

Interdisciplinary symposium on modern density functional theory 19-23 June 2017 Okochi Hall, RIKEN (Wako campus)

Improving usability of DFT codes by using GUI software C-Tools

Kanako Yoshizawa (RIST) Yoshihide Yoshimoto (The Univ. of Tokyo) Shinji Tsuneyuki (The Univ. of Tokyo)

Outline

- RIST in HPCI
- About C-Tools
 - the purpose of the development
 - the functions
- Simulation by using C-Tools
 - Run Quantum Espresso (PWscf) in K computer

HPCI: High Performance Computing Infrastructure

- Established as Japanese integrated high performance computing infrastructure in 2011
- Variety of computer systems are connected via high speed academic backbone network and provided as *HPCI* resources to users in Japan and overseas

*4 : Japan Agency for Marine-Earth Science and Technology

HPCI Framework

*1 : Ministry of Education, Culture, Sports, Science and Technology, *2 :Advanced Institute for Computational Science

C \leftarrow **TOOLS** Top Five Application Software Used in HPCI \mathcal{R}_{ist}

field	ropking	ooftwara	number of projects				
neiu	Tanking	Soliware	total	academia	industry		
	1	GROMACS	17	15	2		
Bio &	2	GENESIS	10	10	0		
	3	MODYLAS	6	6	0		
	4	AMBER	5	4	1		
	5	SiGN	4	4	0		
	1	GROMACS	10	9	1		
Material	1	LAMMPS	10	4	6		
science &	1	MODYLAS	10	8	2		
Chemistry	4	Quantum ESPRESSO	9	6	3		
	4	NTChem	9	9	0		
	1	SCALE	9	9	0		
Environment,	1	NICAM	8	8	0		
Disaster mitigation	3	LETKF	7	7	0		
& prevention	4	OpenFOAM	6	2	4		
	5	GAMERA	5	5	0		
Engineering & Manufacturing	1	FrontFlow/blue	12	3	9		
	2	OpenFOAM	11	2	9		
	3	LANS3D	8	7	1		
	3	LS-DYNA	8	3	5		
	5	FrontFlow/red	7	2	5		

red: overseas open-source software (OSS)

green: Japanese national projects software (open-source or inhouse)

black: Commercial or inhouse software

5

From the application forms in FY2016 and user reports in FY2015

OSS is widely used and becoming important tool in HPCI

Application Program Support

- Consultation
- Diagnosis
- Program Tuning
 - profiling
 - bottleneck removal
 - better algorithms

We support 30 projects and work on applications from several different fields.

Cf. Number of HPCI projects ~200

material science & chemistry biology, life sceince manufacturing meteorology, disaster controls physics, space science nuclear power, fusion information, computers mathematics 40 35 30 25 20 15 10 5 0 FY2013 FY2014 FY2015 FY2016

Number of supported applications

User Support) Example : Optimizing Quantum ESPRESSO

- Users' demand on Quantum ESPRESSO (QE)
 To achieve better execution performance and parallel scaling
- User support of QE in K computer
 - Optimization of CP package (Car-Parrinello MD)
 - Key 1: Usage of fast collective MPI communication algorithm in K computer
 - Key 2: Reduction of instruction costs in matrix multiplication routines
 - ◆ Building binaries (ver.5.1.1) suitable for K computer
 - available for all the users
 - including our tuned CP package

contributing to *ab initio* MD simulation of lithium ion batteries by FUJIFILM Co. Ltd. (hp150090) 7

2.7 times as fast as the original

About C-Tools

- C-Tools can produce input files of supported DFT codes via user friendly parameter adjustment using three-dimensional computer graphics (3DCG) and graphical user interfaces (GUI).
- Input file conversion between supported DFT codes
 There are a variety of DFT codes with each strength, and to combine the strength we have to transfer among the codes.

	• • •		C-Te	ools 0.5.0						
opening screen	alaar		Unit Lattice	Reciprocal Lattice	UDF setup]				
	clear	real space view			real sp	ace paran	neters			
	load				uni	t length				
	save				ler	ngth: 1.0	000			angstrom
	quit				_unit	t vectors				
							×	У	1	z
					Ea	1:	3.9	950 (0.000	0.000
					Et):	0.0	000	3.950	0.000
					Ec	::	0.0	000	0.000	3.950
					ato	m list				
						elem	Α	В	С	
			.		1	0	0.500	0.000	0.000	
					2	0	0.000	0.500	0.000	
					3	0	0.000	0.000	0.500	
					4	Pb	0.500	0.500	0.500	
					5	Ti	0.000	0.000	0.000	
							1			
		2				delete t	the select	ed atom		
						00/010 1				8
						append	the selec	ted atom		

C-Tools: Supported DFT codes (5 codes)

- plane-wave pseudo-potential
 - xTAPP [1]
 - VASP [2]
 - Quantum Espresso (PWscf) [3]
- the pseudo-atomic localized basis
 - OpenMX [4]
- the real-space difference method and a pseudo-potential method
 - RSDFT [5]
- [1] Yoshihide Yoshimoto, TAPP consortium tapp@cms.phys.s.u-tokyo.ac.jp.
 - http://xtapp.cp.is.s.u-tokyo.ac.jp/
- [2] http://www.vasp.at.
- [3] http://www.quantum-espresso.org.
- [4] T. Ozaki, H. Kino, J. Yu, M.J. Han, N. Kobayashi, M. Ohfuti, F. Ishii, T. Ohwaki, H.Weng, Computer code OpenMX. http://www.openmx-square.org/.
- [5] J.-I. Iwata, D. Takahashi, A. Oshiyama, B. Boku, K. Shiraishi, S. Okada, and K. Yabana, J. Comput. Phys. 229, 2339 (2010).; http://ma.cms-initiative.jp/ja/listapps/rsdft/.

[load]

Structure files

CIF (Crystallographic Information File) XYZ (Chemical file format)

The input files can be easily created by clicking the [load] and [save] botton

[save] Input files xTAPP OpenMX RSDFT VASP PWscf

RİST

• • •		C-To	ools 0.5.1				
		Unit Lattice	Reciprocal Lattice	UDF setup			
clear	real space view			real space parame	ters		
load				_unit length			
save				length: 10.0	00		angstrom
quit				unit vectors			
					x	у	z
				E.	4 000	0.000	0.000

C⇔TOOLS		\mathcal{R}			
Convert the input files	хТАРР Орег	nMX Rist			
between different DFT	codes Convert				
	VASP (XML format)	Code			
	RSDFT PW	scf			
xTAPP	Unified format (XML format)	VASP			
# main data	xml version="1.0" encoding="UTF-8"?	# SCF input for VASP			
&tappinput	<unified_dft_format></unified_dft_format>	SYSTEM = Quartz			
scf_converge = 1.0E-10,	<common_parameters></common_parameters>	EDIFF = 0.1E-03			
scf_number_iter = 40,	<calculation_settings></calculation_settings>	NELM = 60			
number_band = 28,	<calculation_type> Energy </calculation_type>	NBANDS = 28			
lattice_factor = 9.2850,	<continue> No </continue>	IMIX = 4			
lattice_list =	<accuracy> Normal </accuracy>	ISMEAR = 1			
1.0, 0.0, 0.0,	<energy_converge> 1.0E-10 </energy_converge>	ISYM = 1			
-0.5, 0.866, 0.0,	<electron_max_iteration> 40 ron_Max_Iteration></electron_max_iteration>	NSW = 0			
0.0, 0.0, 1.1001,	<number_band> 28 </number_band>	EDIFFG = 0.1E-02			
number_atom = 9,	<smearing> ON </smearing>				
number_element = 2,	<symmetry> ON </symmetry>				
/	<force_converge> 1.0E-3 </force_converge>	11			
		Copyright 2017 RIST			

TOOLS Simulation by using C-Tools

rutile TiO₂

Structure file (cif)

[number of atoms] Ti : 2, O : 4 [space group] P4₂/mnm

C+**TOOLS** Run DFT code packages in HPCI

- the codes should be properly compiled in HPCI
 - Investigating the proper compile options
- the codes should properly run in HPCI
 - (\rightarrow We need to measure the performance of the codes in HPCI)
 - Specifying the number of nodes, MPI processes, threads
 - Specifying the runtime options (If the code has the options)

If the code does not run properly,

- It takes too much calculation time
- Computing resources are consumed needlessly

C+T Run Quantum Espresso (PWscf) in K computer (1)

• MPI processes = $192 \rightarrow$ saturation

C+T Run Quantum Espresso (PWscf) in K computer (2)

Summary

Improving usability of DFT codes by using C-Tools

- Creating Input files by C-Tools
 - Running a simulation
 - Investigating the performance of Quantum Espresso (PWscf) in K computer

Target	rutile TiO_2 + impurity hydrogen
Size	217 atoms per unit cell

```
→ Optimal execution
nodes (= MPI processes) : 192
theareds : 8
runtime options : (-nk 8 -nt 8 -nd 16)
```

→ The scalability changes depending on the size of calculation targets. We need to check the performance every time when the size changes.

16

Unified format

- Basic parameters of common
- Setting default parameters (recommendation values) for the unique function of each code
- Detailed settings for each code