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1. Practical aspect of DFT 
simulation

Universal Hohenberg-Kohn functional may exit but…



Density functional theory (DFT)

▪ KS-DFT needs a reference system, which is ideally close to the 
target system.
– Kinetic energy functional from independent particle model as 𝑇𝑠 𝜌 and 

then take the residual as the Hartree and exchange-correlation.

reference target

Adiabatic connection
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Various versions of KS-DFT

▪ One could use Hartree-Fock (HF) as 𝑇[𝜌] + 𝐽[𝜌] − 𝐾[𝜌], and take the 
residual as the correlation.
– Conventionally, HF exchange is introduced afterwards in the exact exchange 

scheme.

▪ Likewise, one could use a Hubbard-like model to augment correlation 
although in practice on-site Coulomb term, U, is added afterwards in 
DFT+U as 

𝐸GGA/LDA
xc 𝜌 + 𝐸U 𝜌

𝐸U 𝜌 =
𝑈

2
σ𝑖≠𝑗 𝑛𝑖𝑛𝑗 − 𝑈

𝑁 𝑁−1
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Correlation functional from adiabatic connection 
& fluctuation dissipation

▪ Nonlocal correlation functional is also added afterwards to 
describe the weakly interacting van der Waals system, thus

𝐸GGA/LDA
xc 𝜌 + 𝐸vdW

c 𝜌 + 𝐸U 𝜌 DFT + vdW-DF + U
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𝑑𝜆Tr
Δ𝜒𝜆 𝑟1, 𝑟2; 𝑖𝜔

𝑟1 − 𝑟2
𝑟1

𝑟2

This “flexibility” is the key to practical material simulation



Example of successful application

Solid oxygen



Solid oxygen at low temperature and high pressure

• Oxygen molecule has a spin triplet ground state 
• They interact weakly via vdW and magnetic interactions

𝛼 phase
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(a) vdW-DF-revPBE (b) vdW-DF-optB86b
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F IG . 9. T he O2–O2 binding energy as a function of distance d for antiferromagnetic (top) and ferromagnetic (bottom) molecule
pairs calculated using vdW -DF-revPBE+ U (a) and vdW -DF-optB86b+ U . T he intramolecular O–O distance is fixed at 1.25
Å .

electrons that is perturbed by the addition of the 2p on-
site Ueff , although we do not have a concrete explanation
at this moment for the resulting behavior.
Next, we examine the intermolecular bonding. W hen
comparing AFM and FM intermolecular pairs, the
pCOHP and the IpCOHP show distinctly different fea-
tures (see Fig. 5-6 and 7 right) . The pCOHP between
the AFM pairs shows peaks near the Fermi level that are
smaller in magnitude than that between FM pairs, indi-
cating a more moderate interaction between AFM pairs.
However, the negative of the integrated IpCOHP (Fig. 7) ,
which is a measure of the total bond strength, is much
larger for AFM pairs. This is because the Fermi level
is located between the bonding and antibonding orbitals
formed by hybridization between π∗ orbitals of the AFM
pairs (see Fig. 6) , while no such feature exists for FM
pairs ( i.e. , all bonding-antibonding orbital pairs are be-
low the Fermi level) . This in turn originates from the
fact that in AFM pairs, the majority spin orbitals of one
of the O2 pairs interacts with the minority spin orbitals
of the other O2 molecule, while in FM pairs, the majority
spin orbitals of one molecule interact with majority spin
orbitals of the other molecule with the same energy, and
vice versa. Thus, in the calculated IpCOHP, a very weak
bonding character is observed for FM pairs regardless of

the Ueff value, while the bonding character is more sig-
nificant for AFM pairs and the decrease due to Ueff is
also much more prominent. Such small bonding char-
acter between FM pairs is a manifestation of the Pauli
exclusion principle; fully occupied orbitals do not form
bonds with each other. W e also note that the decrease
in the bonding strength of AFM pairs originates mainly
from the weakening of the bonding between 2p orbitals
of neighboring molecules; the 2s orbitals, on the other
hand, act to slightly strengthen the bond with increasing
Ueff . T he decomposition of the intermolecular IpCOHP
into 2s and 2p manifolds (Fig. 8 right) shows that unlike
the intramolecular case (F ig. 8 left) , most of the change
in the bonding strength comes from the 2p manifold, al-
though the 2s manifold also shows non-negligible change
vs. the Ueff value.
W e also note that when comparing the IpCOHP for

revPBE and optB86b at each Ueff value, the latter shows
stronger bonding between AFM pairs (F ig. 7) ; this is in
line with the usual trend of vdW -DF-optB86b to predict
smaller bond lengths compared to vdW -DF-revPBE 17 .
T hus, vdW -DF-optB86b requires a larger Ueff value for
weakening the AFM bonding to match the experimental
structure. I t is also worth noting that the IpCOHP at
the optimal Ueff values for reproducing the experimen-

Inter-molecular interaction and U of oxygen 2p

5.4Å 

3.4Å 

Two explanations:
• Exchange vs correlation

• Magnetic coupling 𝑉↑↓ ≃ −
𝑡2

Δ𝐸

vdW-DF-optB86b (VASP)

FM

AFM
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(a) vdW-DF-revPBE (b) vdW-DF-optB86b
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F IG . 9. T he O2–O2 binding energy as a function of distance d for antiferromagnetic (top) and ferromagnetic (bottom) molecule
pairs calculated using vdW -DF-revPBE+ U (a) and vdW -DF-optB86b+ U . T he intramolecular O–O distance is fixed at 1.25
Å .

electrons that is perturbed by the addition of the 2p on-
site Ueff , although we do not have a concrete explanation
at this moment for the resulting behavior.
Next, we examine the intermolecular bonding. W hen
comparing AFM and FM intermolecular pairs, the
pCOHP and the IpCOHP show distinctly different fea-
tures (see Fig. 5-6 and 7 right). The pCOHP between
the AFM pairs shows peaks near the Fermi level that are
smaller in magnitude than that between FM pairs, indi-
cating a more moderate interaction between AFM pairs.
However, the negative of the integrated IpCOHP (Fig. 7) ,
which is a measure of the total bond strength, is much
larger for AFM pairs. This is because the Fermi level
is located between the bonding and antibonding orbitals
formed by hybridization between π∗ orbitals of the AFM
pairs (see Fig. 6) , while no such feature exists for FM
pairs ( i.e. , all bonding-antibonding orbital pairs are be-
low the Fermi level) . This in turn originates from the
fact that in AFM pairs, the majority spin orbitals of one
of the O2 pairs interacts with the minority spin orbitals
of the other O2 molecule, while in FM pairs, the majority
spin orbitals of one molecule interact with majority spin
orbitals of the other molecule with the same energy, and
vice versa. Thus, in the calculated IpCOHP, a very weak
bonding character is observed for FM pairs regardless of

the Ueff value, while the bonding character is more sig-
nificant for AFM pairs and the decrease due to Ueff is
also much more prominent. Such small bonding char-
acter between FM pairs is a manifestation of the Pauli
exclusion principle; fully occupied orbitals do not form
bonds with each other. W e also note that the decrease
in the bonding strength of AFM pairs originates mainly
from the weakening of the bonding between 2p orbitals
of neighboring molecules; the 2s orbitals, on the other
hand, act to slightly strengthen the bond with increasing
Ueff . T he decomposition of the intermolecular IpCOHP
into 2s and 2p manifolds (Fig. 8 right) shows that unlike
the intramolecular case (F ig. 8 left), most of the change
in the bonding strength comes from the 2p manifold, al-
though the 2s manifold also shows non-negligible change
vs. the Ueff value.
W e also note that when comparing the IpCOHP for

revPBE and optB86b at each Ueff value, the latter shows
stronger bonding between AFM pairs (F ig. 7) ; this is in
line with the usual trend of vdW -DF-optB86b to predict
smaller bond lengths compared to vdW -DF-revPBE 17 .
T hus, vdW -DF-optB86b requires a larger Ueff value for
weakening the AFM bonding to match the experimental
structure. I t is also worth noting that the IpCOHP at
the optimal Ueff values for reproducing the experimen-



Volume and shape of the primitive cell of 𝛼 phase

𝑽 Å𝟑 𝒂 Å 𝒃 Å 𝒄 Å 𝜷( ∘) 𝑩(𝐆𝐏𝐚)

Expt. 69.5 5.4 3.4 5.1 133 ~6

LSDA 42.0 3.9 3.0 4.2 119

GGA(PBE) 75.4 4.2 4.2 4.9 119 1.2

vdW-revPBE 65.9 4.5 3.8 4.4 121 5.0

vdW-revPBE+U(5eV) 74.1 5.4 3.6 5.0 130 4.7

vdW-optB86b 48.6 3.6 3.6 4.2 115

vdW-optB86b+U(12eV) 69.7 5.3 3.5 5.0 131 4.4

vdW-SGC 75.7 5.4 3.6 4.6 122

S. Kasamatsu, T. Kato, OS; to appear in PRB



Explanation by band gap opening

4

TABLE I . T he volume V , lattice constants a, b, c, and β , the intramolecular bond length lO 2 , and the bulk modulus B of α-O 2
calculated using various functionals compared to experiment.

V (Å 3 ) a (Å ) b ( Å ) c (Å ) lO 2 ( Å ) β( ◦ ) B (GPa)

Experiment32 69.5 5.4 3.43 5.09 1.28 133 ∼ 633

LSDA 42.0 3.92 2.95 4.15 1.20 119 –
GGA-PBE 75.4 4.21 4.18 4.90 1.22 119 1.2
vdW -DF-revPBE 65.9 4.54 3.80 4.44 1.23 121 5.0
vdW -DF-revPBE 5 66.1 4.68 3.68 4.7 1.23 125 –
vdW -DF-revPBE+ U (Ueff = 5 eV ) 74.1 5.35 3.6 5.01 1.25 130 4.7
vdW -DF-optB86b 48.6 3.59 3.58 4.19 1.22 115 –
vdW -DF-optB86b+ U (Ueff = 12 eV ) 69.7 5.29 3.48 5.01 1.27 131 4.4
vdW -DF-SGC7 75.7 5.43 3.61 4.57 – 122 –
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F IG . 2. T he ratio of the calculated lattice constants of α-
oxygen ( l = V, a, b, c, β, lO 2 ) vs. the corresponding experimen-
tal values ( lex p ) plotted as a function of the Ueff for vdW -DF-
revPBE (a) and vdW -DF-optB86b (b) functionals.

also underestimated. As the Ueff parameter is increased
from zero, all of the above-mentioned errors decrease. In
the vdW -DF-revPBE functional, the error in the calcu-
lated volume becomes larger at above Ueff = 2 eV while

the errors in the other parameters continue to decrease
up to Ueff ∼ 5 eV . On the other hand, in the vdW -DF-
optB86b functional, the errors in all lattice parameters
continue decreasing up to Ueff ∼ 12 eV . A lthough the
vdW -DF-optB86b seems to perform worse compared to
vdW -DF-revPBE at Ueff = 0 eV , it gives a much better
result when the Ueff parameter is optimized, in line with
the general trend that optB86b exchange gives better re-
sults than revPBE. The rather high Ueff value compared
to most of the literature of transition metal systems may
be due to lack of screening by conduction electrons in
this system.

B . E ffect of th e Ue ff p ar am eter on th e electr on ic
st r u ctu r e an d O 2–O 2 i n ter act ion

As shown above, tuning the single Ueff parameter in
vdW -DF+ U turns out to work surprisingly well in im-
proving al l lattice parameters in the monoclinic α phase.
I n the following, we set out to correlate this behavior with
the effect of Ueff on the electronic structure and chemical
bonding.

The Ueff-dependence of the projected density of states
(PDOS) on one of the oxygen atoms is shown in Fig. 3 for
vdW -DF-revPBE. The Ueff-dependence is also shown for
the pCOHP of the intramolecular O–O bond in F ig. 4 and
for the pCOHP of ferromagnetic (FM ) and antiferromag-
netic (AFM ) pairs across neighboring molecules in Figs. 5
and 6, respectively. The optB86b results (not shown)
look very similar except for an upward shift in energy
of about 0.5 eV measured from the 1s core level. I n the
usual molecular orbital theory for the oxygen molecule,
the 2s orbitals of each atom interact with each other to
form bonding σ2s and antibonding σ

∗
2s molecular orbitals,

whi le the pz orbitals form bonding σ2p and antibonding
σ∗2p and px and py orbitals form bonding π2p and anti-
bonding π∗2p orbitals (note that we have taken the z axis
to be parallel to the intramolecular O–O bond) . The
highest occupied molecular orbitals are the two degen-
erate π∗2p orbitals which are each singly occupied in the
triplet ground state leading to molecular magnetism. The
PDOS results of the vdW -DF+ U calculations (F ig. 3)

𝑉↑↓ ≃ −
𝑡2

Δ𝐸



Prediction of new magnetic phase (θ)

𝐸 𝜃 − 𝐸 𝛼 = −𝑔𝜇𝐵𝐵ext

𝐵ext ≃ 70T ↔ 120 T (expt.)

Assuming a cubic structure

T. Nomura et al. JLTP (2012)



GGA + vdW-DF + U

▪ This scheme happens to be appropriate for solid oxygen

▪ With DFT + 𝛼 with proper physical model, there is a way 
to quantitatively predict a property of a material. So, it is 
important to advance
– availability of various reference systems

– availability of various exchange correlation functionals

▪ Challenging theme still exists in
– Excited states

– Strongly correlated electron systems



2. Methods for excited states

1. Time-dependent DFT
– Generally problematic for charge-transfer and Rydberg excitations, which 

are crucially important for solar-cell and electroluminescence applications

2. Many-body Green’s function

3. Configuration interaction (mixing) or exact diagonalization
– Requires large memory and much CPU time



Green’s function

𝑖𝜕𝑡1 +
1

2
𝜕𝑥1
2 − 𝑢 1 𝐺 1,2 + 𝑖∫ 𝑑2𝑉𝐶 1,2 G 1,2; 1′, 2′ = 𝛿 1,1′

G 1,3; 2,3+ = G 1,2 G 3,3+ − 𝛿𝐺(1,2)/𝛿𝑈(3)

Schwinger’s trick (response to local potential)
External perturbation

𝑈 3 ≡ 𝑢 3 + 𝑢𝐻(3)
𝑢𝐻 3 ≡ ∫ 𝑑3𝑉𝐶 1,3 𝐺 3,3+

Hartree potential & total potential

Coulombic

1

23

2



Green’s function

𝑖𝜕𝑡1 +
1

2
𝜕𝑥1
2 − 𝑢 1 𝐺 1,2 + 𝑖∫ 𝑑2𝑉𝐶 1,2 G 1,2; 1′, 2′ = 𝛿 1,1′

G 1,3; 2,3+ = G 1,2 G 3,3+ − 𝛿𝐺(1,2)/𝛿𝑈(3)

Schwinger’s trick (response to local potential)

𝑖𝜕𝑡1 +
1

2
𝜕𝑥1
2 𝐺 1,2 − ∫ 𝑑2Σ 1,2 G 2,1 = 𝛿 1,1′

Σ 1,2 = 𝑢𝐻(1)𝛿(1,2)

+𝑖∫ 𝑑43𝑉𝐶 1+, 4
𝛿𝐺 1,3

𝛿𝑈 4
𝐺−1(3,2)

Self energy: ΣH 1,2 + Σxc 1,2

External perturbation

Let us now remove U and u

Coulombic



Green’s function

Let us remove U

Γ 1,2; 3 ≡ −
𝛿𝐺−1 1,2

𝛿𝑈 3
= 𝛿 1,2 𝛿 1,3 +

𝛿Σxc 1,2

𝛿𝑈 3
vertex

= 𝛿 1,2 𝛿 1,3 + ∫ 𝑑4567
𝛿Σxc 1,2

𝛿𝐺 4,5
𝐺 4,6 𝐺(7,5)Γ(6,7; 3)

exchange-correlation

Σxc 1,2 = 𝑖∫ 𝑑34𝑉𝐶 1+, 3
𝛿𝐺 1,4

𝛿𝑢 3
𝐺−1 4,2

= −𝑖∫ 𝑑345𝑉𝐶 1+, 3
𝛿𝑉𝐶 4

𝛿𝑢 3
𝐺 1,5 Γ(5,2; 4)

≡ 𝜖−1 4,3

≡ 𝑊 1+, 4



Green’s function

Let us remove U

Dynamically screened Coulomb

W 1,2 ≡ ∫ 𝑑3𝑉𝐶 3,2
𝛿𝑉𝐶 1

𝛿𝑢 3

= 𝑉𝐶 1,2 + ∫ 𝑑345𝑉𝐶 1,4
𝛿𝐺 4,4+

𝛿𝑈 5

𝛿𝑈 5

𝛿𝑢 3
𝑉𝐶 3,2

= 𝑊 5,2≡ 𝑃 4,5

Polarization

𝑃 1,2 = 𝑖∫ 𝑑34𝐺 1,3
𝛿𝐺−1 3,4

𝛿𝑈 2
𝐺 4,1+

= −𝑖∫ 𝑑34𝐺 1,3 𝐺 4,1+ Γ 3,4; 2



Hedin’s equation

𝐺 1,2 = 𝐺0 1,2 + ∫ 𝑑34𝐺0 1,3 Σ 3,4 𝐺 4,2

Σxc 1,2 = 𝑖∫ 𝑑34𝑊 1+, 3 𝐺 1,4 Γ(4,2; 3)

𝑃 1,2 = −𝑖∫ 𝑑34 𝐺 1,3 𝐺 4,1+ Γ 3,4; 2

𝑊 1,2 = 𝑉𝐶 1,2 + ∫ 𝑑34𝑉𝐶 1,3 𝑃 3,4 𝑊 4,2

Γ 1,2; 3 = 𝛿 1,2 𝛿 1,3 + ∫ 𝑑4567
𝛿Σ𝑥𝑐 1,2

𝛿𝐺 4,5
𝐺 4,6 𝐺 7,5 Γ 6,7; 3

Describes excess electron in a material



GW approximation

𝐺 1,2 = 𝐺0 1,2 + ∫ 𝑑34𝐺0 1,3 Σ 3,4 𝐺 4,2

Σxc 1,2 = 𝑖∫ 𝑑34𝑊 1+, 3 𝐺 1,4 Γ(4,2; 3)

𝑃 1,2 = −𝑖∫ 𝑑34 𝐺 1,3 𝐺 4,1+ Γ 3,4; 2

𝑊 1,2 = 𝑉𝐶 1,2 + ∫ 𝑑34𝑉𝐶 1,3 𝑃 3,4 𝑊 4,2

Γ 1,2; 3 = 𝛿 1,2 𝛿 1,3 + ∫ 𝑑4567
𝛿Σ𝑥𝑐 1,2

𝛿𝐺 4,5
𝐺 4,6 𝐺 7,5 Γ 6,7; 3

Random phase approx.

Σ = 𝐺𝑊

P = 𝐺𝐺

Γ = 1

Self-consistent GW vs one-shot GW (=perturbation to Kohn-Sham)



So far discussing one-body Green’s 
function

to describe one excess particle (electron or hole) in a material
But, photo-excitation requires two particles, electron AND hole



Excess two particles (electron and hole)

Response to non-local external potential 𝑢(1,2)

𝛿𝐺 1,1′

𝛿𝑢 2,2′
= 𝐺 1,2 𝐺 2′, 1′ + ∫ 𝑑33′44′𝐺 1,3 𝐺 3′, 1′

𝛿Σ 3,3′

𝛿G 4,4′
𝛿G 4,4′

𝛿𝑢 2,2′

≡ 𝐿 1,1′, 2,2′ ≡ 𝐾 3,3′, 4,4′

Bethe-Salpeter equation



Excess two particles (electron and hole)

Response to non-local external potential 𝑢(1,2)

𝛿𝐺 1,1′

𝛿𝑢 2,2′
= 𝐺 1,2 𝐺 2′, 1′ + ∫ 𝑑33′44′𝐺 1,3 𝐺 3′, 1′

𝛿Σ 3,3′

𝛿G 4,4′
𝛿G 4,4′

𝛿𝑢 2,2′

≡ 𝐿 1,1′, 2,2′ ≡ 𝐾 3,3′, 4,4′

e-h interaction kernel

Can be similarly formulated by applying GWA

𝐾x 3,3′, 4,4′ = 𝛿 3,3′ 𝛿 4,4′ 𝑉𝐶(3,4)

𝐾d 3,3′, 4,4′ = −𝛿 3,4 𝛿 3′4′ 𝑊 3+, 3′

𝐾′ 3,3′, 4,4′ = −𝐺 3,3′
𝛿𝑊 3,3+

𝛿𝐺 4,4′

Bethe-Salpeter equation

Bare Coulomb exchange

Screened direct 

repulsive

attractive



Bethe-Salpeter equation

𝐿 1,1′; 2,2′, 𝜔 = 𝑖෍

𝑖

𝜒𝑖 𝑥1, 𝑥1
′ 𝜒𝑖

∗ 𝑥2
′ , 𝑥2

𝜔 − Ω𝑖
−
𝜒𝑖 𝑥2, 𝑥2

′ 𝜒𝑖
∗ 𝑥1

′ , 𝑥1
𝜔 + Ω𝑖

𝜒𝑖 𝑥, 𝑥′ ≡ − 𝛹gr 𝜓
† 𝑥′ 𝜓 𝑥 𝛹𝑖 =෍

𝑣

෍

𝑐

𝐴𝑣𝑐
𝑖 𝜓𝑐 𝑥 𝜓𝑣

∗ 𝑥′ + 𝐵𝑣𝑐
𝑖 𝜓𝑐 𝑥 𝜓𝑣

∗(𝑥′)



Physical meaning of GW+BSE & link to TD-DFT

ℎ+ in valence band

𝑒− in conduction band

ۧ|𝛹𝑖 =෍

𝑣

෍

𝑐

𝐴𝑣𝑐
𝑖 ො𝑎𝑣

† ො𝑎𝑐
† ۧ|0

𝜀𝑐 − 𝜀𝑣 𝐴𝑐𝑣
𝑖 + σ𝑣′𝑐′ 𝑣𝑐 𝐾 𝑣′𝑐′ 𝐴𝑣′𝑐′

𝑖 = Ω𝑖 𝐴𝑐𝑣
𝑖

𝐿 1,1′; 2,2′, 𝜔 = 𝑖෍

𝑖

𝜒𝑖 𝑥1, 𝑥1
′ 𝜒𝑖

∗ 𝑥2
′ , 𝑥2

𝜔 − Ω𝑖
−
𝜒𝑖 𝑥2, 𝑥2

′ 𝜒𝑖
∗ 𝑥1

′ , 𝑥1
𝜔 + Ω𝑖

𝜒𝑖 𝑥, 𝑥′ ≡ − 𝛹gr 𝜓
† 𝑥′ 𝜓 𝑥 𝛹𝑖 =෍

𝑣

෍

𝑐

𝐴𝑣𝑐
𝑖 𝜓𝑐 𝑥 𝜓𝑣

∗ 𝑥′ + 𝐵𝑣𝑐
𝑖 𝜓𝑐 𝑥 𝜓𝑣

∗(𝑥′)

equivalent to

Exciton wave function

𝜀𝑐

𝜀𝑣

= 0 under TDA



Comparison with TD-DFT linear response

𝐸𝑐 − 𝐸𝑣 𝐴𝑣𝑐 +෍

𝑣′𝑐′

𝐾𝑣𝑐,𝑣′𝑐′
𝐴𝐴 Ω 𝐴𝑣′𝑐′ +෍

𝑣′𝑐′

𝐾𝑣𝑐,𝑣′𝑐′
𝐴𝐵 Ω 𝐵𝑣′𝑐′ = Ω𝐴𝑣𝑐

𝐸𝑐 − 𝐸𝑣 𝐵𝑣𝑐 +෍

𝑣′𝑐′

𝐾𝑣𝑐,𝑣′𝑐′
𝐵𝐴 Ω 𝐴𝑣′𝑐′ +෍

𝑣′𝑐′

𝐾𝑣𝑐,𝑣′𝑐′
𝐵𝐵 Ω 𝐵𝑣′𝑐′ = −Ω𝐵𝑣𝑐

𝐾𝑣𝑐,𝑣′𝑐′ ↔ 𝑉𝐶 + 𝐾xc;𝑣𝑐,𝑣′𝑐′(Ω)

𝐾𝑣𝑐,𝑣′𝑐′
𝐴𝐴 Ω = 𝑖∫ 𝑑3456𝜓𝑣 𝑥4 𝜓𝑐

∗ 𝑥3 𝐾 35,46, Ω 𝜓𝑣′
∗ x5 𝜓𝑐′ 𝑥6

𝐾𝑣𝑐,𝑣′𝑐′
𝐴𝐵 Ω = 𝑖∫ 𝑑3456𝜓𝑣 𝑥4 𝜓𝑐

∗ 𝑥3 𝐾 35,46, Ω 𝜓𝑣′
∗ x6 𝜓𝑐′ 𝑥5

Linear response TD-DFT derived by Casida



GW + Bethe-Salpeter equation (BSE) for excited states

in eV G0W0+BSE,
G0W0

Expt. (EOM-CCSD)

N2 Eex 7.9 9.31(9.47)

EIP 15.4 15.6(16.7)

CO Eex 7.7 8.51(8.62)

EIP 13.9 14.0(15.1)

H2O Eex 6.4 7.40(7.66)

EIP 12.7 12.6(13.9)D. Hirose, Y. Noguchi, OS; PRB(2015)

▪ GW is Hedin’s equation with “diagonal” vertex approximation

▪ It can be solved either self-consistently or starting from DFT-KS.
– The latter is called one-shot GW or G0W0. ->Many-body perturbation theory.

▪ G0W0 +BSE works fine for delocalized states but does not for 
systems with localized states.

G0W0 error enhanced in BSE



GW and BSE for small molecules

in eV G0W0+BSE,
G0W0

Expt. (EOM-CCSD)

N2 Eex 7.9 9.31(9.47)

EIP 15.4 15.6(16.7)

CO Eex 7.7 8.51(8.62)

EIP 13.9 14.0(15.1)

H2O Eex 6.4 7.40(7.66)

EIP 12.7 12.6(13.9)

D. Hirose, Y. Noguchi, OS; PRB(2015)G0W0 error enhanced in BSE



Photo-absorption spectrum of warped nanographene

carbon hydrogen

4𝜋𝑒2

𝜔2
෍

𝑖

𝛹gr 𝑧 𝛹𝑖
2
𝛿 𝜔 − Ω𝑖

Y. Noguchi, OS; JCP(2015)



~200 atoms are the target of G0W0-BSE simulation



Types of exciton of a model dipeptide

local

charge transfer (CT)
Rydberg

e-
h

o
ve

rl
ap

e-h distance

𝛹 𝑥, 𝑥′ =෍

𝑣

෍

𝑐

𝐴𝑣𝑐
𝑖 𝜓𝑐 𝑥 𝜓𝑣

∗ 𝑥′

D. Hirose, Y. Noguchi, OS; JCP(2017)



Excited states from N -particle Green’s function

▪ Excess particles, 𝑒− and ℎ+, are calculated by N particle Green’s 
function method. Currently N=1 and 2, so that the two-electron 
excitation (N=4) is a future target.

▪ GW and one-shot approximations have so far been popular, but 
self-consistent GWΓ calculations are launched.

▪ Strongly correlated systems require handling of complicated 
vertex, Γ, which is too demanding.

▪ Resulting exchange-correlation self-energy will provide a hint to 
construct the TD-DFT exchange-correlation kernel.



3. Strongly correlated electrons

from wave function theory 



Strongly correlated systems

▪ It generally requires non-perturbative approach.

▪ Ideally, reference systems of strong correlation are preferable
– embedding schemes like DFT + DMFT (dynamical mean field 

theory) assume local correlation

▪ Configuration interaction may be more advantageous than
– quantum Monte Carlo --- statistical fluctuation

– many-body Green’s function --- infinite diagrams. 



How to describe coefficient of configuration interaction

▪ CI using antisymmetric tensor of order N

▪ CI-coef. using tensor product

ۧ|𝛹 =෍

𝑎

𝐴𝑎1,⋯,𝑎𝑁 Ƹ𝑐𝑎1
† ⋯ Ƹ𝑐𝑎𝑁

† ۧ|0

𝑎1 𝑎𝑁

A

𝑎1 𝑎𝑁

𝑀𝐶𝑁: curse of dimension

curse of nonlinearity

෍

𝑏

𝐴𝑎1,⋯,𝑎𝑛
𝑏1,⋯,𝑏𝑝 ⨂𝐴𝑎𝑛+1,⋯,𝑎𝑛+𝑚

𝑏𝑝+1,⋯,𝑏𝑝+𝑞 ⨂⋯



Data compression using tensor decomposition

original PCP CP

jpeg2k Mjpeg2k jpeg

𝑇𝑎𝑏𝑐 =෍

𝜆

𝐴𝑎
𝜆𝐵𝑏

𝜆𝐶𝑐
𝜆

CANDECOMP/PARAFAC (CP)

A. T. Mahfoodh, IEEE (2013)

30dB



Data compression (encoding) of WF

leaving aside complexity of the decoding 

Let us consider



(Symmetric) tensor decompositions

𝑇𝑎1𝑎2⋯𝑎𝑁 =෍

𝜆

𝐴𝑎1
𝜆 𝐴𝑎2

𝜆 ⋯𝐴𝑎𝑁
𝜆

CANDECOMP/PARAFAC (CP)

𝑇𝑎1𝑎2⋯𝑎𝑁 =෍

𝜆

𝑆𝜆1⋯𝜆𝑁𝐴𝑎1
𝜆1𝐴𝑎2

𝜆2 ⋯𝐴𝑎𝑁
𝜆𝑁

Tucker

𝑎1 𝑎𝑁

𝑎1 𝑎𝑁

𝑆

𝐴

𝑇𝑎1𝑎2⋯𝑎𝑁 =෍

𝜆

𝐴𝑎1
𝜆1𝐴𝑎2

𝜆1𝜆2 ⋯𝐴𝑎𝑁
𝜆𝑁−1

Tensor train (Matrix product)

𝑎1 𝑎𝑁

𝐴



WF encoding in density matrix renormalization group

𝑇𝑎1𝑎2⋯𝑎𝑁 =෍

𝜆

𝐴𝑎1
𝜆1𝐴𝑎2

𝜆1𝜆2𝐴𝑎3
𝜆2𝜆3𝐴𝑎4

𝜆3𝜆4𝐴𝑎5
𝜆4𝜆5 ⋯𝐴𝑎𝑁

𝜆𝑁−1

Tensor train (Matrix product)

𝑎1 𝑎3

𝐴

ҧ𝐴𝑎1𝑎2
𝜆2 ҧ𝐴𝑎5⋯𝑎𝑁

𝜆4

𝑎𝑁

= ෍

𝜇∈All

𝑈𝑎1𝜇
𝜆2 𝑒𝜇

𝜆2𝑉𝑎2𝜇
𝜆2 ≃ ෍

𝜇=1

𝐷

𝑈𝑎1𝜇
𝜆2 𝑒𝜇

𝜆2𝑉𝑎2𝜇
𝜆2

Iteratively reducing the degrees of freedom



Tensor decompositions in terms of pairs

1. Decomposition of Levi-Civita (permutation tensor)

2. Tensorization of an antisymmetric matrix A using Pfaffian

3. General antisymmetric tensor can be decomposed using matrices as

Pf(𝐴)𝑎1,⋯𝑎𝑁 ⇐ ෍

𝜎∈𝑆𝑁

sgn(𝜎) 𝐴𝜎 𝑎1 ,𝜎(𝑎2)⋯𝐴𝜎 𝑎𝑁−1 ,𝜎(𝑎𝑁)

𝜖𝑎1,⋯𝑎𝑁 = ෍

𝜎∈𝑆𝑁

sgn(𝜎) 𝜖𝜎 𝑎1 ,𝜎(𝑎2)⋯𝜖𝜎 𝑎𝑁−1 ,𝜎 𝑎𝑁 ≡ Pf(𝜖)𝑎1,⋯𝑎𝑁

𝐴𝑎1,⋯𝑎𝑁 = ෍

𝑖=1

Rank

Pf(𝐴𝑖)𝑎1,⋯𝑎𝑁 = 𝐴1⊗⋯⨂𝐴1 +𝐴2 ⊗⋯⨂𝐴2 +⋯

= 𝐴⊗𝐴⋯⨂𝐴

N/2 times

CP decomposition

N/2 times N/2 times



Meaning of the tensor decompositions

1. Antisymmetrized geminal powers (AGP) in canonical representation

2. General AGP = BCS, HF-Bogoliubov, or GCM with fixed N

3. Linear combination of AGP (AGP-CI)

σ𝑎 Pf(𝐴)𝑎1,⋯𝑎𝑁 Ƹ𝑐𝑎1
† ⋯ Ƹ𝑐𝑎𝑁

† ۧ|0 = 𝐴𝑎𝑏 Ƹ𝑐𝑎
† Ƹ𝑐𝑏

†
𝑁/2

ۧ|0 ≡ መ𝐴𝑁/2 ۧ|0

σ𝑎 𝜖𝑎1,⋯𝑎𝑁 Ƹ𝑐𝑎1
† ⋯ Ƹ𝑐𝑎𝑁

† ۧ|0 = 𝜖𝑎𝑏 Ƹ𝑐𝑎
† Ƹ𝑐𝑏

†
𝑁/2

ۧ|0

σ𝑖σ𝑎 Pf(𝐴
𝑖)𝑎1,⋯𝑎𝑁 Ƹ𝑐𝑎1

† ⋯ Ƹ𝑐𝑎𝑁
† ۧ|0 = σ𝑖 𝐴𝑎𝑏

𝑖 Ƹ𝑐𝑎
† Ƹ𝑐𝑏

†
𝑁/2

ۧ|0 ≡ σ𝑖
መ𝐴𝑖

𝑁/2
ۧ|0



cf. Theory of Fermion pairs

▪ Interacting boson model (nuclear physics)

▪ Valence shell electron pair repulson theory, GVB,,, (chemistry)



AGP-CI of a water molecule

෍

𝑖=1

𝐾

෍

𝑎𝑏

𝐴𝑎𝑏
𝑖 Ƹ𝑐𝑎

† Ƹ𝑐𝑏
†

𝑁/2

ۧ|0

STO-3G (Gaussian type atomic orbital basis

4 terms are sufficient to converge the total-energy

Approximate tensor rank = 4

Uemura, Kasamatsu & OS, PRA (2015)

A’s are fully optimized (non-perturbative)



Property of AGP

▪ A mean field theory of the pair, which is exact for a two-body system

▪ Closely related to BCS, HFB & GCM (nuclear physics)

▪ 1st order density matrix is related to the 2nd order one (Onishi formula)

ൿ|𝛹𝐴𝐺𝑃 = መ𝐴𝑁/2 ۧ|0 ≡ ۧ|𝐴

𝐵 Ƹ𝑐𝑛
† Ƹ𝑐𝑚 𝐴

𝐵 𝐴
= 1 + 𝐴𝐵𝐻

−1
𝐴𝐵𝐻

𝑚𝑛

ൿ|𝛹𝐵𝐶𝑆 = exp መ𝐴 ۧ|0 ൿ|𝛹𝐴𝐺𝑃 = ቚexp መ𝐴𝑡 ۧ|0
𝑡𝑁/2

𝐵 Ƹ𝑐𝑝
† Ƹ𝑐𝑞

† Ƹ𝑐𝑠 Ƹ𝑐𝑟 𝐴

𝐵 𝐴
=

𝐵 Ƹ𝑐𝑝
† Ƹ𝑐𝑟 𝐴

𝐵 𝐴

𝐵 Ƹ𝑐𝑞
† Ƹ𝑐𝑠 𝐴

𝐵 𝐴
−

𝐵 Ƹ𝑐𝑞
† Ƹ𝑐𝑟 𝐴

𝐵 𝐴

𝐵 Ƹ𝑐𝑝
† Ƹ𝑐𝑠 𝐴

𝐵 𝐴

+ 1 + 𝐴𝐵𝐻
−1
𝐴

𝑟𝑠
𝐵𝐻 1 + 𝐴𝐵𝐻

−1

𝑞𝑝



AGP + DFT = possible alternative to Kohn-Sham

▪ Kohn-Sham theory takes non-interacting electron system as the 
reference and relate the density (1st order DM) to the interaction 
energy not included in HF (2nd order DM).

Similarly,

▪ Taking AGP-reference will be another direction to go although 
unsuccessful yet as far as I know.

▪ Will be more advantageous if an interacting AGP theory is available.

𝐸xc HF → 𝐸xc(AGP)



▪ AGP-CI

▪ “Different geminal for different pair” as alternative symmetric 
decomposition

Theory of interacting AGP

ۧ|𝛹 = መ𝐴 1 መ𝐴 1 ⋯ መ𝐴 1 + መ𝐴 2 መ𝐴 2 ⋯ መ𝐴 2 +⋯ ۧ|0

ۧ|𝛹 = መ𝐴 1 መ𝐴 2 ⋯ መ𝐴 Τ𝑁 2 ۧ|0

Waring decomposition into non-interacting AGP’s

෠𝐵 𝑖 ≡ 𝑐𝑖1 መ𝐴
1 +𝑐𝑖2 መ𝐴

2 +⋯ + c𝑖𝑁/2 መ𝐴
𝑁/2

= ෠𝐵 1 ෠𝐵 1 ⋯ ෠𝐵 1 + ෠𝐵 2 ෠𝐵 2 ⋯ ෠𝐵 2 +⋯ ۧ|0



Waring decomposition of homogeneous polynomial

𝑝𝑀 𝑥, 𝑦,⋯ , 𝑧 = ෍

𝜆

rank

𝑎𝜆 𝑐1
𝜆𝑥 + 𝑐2

𝜆𝑦 +⋯+ 𝑐𝑁
𝜆𝑧

𝑀

𝑝𝑀 𝑥, 𝑦,⋯ , 𝑧 ≡ ෍

𝑛1⋯𝑛𝑁

𝑛1+⋯+𝑛𝑁=𝑀

𝐶𝑛1,⋯𝑛𝑁𝑥
𝑛1 ⋯𝑧𝑛𝑁

rank< 𝑀+𝑁𝐶𝑀

N+1
≡generic rank

𝑥𝑦𝑧 =
𝑥 + 𝑦 + 𝑧 3

24
−

𝑥 + 𝑦 − 𝑧 3

24
−

𝑥 − 𝑦 + 𝑧 3

24
+

𝑥 − 𝑦 − 𝑧 3

24

ex.



▪ An extension using surplus geminals and a homogeneous polynomial

Extension of “different geminal for different pair”

ۧ|𝛹 =෍
𝑖1<𝑖2⋯<𝑖𝑁/2<𝑀

መ𝐴 𝑖1 መ𝐴 𝑖2 ⋯ መ𝐴 𝑖𝑁/2 ۧ|0

≡ 𝑒𝑁 መ𝐴 1 , ⋯ , መ𝐴 𝑀 ۧ|0 Elementary symmetric polynomial of A’s

𝑒2 𝑥, 𝑦, 𝑧 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥
𝑒1 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧

መ𝐴 1 መ𝐴 2

መ𝐴 3

መ𝐴 7 መ𝐴 8

መ𝐴 9



1D Anderson single-impurity model (U=10)

0.01

0.0

0.02

8 10 20

Δ𝐸/𝑡

Number of electrons N

ۧ|𝛹 = ( ෠𝐹2 + ෠𝐺) ෠𝐹𝑁−2 ۧ|0

෠𝐹 =෍

𝑎𝑏

𝐹𝑎𝑏 Ƹ𝑐𝑎
† Ƹ𝑐𝑏

†

෠𝐺 =෍

𝑎𝑏

𝐺𝑎𝑏𝑖↑𝑖↓ Ƹ𝑐𝑎
† Ƹ𝑐𝑏

† Ƹ𝑐𝑖↑
† Ƹ𝑐𝑖↓

†

A. Kawasaki & OS; JCP(2016)12 14 16 18

AGP

AGP-CI(K=2)

AGP-CI(K=3)

AGP augmented by the 4-body 
correlation term at the impurity site i

𝑈 = 0𝑈 = 0

𝑁



1D Anderson single-impurity model (U=10)

Density matrices

A. Kawasaki & OS; JCP(2016)



Short summary

▪ AGP is a mean-field theory of particle pairs and is called as an 
extended Hartree-Fock

▪ With AGP’s, one can compactly encode the wave function using 
the tensor decomposition techniques

▪ Data decoding, however, requires CPU time scaled exponentially

▪ Tensor decomposition is currently developed in mathematics 
and is applied to information technology like signal processing 
and face recognition



Conclusion

▪ Density functional theory provides economical and reliable 
computational methods, provided that the target system can be 
properly modeled.

▪ Preparing various reference systems and exchange-correlation 
functionals should be an important research topic.

▪ Many-body Green’s function methods have advanced recently, 
further stimulating advance of TD-DFT.

▪ Tensor decomposition may provide a way to attack the strongly 
correlated electron systems within DFT.


