4
N

Mar 4, 2015 MPI Halle 37



Include 2" correction up to 3

Mar 4, 2015

MPI Halle

38



Include 2" correction up to 1

Mar 4, 2015

MPI Halle
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Results for expansion }

Performed expansion for N->infinity.

For N=1:

— S,=1

— B,=1.442249570

— B,+B,=0.9422495703

— B,+B,+B,=1.000029677

TF theory yields B; first correction is Scott
term

* No existing approximate density functional
gets this and the slowly-varying gas right.

Mar 4, 2015 MPI Halle 40



A new continuum

Consider some simple problem, e.g., harmonic
oscillator.

Find ground-state for one particle in well.

Add a second particle in first excited state, but
divide h by 2, and resulting density by 2.

Add another in next state, and divide h by 3,
and density by 3

— oo



Continuum limit

Leading Corrections to the Local Density Approximation

Leading corrections to local

Attila Cangil, Donghyung Lee, Peter Elliott, and Kieron Burks approximations Attila Cangi,
Chem Iniv California, Irvine, CA 92697, US. ;
Departments of Chemistry and of Physics, University of California, Irvine, CA 92697, USA Donghyung Lee, Peter E||I0tt,

T T . r and Kieron Burke, Phys. Rev.
B 81, 235128 (2010).

25

Density

Attila Cangi

FIG. 2: TF and renormalized exact densities for N’ =

1,4,and16 particles in v(z) = —12 sin? (rx),0 <z < 1, show-
ing approach to continuum limit.

Jan 24, 2011 BIRS 42
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Getting to real systems

* Include real turning points and evanescent
regions, using Langer uniformization

* Consider spherical systems with Coulombic
potentials (Langer modification)

* Develop methodology to numerically calculate
corrections for arbitrary 3d arrangements

Jan 24, 2011 BIRS
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Classical limit for neutral atoms }

* For interacting
systems in 3d,

increasing Zin
an atom, >
keeping it =
neutral, o
approaches the £
classical

continuum, ie
same as h—=0
(Lieb 81)

Jan 24, 2011

07 | 1 | | | I I

F
06 | He —
r ________
05 | D — -
04 il - = -
03 H - _
0.2 -
01 | .
0 L | | | | | | |
O 05 1 15 2 25 3 35 4
[/ZMN1/3)
[158] Atomic correlation energies and the generalized gradient approximation,
Kieron Burke, Antonio Cancio, Tim Gould, Stefano Pittalis, submitted and
ArXiv:1409.4834 (2014)
BIRS yivik



[ What about energy differences?

lonization-Energy

o5 |He noble gases:
Ne alkali metals: He
_ h Li Ne
3, 20 Na Ar
2 Ar K Kr
2 15 '/ Kr e Rb Xe-
: Cs Rn
S Ha Rn
% 10 f I g Fr
= 1K
5 -
Li Na K Rb Cs Fr
0 | | | | |
0 20 40 60 80 100

Atomic Number
* wikipedia

May 23, 2012 IPAM

45



/> limit of ionization potential

Shows even energy
differences can be
found

Looks like LDA exact
for Ey as Z-> oo,

Looks like finite E.
corrections

Looks like extended TF
(treated as a potential
functional) gives some sort
of average.

Lucian Constantin, John
Snyder, JP Perdew, and
KB, JCP (2010).

May 23, 2012

6 I 1 1 I 1 1
5t LSDA = L
PBE + XC
_ exact o . . -
4t * o
>3 ¥ 8 .
? 3 - = & ]
A . TESWD
E 2; X
Tr TF
0 1 1 1 1 1 1
1 2 3 4 5 6 7 8

groups of the periodic table (from alkali metals to noble atoms)

FIG. 1: Tonization potentials of the main groups in the limit of
large row number of the periodic table, calculated using exact
exchange, the local (spin) density approximation (LSD), and
PBE. We also show the extended TF result.

IPAM 46



Ionization density for large Z

04 . . . . . . .
0.35
0.3
0.25

1
—
(o))
o
(0]

|

1

02 $ O\ () e i
0.15 ' L
0.1

0.05

lonization density (a.u.)

-0.05 ] ] ] ] ] ] ]

r (bohr)

FIG. 4: Same as Fig. 3, but for the VIIIth or noble-gas
column of the periodic table at various finite Z and in the
limit Z — oc.

May 23, 2012 v



Ionization density as Z->eo

May 23, 2012

lonization density (a.u.)

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

-0.02

-V

 Thomas-Fermi

_alkali group:

Ty
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Leading corrections to n[v](r)

scC _ pF(x)
n*(z) = >

FIG. 1. Thomas-Fermi (dashed) and semiclassical (dotted)
approximations to the density (solid) of 2 particles in a Morse
potential, v(x) = 15(e~%/2 — 2e~/4),

Corrections to Thomas-Fermi Densities at Turning Points and Beyond Raphael F. Ribeiro, Donghyung Lee, Attila Cangi, Peter Elliott,
Kieron Burke, Phys. Rev. Lett. 114, 050401 (2015).

June 20, 22017 iDFT, RIKEN 49



After a decade of work

[ e

- o @ C @ diVII U @ @ | O @ VU U CC CLC @ cl O DUIKE

ommunication: lonization potentla s In the limit ot large atomic number Lucian A.

C. Snyder, John P. Perdew, Kieron Burke, The Journal of Chemical Physics 133, 241103 (2010).

[130] Electronic Structure via Potential Functional Approximations Attila Cangi, Donghyung Lee, Peter
Elliott, Kieron Burke, E. K. U. Gross, Phys. Rev. Lett. 106, 236404 (2011).

[146] Potential functionals versus density functionals Attila Cangi, E. K. U. Gross, Kieron Burke, Phys. Rev. A

242 AT () ()

Almost exact exchange at alimost no computational cost In electronic structure Peter 1ott, Attila

L\ _dlICIl. DL C1allC) [ ILidils L IN__LJ) \1[()SS _INICTOIL DUIRKE [ 1IVS _I\CV_ A 72 _\//Z/. ) 1) l/7\)].)]

[1 58].Ato[nic correlation ener.gies.and the.generalized gradient approximation Kieron Burke, Antonio

Lee, Attila Cangi, Peter EIIott, Kieron Burke, hys. Rev. Lett. 114, 050401 (2015).

[170] Uniform semiclassical a Xroximations for one-dimensional fermionic systems Raphael F. Ribeiro,
Kieron Burke, submitted and ArXiv:1510.05676 (2015).

June 20, 22017 iDFT, RIKEN 50



{ Summary

* Underlying success of DFT approximations is
because they are semiclassical.

» | defy you to find semiclassical approximations in
your many-body book (this specific limit).

* Very difficult to generate general forms:
— Standard methods often useful only in 1d
— Often fail in presence of Coulomb potentials
— Can reverse-engineer to deduce forms, but very difficult.



Holy grail?

What formulation of QM might directly yield
expressions for density functionals?

Within such a formulation, it should be natural
to show LDA exact in Lieb-Simon limit.

It should be possible to isolate leading
corrections.

It may be possible to capture essential features
with simple density functionals.



D Machine learning

* An entirely different approach to finding
approximate density functionals.

June 20, 22017 iDFT, RIKEN
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Machine learning

Powerful branch of artificial intelligence
Essentially fitting and interpolating

Maps problem into much higher-dimension
feature space, using a simple kernel

Higher-dimension often means more linear
Perform regression in feature space
Project back to original problem



[ Kernel ridge regression }

® Kernel ridge regression (KRR). Given {Xj, f]}

- 2:1 a;k(%;, %) length scale
]:

\

k(x,x') = exp(—|x — x'[[*/(207))

® Minimize:

M
= (f( )* + Mla?

g=1 \
noise level
o= (K+NI)"'f

June 20, 22017 iDFT, RIKEN 55



Fitting a simple function

June 20, 22017

f(x)

noisy data

iDFT, RIKEN

1.0
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L Too high noise level: underfit

noise level = 50

4 .
® noisy data
-- ML o
3k
* ®
’ °
°
°
B o1 o0 © -]
e - -----
C 4
°
or e
] °
_lk
0.0 0.2 0.4 0.6 0.8 1.0
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Medium noise level

June 20, 22017

noise level = 0.5

4 . .
® noisy data
--- ML °
3t 1
| ° " e
. 4
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Small noise level: overfit

A noise level = 1le-6
® noisy data
- == ML .
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Average over samples

® Always optimize on samples not in the training set

%, fi}

June 20, 22017

A, 04

)‘37 03

A2, 09

)‘170-1

A, 0 = median; {\;,0,}

iDFT, RIKEN
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[ Exact function and best fit

noise level = 0.46 (optimized via cross validation)

4
® noisy data
-=-=- ML P
3F|—— exact

f(x)

June 20, 22017 iDFT, RIKEN



Basic idea

For a limited variety of one-body potentials, construct
functionals via ML that are sufficiently accurate to do
the job.

Typically, require accuracy of 1 kcal/mol =0.0015 Ha.
For kinetic energy, also need functional derivative.

Most useful when multiple slightly different uses of
DFT, eg during an MD run.

Functional could be disposable, i.e., thrown away at
end of run.

Totally irrelevant that it does not apply to other
systems.

Is completely non-local in general, so best advantage
when bonds break, as logal functionals fail.



[ ML applications in electronic structure }

 Most with Klaus Mueller of TU Berlin,
computer science.

* ML now being applied directly to, e.g.,
molecular energies from geometries for
drug design, many by Matthias Rupp (FHI
Berlin).

* Our efforts are focused on finding T[n]

from examples, work by John Snyder
(Humboldt fellow at TU Berlin/MPI Halle)

June 20, 22017 iDFT, RIKEN 63



[ Demo problem in DFT }

® N non-interacting same-spin fermions confined to |d box

® Define class of potential:
3

o) = =) aiexp(—(z —b;)?/(2¢}))

=1

® Represent the density on a grid with spacing Ax = 1/(G — 1)

e ML-DFA for KE:

T'(n) = TZajk(nj, n)

June 20, 22017 iDFT, RIKEN 64



Dataset

June 20, 22017

Generate 2000 potentials. Solve for up to 4 electrons.

iDFT, RIKEN
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Performance for T,

N M A o |AT| |AT] |AT|™
40 2.4x107° 238 3.3 3.0 23.
60 1.0x107° 95 1.2 1.2 10.
| 80 6.7x107° 48 043  0.54 7.1
100 3.4x10°" 43 0.15 0.24 3.2
150 2.5x 1077 33 0.060 0.10 1.3
200 1.7x 1077 28 0.031 0.053 0.65
2 100 1.3x10°" 52 0.13  0.20 1.8
3 100 20x1077 74 0.12  0.18 1.8
4 100 14x107" 73 0.078 0.14 2.3
1-47 400 1.8x 1077 47 0.12  0.20 3.6

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kcal/mol

June 20, 22017 iDFT, RIKEN



functional derivative?

June 20, 22017

iDFT, RIKEN

Functionals are
defined on infinite-
dimensional spaces

With finite
interpolation, can
always find bad
directions

Can we make a
cruder definition
that will work for
our purposes?

67



Principal component analysis
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il

iDFT, RIKEN
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Projected functional derivative

June 20, 22017

iDFT, RIKEN
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First ‘"ML makes a functional’ paper

26
27

—22.3897314906413
5.595799173773367
1.94645582566549

—1.105559822533069
—3.886381532577754
—1.341930696378109
—10.16467121571373
—1.107633246744663
10.39451871866851
—0.139925361351959
3.656124569605117
8.06734679112684
0.3011566621835722
—0.2469178958324283
—5.704905642148452
0.1425795779687519
0.6843702894502789
—14.06571757369153
8.32346109443768
—5.252317079780442
6.18641388898792
0.4821906326173532
5.707663438868804
—0.1857958679022612
2.321594443893878
2.451069994722774
—0.961350897030818

—10.67971490671366

1.375998039323297

—4.330863793299111
6.961655278126058

—5.30540083281513
3.395104400983763
1.330224789015745

—0.2920604955263079

—26.41840990525562
6.630393088825135
3.065748817227897

—1.743105697039855
—1.631255302904965
—9.50982692642515
—4.496736421068983
—1.002977917543076
—9.23106545170694
14.99926304831282
4.189181104505013
8.32837188138842

—21.84200888491582

6.604738977945651
TH.2798R8423246628
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3.751807395744921
4.522456026868127
2.751346713386582
5.725277193011525
4.95871172966177
6.451869235304859
6.705508349541454
7.390220519784453
1.478170300165134
4.045190240200832
4.944179742822627
2.988178201634472
8.78996207364355
6.242957525364009
4.447521595114223
6.919606258393273
8.27200587323167
6.220712308892191
9.29716067662943
3.424683176707511
3.789578783769164
1.195769022526768
4.058614230578957
5.159763617905121
3.319181325761367
4.005247740100538
7.710615861039985
4.728468083127391
2.740626958875014
3.209443235555092
3.013659237176324
2.088882156026381
7.9733680986292
5.105339790874075
6.773414983805557
6.41701161854283
6.476325542442256
1.300093759156537
3.145607697855832
3.121291975208031
7.367027947839741
8.56498650586069
9.43121814362608
8.47929696159459
4.708917711658332
7.583635162152007
3.414315967033806
1.625552430388586
3.42187897931262
6.220538426057454

0.0852624107335768

0.03620201946841309
0.0948195528516815

0.03097303116261406
0.06823254438777603
0.05482804889270922
0.0934749698077619

0.07970661674181083
0.03602109509210016
0.03579955552582782
0.0931916525333049

0.07482186947515447
0.04833452393773747
0.0989568314234112

0.06770523205457797
0.0821756368975312

0.0547013388431661

0.04765956545437692
0.0656810603414827

0.0867529985575643

0.07617326304382499
0.04928749082970199
0.04743875933294599
0.0850570422587659

0.05391080867981007
0.07620861067494449
0.07131617125307138
0.06509200806253813
0.06438323836566841
0.05150806767094947
0.0802684211883349

0.07464091227469428
0.0911843583955236

0.06331718284342962
0.07595819905259191
0.06246944646172664
0.07599435647188182
0.06741885075599173
0.0415292¢~a=anns

0.03133567
0.0739810¢
0.0870950
0.03689894
0.05472147
0.0907364%
0.0936829% <
0.05054048464274665
0.04546236831654488
0.0894449950697187

0.0821521091215863

0.4453450848668749
0.5050210060676815
0.4901204212506473
0.5511177785567803
0.5645951313008806
0.5694170176403242
0.4420693171728495
0.5081940602224835
0.5799113381048154
0.5678362348598895
0.4834640277977335
0.4950144569660614
0.459203937360375

0.4205662570527381
0.5047965897298675
0.5976799418614426
0.4453254786423237
0.4898959293071353
0.4960066859011466
0.4322548560407479
0.5418490045761073
0.5286859472378347
0.4981149890354436
0.5311491284465588
0.5914435434600773
0.5759225433332955
0.4007362522722102
0.4959400801351127
0.5077158168564866
0.5932432195310449
0.5733460791404235
0.4740072756248339
0.5314007871406556
0.5503804706506275
0.5210834626114553
0.4258923441426071
0.4345528705798566
0.4866345116967513

0.5043307410524706
0.5426078576324179
0.4941485628974172
0.41187484492572315

7.559337237177321
1.885091277540955
7.863592227266858
7.988513342309234
9.08135225317634
4.416924333519995
2.858371131410651
3.815123656821275
2.105782960173057
9.32386837735074
9.3847979419491
1.910770315838324
9.93467757777873
4.73983230004983
3.987888630073714
8.04099037018168
7.433883810628654
8.72249431241257
6.796263459296078
6.859255296971943
1.363177133649232
8.76714063033632
1.015171237842736
7.238990148015965
9.11776045377491
6.743529978394792
3.372061685311945
9.81266481664175
1.813952930718781
4.682408324655706
7.441047648005995
4.228694369663863
6.375772536276909
9.5740821641842
4.229974804881476
1.379491105318868
6.969363897694016
6.942052331590217

3.070996567281799
4.091176923293506
4.96749741331263

2.377028497509498

0.05840909867970421
0.06521780385848891
0.0951797983951825
0.0928323179868588
0.04472856905840844
0.04212208612720639
0.03722557506068529
0.04965529863397879
0.0861928382367878
0.0858648976559044
0.0840810063497973
0.03877152903045122
0.0973964303071365
0.0450110225161678
0.03595136615254331
0.03129262110881438
0.04612202343826998
0.05059967705235588
0.04037116107097755
0.0955962752949951
0.03197249245240319
0.0870852412295278
0.085826684646538
0.05867048711393652
0.03583354001918901
0.0967347280360008
0.04579335436967417
0.0951346706530719
0.0845523320869031
0.03641376226612134
0.0924462539370359
0.03993178348974601
0.0933026364108379
0.07463500644132846
0.03532177545633547
0.06306367927818108
0.06669302037176108
0.07107963920756023

0.06968276328974509
0.03836885039652842
0.06031151123783582
0.0963110933106458
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0.4990223467101435
0.4961601035955842
0.5196620049802691
0.5146415116367569
0.4299117124064201
0.5897125000677342
0.4216580500297413
0.497023655525965

0.4812528298377607
0.5698752996855582
0.4090254720704045
0.5786659568499292
0.4280349684453508
0.559400017887981

0.5929011044925536
0.4686530881925831
0.5269730370279639
0.4421274052875277
0.4389885737869158
0.517620399931194

0.5284999992906743
0.5989638152903285
0.5470349320774566
0.5662410781222187
0.4669413688494417
0.4980631985926895
0.4845503268496217
0.5047212015277842
0.407247659218711

0.4491940043173043
0.5216671466381739
0.4402946238148492
0.447244215655568

0.5814481952546582
0.5725615130215063
0.4531443030507202
0.517427894398595

0.4930672781311588

0.5702669702356848
0.504879512949007

0.4119028637456998
0.4746736RH6808109

4.729884445483556
9.47421945496329
9.51608680035275
1.101098863639624
8.24973637849809
8.86521100790565
6.670274811535954
9.69945245311718
7.010226383015251
9.81895903799508
3.673880603434117
4.285706479098184
4.931948094146255
9.11978947943194
5.22121823715344
3.421695873368174
8.3641619521824
2.416276423317733
2.206183147865627
5.826144942819697
4.9879001955338
2.489565114307663
6.343764732282688
8.70600609334284
6.117669336479262
5.505849306951131
8.6021995929235
3.180268423645401
1.054506345314588
9.57800470422746
8.15403131934562
4.912298433960689
7.387561983870292
5.810342341443878
8.88452823254966
2.189456974183496
3.961825639220393
7.834870626014938

Finding Density Functionals with Machine Learning John C.
Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert Miiller,
Kieron Burke, Phys. Rev. Lett. 108, 253002 (2012)

5.360783854112533
4.527748284314512
4.581927607849956
5.3985455415944K87

0.0929218712306724
0.0556740133396159
0.07785377315463609
0.0882939028519791
0.08854431361856
0.0866581794842557
0.0977332470946321
0.07039341131023045
0.03535327789989237
0.04704020956533079
0.07158934023489803
0.05940487550770145
0.0969410287755626
0.06189826031162779
0.04029431905467698
0.05166215779587051
0.07996879390804805
0.07373660930828208
0.0804910989081056
0.0910408442631135
0.04126125322920861
0.05568685410478115
0.0878769436185823
0.04088387548046445
0.04553014156422459
0.0971440363586883
0.0634681851083368
0.06891913385037023
0.0998274789144316
0.089704223465467
0.05611934350568269
0.06528359492264517
0.0977643384454912
0.03327635127803191
0.0932985710685446
0.098078005933584
0.0929115322244988
0.06446115603870624
0.07636214080338054
0.0936192481138518
0.04986976063479617
0.05651923264880363
0.05983735955021298
0.06892772167363432
0.05825558914206748
0.04763840334231468
0.0388888383066967
0.05975894102927981
0.0871948963692279
0.0822574656780643

0.5590503374710945
0.4834045749740091
0.5806015592262945
0.5265108634130272
0.5416193648861009
0.5311744230227635
0.538756085129185
0.4990744291774679
0.4969989664577149
0.5708692337579542
0.5598196803643543
0.4844513368813702
0.4560660353529726
0.493100819449519
0.514129411681418
0.4208560803818513
0.5036755718396144
0.5403850652535799
0.5806221323132373
0.4167014408128501
0.4895167206754735
0.5787056957942209
0.5449452367497044
0.5305143392409284
0.4131324263527175
0.45173467721102
0.4207242810824543
0.5758580789792047
0.5956344420441539
0.4702887735348434
0.4910483719005932
0.4923580906843156
0.479824590293356
0.5550216356360829
0.5046388124857028
0.5174384564079299
0.4621043570336795
0.5367219218216266
0.4330291254331895
0.4523240987335903
0.5394709698394433
0.4832351547748815
0.4837560035001434
0.5908529311844791
0.566434199642786
0.5010633160850224
0.5784155467566237
0.4670598506496871
0.4176805754532423
0.5258947233190487
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Lessons

Exact noise-free data infinitely available for
T.[n], every cycle of every KS calculation in the
world provides examples.

Need very accurate derivatives to get accurate
density from Euler equation.

Can find ways to bypass this.

Functionals can be made arbitrarily accurate
with sufficient data.
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{ 2 new papers

* By-passing the KS equations with ML (on arXiv)
— Felix Brockherde, Li Li, Klaus Muller, KB, ...

— Avoids functional derivative
— Applied in 3D
— Still doing KS problem, T,[n]

* Pure Density Functional for Strong Correlations
and the Thermodynamic Limit Using Machine
Learning. in Phys Rev B.

— Li Li, Thomas E. Baker, Steven R. White and KB
— Do interacting functional (ie. Exact Exc)
— Do strong correlation

— Do thermodynamic limit
— Stillin 1d



L By-passing KS

o7 _ 1 till convergence
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Performance of ML for HK map

Table I. Comparison of errors of the ML Orbital-Free map and the MLL Hohenberg-Kohn map for different numbers of training
data points M (in kcal/mol). Due to cancellation of errors AEp for ML-HK can be significantly lower than the error of our
most accurate E[n] (AE for M = 200): The errors in kinetic energy (T'[1] — T[n]) are consistently corrected by errors in the
potential energy ([ v — [nv) [? ]. Values in brackets show the AE error trained on 200/M training points.

ML-OF ML-HK AEp
M AFE AFEr AFEp Grid Fourier KPCA
avg max  avg max  avg max| avg max avg max  avg max
20| 7.7 47 7.7 60 8.8 87 2.1 [2.2/3.5] 12 [11/27] 1.7 9.8 0.37 5.5
50 1.6 30 1.3 7.3 14 31 0.26 [0.26/1.2] 2.4 [2.4/7.1] 0.26 2.4 0.061 0.96
100/ 0.74 17 0.2 2.6 0.75 17 0.081 [0.083/0.19] 0.82 [0.82/2.1] 0.083 0.81 0.033 0.43
200 0.16 2.9 0.039 0.6 0.16 2.9 0.019 [0.042/0.042]  0.45 [0.059/0.059]  0.02 0.45 0.026 0.26

June 20, 22017 iDFT, RIKEN 75



[ Convergence of different HK maps }

| | | | | ] ] |
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[ Non-interacting HK map }

M)—>
e

@ “
Potential Potential as Independent Data-driven and physicaly = Density
Gaussian blobs ML models motivated basis represen-
tations

June 20, 22017 iDFT, RIKEN 77



Error for H,
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B175: By-passing the Kohn-Sham equations with machine learning Felix Brockherde,
Leslie Vogt, Li Li, Mark E Tuckerman, Kieron Burke, Klaus-Robert
jun MBRlulter, (submitted) (2016). CECAM DFT school 80




{ 2"d paper: ML of exact functionals J

Guaranteed Convergence of the Kohn-Sham Equations
Lucas O. Wagner, E. M. Stoudenmire, Kieron Burke, Steven
R. White, Phys. Rev. Lett. 111, 093003 (2013).

Use DMRG to solve continuum problems in 1d.

Much success infpast, showing failures of DFT
approximations for strong correlation.

Here use DMRG to generate much data of exact
densities and energies

All restricted to 1d.

We train and test a machine learning F[n], the universal
part of the electronic density functional, to within
quantum chemical accuracy. We (a) bypass the standard

Kohn-Sham approach, (b) include the strong correlation
of highly-stretched bonds and (c) create a model for the
infinite chain limit.

One-Dimensional Continuum Electronic Structure with the
Density-Matrix Renormalization Group and Its Implication
for Density-Functional Theory E.M. Stoudenmire, Lucas O.
Wagner, Steven R. White, Kieron Burke, Phys. Rev. Lett.

v 109, 056402 (2012).



Convergence for H,
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PCA basis for atomic densities

Hy molecule

-15 -10 -5 O 5 10 15-15 -10 -5 O 5 10 15
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Improved convergence from basis
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Origin of error for chain

June 20, 22017
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Convergence for infinite chain
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FIG. 1. (Color enline) Electronic energy of mnfnite chan from
model learned from extrapolated chain densities and energaes.
The accurate value was calculated with inhnite DMRG (see
text).

Pure density functional for strong correlations and the thermodynamic limit from
June 20, 22017 iDF :;—:,cshpi::, I:arning Li Li, Thomas E. Baker, Steven R. White, Kieron Burke, to appear




Lessons

Can learn exact functional from exact data.

Can learn F[n] instead of T [n] so accurately you
can even get density.

Created a new data-driven basis by using
atoms in molecules; greatly reduced
computational cost.

Extrapolate to infinite chain limit to within 1
kcal/mol.

No problem in principle to do in 3d.
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Summary

DFT is a great physics success story
Although very useful, DFT has lots of issues

ML functionals can even

— find accurate densities
— break bonds

— Do the full functional for solids (in 1d)

— Can now do KS-MD for small molecules in 3d
Thanks to

— Funders: NSF from chem, DMR, math



