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Strongly-correlated nucleons: superfluidity/superconductivity, spin-singlet/triplet

Unique features of atomic nucleus

Spin-isospin d.o.f: made of “four” types of fermions

Surface and shape: deformation

Distribution of densities in space
for the ground-state (static) w/ time-reversal inv.
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assuming no S=1 superfluidity

particle (normal) density pair (abnormal) density
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onset of multipole deformation:
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Distribution of densities in space/time for dynamics

particle (normal) density pair (abnormal) density
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in linear-response of TDDFT
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w/ isospin-change

GT matrix element to low-frequency states:  
key quantity to beta-decay rate
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⟨ψ†(rστ t)ψ(rστ ′t)⟩⟨τ |τµτ |τ ′⟩

s0,µσ (rt) =
∑

σ,σ′

∑

τ

⟨ψ†(rστ t)ψ(rσ′τ t)⟩⟨σ|σµσ |σ′⟩

s1,µσ,µτ (rt) =
∑

σ,σ′

∑

τ,τ ′

⟨ψ†(rστ t)ψ(rσ′τ ′t)⟩⟨σ|σµσ |σ′⟩⟨τ |τµτ |τ ′⟩

1

present only in nuclear system

begin

∣∣∣∣
∫

drf(r)δsλ1,µσ,µτ
(r)

∣∣∣∣
2

end

Sµτ
µσ

(ω) =
∑

λ

∣∣∣∣
∫

drδsλ1,µσ,µτ
(r)

∣∣∣∣
2

δ(ω − ωλ)

µτ = ±1

ρ(r) + [δsλ1,µσ,µτ
(r)e−iωλt + c.c]

s1,µσ,µτ (rt) =
∑

σ,σ′

∑

τ,τ ′

⟨ψ†(rστ t)ψ(rσ′τ ′t)⟩⟨σ|σµσ |σ′⟩⟨τ |τµτ |τ ′⟩

ρ̃0,µσ (rt) =
1

2

∑

σ,σ′

∑

τ

⟨ψ(rστ t)ψ(rσ̄′τ̄ t)⟩⟨σ|σµσ |σ′⟩

ρ̃1,µτ (rt) =
1

2

∑

σ

∑

τ,τ ′

⟨ψ(rστ t)ψ(rσ̄τ̄ ′t)⟩⟨τ |τµτ |τ ′⟩

ψ(rσ̄τ̄) = (−2σ)(−2τ)ψ(r −σ −τ)

ρ̃ν(r) = ⟨ψν(r ↓)ψν(r ↑)⟩
ρ̃π(r) = ⟨ψπ(r ↓)ψπ(r ↑)⟩

ρν(r) =
∑

σ

⟨ψ†
ν(rσ)ψν(rσ)⟩

ρπ(r) =
∑

σ

⟨ψ†
π(rσ)ψπ(rσ)⟩

1

physical observables in spin-isospin response



Energy functional:

Energy density:

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t
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Heven

tt3 +Hodd
tt3

)
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t ρ
2
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J 2

tt3

Hodd
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t s
2
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t stt3 ·∆stt3+CT
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t j

2
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t stt3 ·∇×jtt3
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∑
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t ρ
2
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J 2

tt3
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2
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t stt3 ·∆stt3+CT
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t (∇·stt3)2+Cj
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2
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Skyrme energy density:

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

2

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem
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∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)
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tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs
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2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
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2
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t stt3 ·∇×jtt3
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T-odd Skyrme energy density

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
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t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t

ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)
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Skyrme energy-density functional approach

vanishes for ground-state of even-even nuclei

Isovector (t=1) coupling constants

Poorly known (poorly constrained):

less information on nuclei with neutron (proton) excess

vector-isovector density

Gamow-Teller



and produces a less collective GTR, providing a much
shorter half-life. The parameter sets SAMi, SGII [40],
SkM* [41], and SIII [42] overestimate the half-life, while
the interactions SLy5 and Skx [43] are in agreement with
the experiment at the RPA level.
The inclusion of PVC effects reduces the half-lives for all

interactions systematically. The reduction factor R is larger
for SAMi (R ≈ 42) and SGII (R ≈ 10) while it is equal to
about 4 for the other four interactions. Within RPAþ PVC,
the half-life obtained with the sets SkM* and SIII falls
within the experimental error. It has to be stressed that the

Skyrme force SkM* not only reproduces well β-decay
half-life but also the giant resonance line shape in 208Pb and
56Ni at the PVC level [34,35].
In order to understand the reasons for the systematic

decrease of the half-lives after the inclusion of phonon
coupling, we display in Fig. 2 the GT strength distributions
(with respect to the daughter nucleus), the cumulative sums
of the strengths, and the cumulative sums of 1=T1=2 [that is,
the values obtained from Eq. (4) when Qβ is replaced by a
running E in the upper limit of the integral in the
denominator]. Generally speaking, for all nuclei under
study, the GT peaks are shifted downwards when going
from RPA to RPAþ PVC. In 132Sn, two 1þ states
are observed experimentally below Qβ, at E ¼ 1.325 and
2.268 MeV. The latter has, however, a small decay
branching ratio (I ¼ 0.87%). The lowest RPA state lies
at E ¼ 3.6 MeV, above the Qβ window [Fig. 2(a)], so that
the nucleus is stable. In RPAþ PVC, the strength is about
the same but the lowest state is shifted within the Qβ

window so that we predict a finite value of the half-life.
While this is a qualitative improvement compared to RPA,
the observed lowest 1þ state is not reproduced and the half-
life is overestimated [Fig. 2(c)]. In the case of 68Ni, RPA
predicts a state within the β-decay window, but its energy
is higher than experiment [Fig. 2(d)] and the half-life is
overestimated [the contribution of this state to 1=T1=2 is
very small and is multiplied by a factor 10 in Fig. 2(f)].

FIG. 1 (color online). β-decay half-life of 78Ni, calculated by
RPA and RPAþ PVC approaches with several different Skyrme
interactions, in comparison with the experimental value [44].

FIG. 2 (color online). Experimental data related to β decay from nuclei 132Sn, 68Ni, 34Si, and 78Ni are compared with theoretical results
obtained with the SkM* interaction. In these panels, the excitation energies EM calculated with respect to the mother nucleus are
transformed to E, the excitation energies referred to the ground state of daughter nucleus, using experimental binding energy difference
(see the text); accordingly, the vertical dotted lines show the experimental value of Qβ [45]. Top panels: GT− low-lying strength
associated with the discrete RPA peaks BðGT−Þ (dashed lines) and with the continuous RPAþ PVC strength distributions SðGT−Þ
(solid lines). The arrows indicate the experimental energies of the measured 1þ states [45]. Middle panels: cumulative sum of the RPA
and RPAþ PVC strength shown in the top panels. Bottom panels: cumulative sum of 1=T1=2. The experimental values of 1=T1=2 [45]
for each nucleus are indicated by the stars. The strength of the lowest RPA and RPAþ PVC peaks in panel (g) and the RPA 1=T1=2 in
panel (f) have been multiplied by a factor of 100 and 10, respectively.
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deformation 
superfluidity

MB correlations showing up in open-shell nuclei
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FIG. 6. (Color online) Comparison between experimental [49]
and D1M + QRPA β-decay half-life predictions for the known
isotopic chains of Kr, Sr, Zr, and Mo.

precision [45] due to its importance for the neutrinoless double
β-decay physics. We show this experimental results in Fig. 3
to compare to our results at different β2. It appears that
deformation effects influence the low-energy strength and that
the spreading of the low-energy GT strength can be rather
well reproduced for deformations around β2 = 0.10–0.15, in
contrast to what is found in the spherical approximation or at
larger deformations. For completeness, we also show in Fig. 4
our folded calculations at β2 = 0 and β2 = 0.15 as well as the
experimental results of Ref. [46] folded in the same way. Also
in this case the agreement between the experimental data and
the β2 = 0.15 case can be considered as satisfactory, at least
better than with the spherical case.

IV. APPLICATION TO HALF-LIFE CALCULATIONS

As a first application of our calculation, we now focus
on the low-energy GT strength and more specifically on the

β−-decay half-lives. In the allowed GT decay approximation
the β−-decay half-life T1/2 can be expressed in terms of the
GT strength function SGT according to

ln 2
T1/2

= (gA/gV )2
eff

D

∫ Qβ

0
f0(Z,A,Qβ − Eex)SGT(Eex)dEex.

(8)

For the phase-space volume f0 as well as the factor D and
the vector and axial vector coupling constants (including
the quenching factor), we refer to the work of the authors
of Ref. [47]. To estimate the Qβ mass differences, we take
experimental (and recommended) masses [48] when available
or the D1M mass predictions [28], otherwise.

To give an idea of the global predictions of our model,
we compare in Fig. 5 for even-even nuclei the pnQRPA
(obtained with the D1M interaction) β−-decay half-lives with
the experimental data [49]. The results are plotted as a function
of the mass number A, the deformation parameter β2, and the
Qβ value. They turn to be quite homogeneous with respect to
A and more particularly β2. Larger deviations are found for
nuclei close to the valley of β stability (Fig. 5, right panel),
i.e., for low-Qβ values, as found in all models. Note, however,
that in Fig. 5 where only nuclei with experimental data are
concerned, large Qβ values essentially correspond to light
nuclei for which mean-field models may be less adequate to
estimate the ground-state deformation, mixing of configuration
being found beyond the mean-field approximation. Globally,
predictions tend to overestimate the experimental half-lives,
but deviations rarely exceed one order of magnitude. Note
that the half-life overestimation found here is less important
that the effect of neglecting pn pairing in relativistic QRPA
calculation [50]. We also compare in Fig. 6 the D1M + QRPA
and experimental half-lives for the much studied isotopic
chains of Kr, Sr, Zr, and Mo, which are strongly deformed.
Here also, the D1M + QRPA model tends to give rise to
half-lives larger than experimental ones, leaving space for
possible additional contributions from forbidden transitions.

FIG. 7. (Color online) Comparison between our β-decay half-life predictions and the DF3 + QRPA calculation of the authors or
Refs. [47,51], including the GT contribution or both the GT plus FF contributions, for the neutron-rich nuclei along the N = 82,126,

and 184 isotones. For the N = 82 isotonic chain, experimental data [49], and shell model results [52] are also shown.
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distributions belowQβ, canceling the effect of about 2 MeV
increase in Qβ [see Figs. 4(c), 4(d)]. Since the ground-state
(GS) deformation changes very little along this sequence of
isotopes, we can understand these strength-function
changes from level spins and GT selection rules. The level
schemes here are calculated in the folded-Yukawa model
with ground-state deformations [32]. Each level is doubly
degenerate. The 31st proton, 49th and 50th neutron levels
have the spins of 5=2−, 5=2−, and 1=2−, respectively. For
157Nd97 and 158Nd98, the neutron in level 49 can decay to
the (GS) proton level 31 (5=2− → 5=2−) in the daughter.
But the single neutron in level 50 (1=2−) cannot decay to
the GS proton level 31 (5=2−) for 159Nd99, because the spin
difference is 2. Therefore, a (paired) neutron in level 49
decays instead, which leaves 3 unpaired particles in the
daughter: one in proton level 31, one in each of neutron
levels 49 and 50. Two more unpaired particles than in the
GS of 159Pm98 leaves it in an about two-MeVexcited state.
The situation in nuclei near N ¼ 105 is similar. Although
different spins are involved, the selection rules lead to
analogous effects. These effects, which are clear in the data
and predicted by the QRPA calculations are not always as
easy to disentangle as in the above examples, because
additional factors come into play, for example, deformation
changes, occupation numbers due to pairing, and wave
functions consisting of several asymptotic components.
Concerning the interesting case of N ¼ 100, where

evidence for a deformed subshell gap was discussed [8],
we could not find a convincing signature in the half-life
trend. The half-life of 161

61 Pm100 is longer than that of

160
61 Pm99, which is somewhat intriguing (see Fig. 3), but
similar features were not found in other elements.
To evaluate the impact of the newlymeasured half-lives on

the r-process modeling, fully dynamic r-process network
calculations [33] were performed. As to the role of half-lives
in the dynamical REE peak formation we intend to study,
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Pairing and deformation for low-lying GT states

ν1h9/2 → π1h11/2

Strengths are concentrated on a single state w/ high energy
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Pairing and deformation for low-lying GT states
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Summary
TDDFT gives an intuitive picture of nuclear dynamics

allowing the breaking of symmetries: rotational symmetry in space/gauge space,

by looking at the density distributions

Linear response is a powerful method to investigate vibration of densities

we can include the many-body correlations in a simple way

(Q)RPA on top of the ordered (deformed) state takes the non-perturbed phonon 
coupling effect into account


