From density functional to
“many-body Green’s function
and beyond

Osamu Sugino (ISSP, University of Tokyo)



Acknowledgement

1. DFT calculation

= Shusuke Kasamatsu, Takeo Kato (ISSP, the University of Tokyo)
i Mahy-body‘Green’s function

= Yoshifumi Noguchi, Daichi Hirose (ISSP)

3. Tensor decomposition | .

» Wataru Uemura (RIKEN), Airi Kawasaki (ISSP)



1 Practlcal aspect of DFT
S|mulat|on

Universal Hohenberg-Kohn functional may exit but:--



Density functional theory (DFT) ’
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= KS-DFT needs a reference system, which is ideally close to the
target system.

- Kinetic energy functional from independent particle model as T;[p] and
~_then take the residual as the Hartree and exchange-correlation.
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diabatic connection




Various versions of KS-DFT
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» One could use Hartree-Fock (HF) as T[p] + J[p] — K[p], and take the
residual as the correlation.

- Conventionally, HF exchange 1s introduced afterwards in the exact exchange
scheme.

« Likewise, one could use a Hubbard-like model to augment correlation
although in practice on-site Coulomb term, U, is added afterwards in
DFT+U as

cGa/Lpalel + Eylpl

U N(N-1)
Eylpl=7 2z niny — U —




Correlation functional from adiabatic connection
& fluctuation dissipation
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= Nonlocal correlation functional is also added afterwards to
describe the weakly interacting van der Waals system, thus

Eé((:}A/LDA[p] + Egqwle] + Eylp] DFT + vdW-DF + U
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This “flexibility" is the key to practical material simulation



Example of successful application

Solid oxygen




Solid oxygen at low temperature and high pressure
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Oxygen molecule has a spin triplet ground state
They interact weakly via vdW and magnetic interactions



Inter-molecular interaction and Uof oxygen 2p

vdW-DF-optB86b (VASP)
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Two explanations:
« Exchange vs correlation

« Magnetic coupling V;| =~ ——



Volume and shape of the primitive cell of a phase
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V(&%) a(R) b(R) c(R) B(*) B(GPa)

695 54 34 5.1 133 ~6

420 39 3.0 4.2 119
GGA(PBE) 754 42 42 49 119 1.2
vdW-revPBE 6.9 45 38 44 121 5.0

vdW-revPBE+U(5eV)  74.1 5.4 3.6 50 130 4.7
vdW-optB86b 48.6

vdW-optB86b+U(12eV) 69.7 53 3.5 5.0

vdW-SGC 75.7

S. Kasamatsu, T. Kato, OS; to appear in PRB



Explanation by band gap opening

(b) vdW-DF-optB86h (a) Majority spin (b) Minority spin
‘ ‘ ‘ ‘ ‘ ‘ ‘ U,=6¢V . =12eV U, U, =6¢V
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Prediction of new magnetic phase (9)
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Assuming a cubic structure

E) —E(a) = —gUpBext

Boyt = 70T < 120 T (expt.)
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GGA + vdW-DF + U

SR — ~ = - — ———————

= This scheme happens to be appropriate for solid oxygen

= With DFT + a with proper physical model, there is a way

to quantitatively predict a property of a material. So, 1t 1s
important to advance

— availability of various reference systems
— availability of various exchange correlation functionals

= Challenging theme still exists in
- Excited states
- Strongly correlated electron systems



2. Methods for excited states
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1. Time-dependent DFT

— Generally problematic for charge-transfer and Rydberg excitations, which
are crucially important for solar-cell and electroluminescence applications

2. Many-body Green’s function

3. Configuration interaction (mixing) or exact diagonalization

- Requires large memory and much CPU time



Green’s function

Couloml;LC : S e
1 =N |
[zatl = 0(1 2) +if d2V.-(1,2)G(1,2;1',2") = §(1,1")
/ G(1,3;2,3%) = G(1,2)G(3,3%) — 6G6(1,2)/8U(3)

External perturbation
2 Schwinger’s trick (response to local potential)

> |
OfD\S\)& = Hartree potential & total potential
=t v 2 U3) =u3) +uf'(3)




Green’s function
' -3 Coulombic
1 TSR
[iatl x 50,31 = u(l)] G(1,2) +if d2V.(1,2)G(1,2; 1, 2") = 6(1,1)

External perturbation

G(1,3;2,3") = G(1,2)G(3,3%) — 66(1,2)/6U(3)
Schwinger’s trick (response to local potential)

[iatl + %a,%l] G(1,2) — [ d22(1,2)G(2,1) = §(1,1)
2(1,2) = uf(1)6(1,2)

5G(1,3
+i[ d43V.(1%,4) (13)

SU(4)
Self energy: =H(1,2)+ £*¢(1,2)

G 1(3,2)

[Let us now remove Uand u
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Let us remove U

(Green’s function

= — = - — e e — =

5G71(1,2) 53X¢(1,2)

vertex T(1,2;3) = — 5U(3) =6(1,2)6(1,3) + SU(3)
62%¢(1,2)

= 5(1,2)6(1,3) + [ d4567 G(4,6)G(7,5)(6,7;3)

3G (4,5)

exchange-correlation

¥X¢(1,2) = if d34V.(1%,3) 5;5(1;) G=1(4,2)
= —i[ d345V.(1%,3) ?3((;)) G(1,5)I(5,2;4)

= e 1(4,3)
=W(t,4)




Let us remove U

Green’s function

Dynamically screened Coulomb

NAE!
S W(1,2) = [ d3V.(3,2) 5;((3))
5G(4,47) 8U(5
=V.(1,2) + [ d345V.(1,4) 5; S ) 6u§3§ V-(3,2)
= P(4,5) = W (5,2)
Polarization -
P(1,2) =if d34G(1,3) & (3’4)0(4,1+)

5U(2)
= —if d346G(1,3)G(4,11)r'(3,4; 2)



Hedin’s equation | (' (‘
G(1,2) = G°(1,2) + [ d34G°(1,3)2(3,4)G(4,2) () - @
%¢(1,2) = if d34W(1*,3)6(1,9)(4,2; 3) AL s O A0

P(1,2) = —if d34 G(1,3)G(4,11)(3,4; 2) ﬁ} : >w —

W(1,2) =V.(1,2) + | d34V.(1,3)P(3,4)W (4,2)

0Z*¢(1,2)

5Gias) C4OGT5I(67;3)

'(1,2;3) = 8(1,2)6(1,3) + [ d4567

Describes excess electron in a material



GW approximation
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G(1,2) = G°(1,2) + [ d34G°(1,3)2(3,4)G(4,2)

¥*¢(1,2) = if d34W(1*,3)G(1,4)I(4,2; 3) Y = GW

P(1,2) = —if d34 G(1,3)G(4,17)I'(3,4; 2) EE A

W(1,2) =V.(1,2) + | d34V.(1,3)P(3,4)W (4,2) Random phase approx.
5%X%¢(1,2) .

['(1,2;3) = 6(1,2)6(1,3) )

0G(4,5)
r=1

Self—consistent GW vs one-shot GW (=perturbation to Kohn-Sham)



y
So far discussing one-body C:. ISR :h
funcUon
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to describe one excess particle (electron or hole) in a material
But, photo-excitation requires two particles, electron AND hole



Bethe-Salpeter equatlon

Excess two particles (electron and hole)

e — = ——— = —_———— - - - — =

Response to non-local external potential u(1,2)

5G(1,1") 62(3,3") 6G(4,4")
- ou(22") 6G(4,4") su(2,2")

el 1, 2,2) = K(33,44)

= G(1,2)G(2',1") + [ d33'44'G(1,3)G(3',1")




SEOIH( 252 )

<

 K'(33,44) = -G(33")

Bethe-Salpeter equatlon
Excess two particles (electron and hole)

= = ——

Response to non-local external potential u(1,2)

52(3,3") 6G(4,4")
65G(4,4") su(2,2")

001D _ 6(12)6(2, 1) + [ d3344'G(1,3)6(3',1)

=y, 2,2") = K(3,3',4,4")
e-h interaction kernel

Can be similarly formulated by applying GWA

(KX(3,3', 4,4") = 6(3,3')6(4,4)V:(3,4) Bare Coulomb exchange repulsive

K9(3,3,4,4") = —6(3,4)6(3'4)W(3%,3") Screened direct attractive
SW(3,3%) |
6G(4,4")




Bethe-Salpeter equation'

S ——— — ——

w + ;

L(]_ gt w) e Z[ l(xl xl)Xl (xz xz) )(l(xz xz))(l (xl xl)] e

Xi 06, x") = (Y [P T P ¥y)

2 2 Ab e GOV + Blepe GOPi(x")



Physical meaning of GW+BSE & link to TD-DFT

= = — = - — e e — =

L5225 ) =i Z[ (2, 1)Xl( 2%2)  Xi(xa, %) xi (%1, 1)]
w + ;
=0und'erTDA

105, x) = ~(Fe | (0 |9) 22“ O3 () + Blep GO ()

EC
— o '0 i :
e” in conduction band (g, — £,)AL, + 3, {vc|K|v'c") AL, = Q; AL,
h* in valence band equivalent to

€y . ‘e,
|¥;) = z Z A%,CdT "+|O) Exciton wave function



Comparison with TD-DFT linear response

S —— = — = - — —————— s — = o=

(E. — E))Ayc + z Koot (DA + z Koot (OB, = QAy,
| e’ v'c!
(E. — E,)B,. + z Koot (A1 + z Kooyt (B0 = —OB,,
v'c’ v'c’

Kol (@) = i d34561, (xa)ihg (x3)K (35,46, Q) (x5) s (x6)
Koo' (@) = 1] d34561, (x) ¢ (x3)K (35,46, Wy, (x6) 1 (xs)

Kyep'c! © Ve + Kyewen'ar (@) Linear response TD-DFT derived by Casida



GW + Bethe-Salpeter equation (BSE) for excited states

X —— * — ———— e — = L =

» GW 1s Hedin’s equation with “diagonal” vertex approximation

= [t can be solved either self-consistently or starting from DFT-KS.
~ The latter is called one-shot GW or G,W,,. ->Many-body perturbation theory.

= G,W, +BSE works fine for delocalized states but does not for
systems with localized states.
| ineV G,W,+BSE, Expt. (EOM-CCSD)

9.31(9.47)
15.6(16.7)
8.51(8.62)

14.0(15.1)
7.40(7.66)
12.6(13.9)

G, W, error enhanced in BSE
D. Hirose, Y. Noguchi, OS; PRB(2015)




- GW and BSE for small molecules

S —— 5 ——————

ineV  G,W,+BSE, Expt. (EOM-CCSD)

9.31(9.47)
15.6(16.7)
8.51(8.62)

14.0(15.1)
7.40(7.66)
12.6(13.9)

GOWO error enhanced in BSE D. Hirose, Y. Noguchi, OS; PRB(2015)



Photo-absorption spectrum of warped nanographene

b
carbon hydrogen TR-BaLYE

HOMO-1 LU’MO+1

25 30 35
Photon energy (eV)

Y. Noguchi, OS; JCP(2015)




~200 atoms are the target of G,W,-BSE simulation

((l) 6 l’illf_';h' ((‘[3()“73)

Carbon Nanocage

Branched Carbon Nanotube




D. Hirose, Y. Noguchi, OS; JCP(2017)

Types of exciton of a model dipeptide
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Excited states from /V -particle Green’s function
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= Excess particles, e™ and h™, are calculated by /Vparticle Green’s
function method. Currently V=1 and 2, so that the two-electron
excitation (/V=4) is a future target.

= GW and one-shot approximations have so far been popular, but
self-consistent GWT calculations are launched.

- Strongly correlated systems require handling of complicated
vertex, I', which is too demanding.

= Resulting exchange-correlation self-energy will provide a hint to
construct the TD-DFT exchange-correlation kernel.



3. Strongly correlated electrons
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from wave function theory



Strongly correlated systems
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= It generally requires non-perturbative approach.

» [deally, reference systems of strong correlation are preferable

- embedding schemes like DET + DMFT (dynamical mean field
theory) assume local correlation

= Configuration interaction may be more advantageous than
- quantum Monte Carlo --- statistical fluctuation
- many-body Green’s function --- infinite diagrams.



How to describe coefficient of configuration interaction

S — = = = - — e e =

= CI using antisymmetric tensor of order NV

v Cy: curse of dimension

$

) =’2Aa1,..,a,v et et 10y
a

= Cl-coef. using tensor product curse of nonlinearity
‘ ‘ ‘ ‘ | i | | Abl bp ®Abp+1 WDp+q R -
a4 ay aq Ay ag,: An+1,""An+m



Data compression using tensor decomposition
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30dB = “ - | =
~original _PCP CP CANDECOMP/ PARAFAC (CP)

abc ZAABA(:A

jpeg2k  Mjpeg2k jpeg

~ A. T. Mahfoodh, IEEE (2013)
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Let us consider T-gh

Data compression (encoding) of WF

—_— = = — — = — p— LTS PN

leaving aside complexity of the decoding



(Symmetric) tensor decompositions

CANDECOMP/PARAFAC (CP) S

- T
a1a2 ‘an ZA A aq AN

- 11 AAN
Tasern = 3 Sl al A
A
a; Ay

Tucker

Tensor train (Matrix product)

A1 g1z 7LN—1
a1a2 "an zAalAaz =



WF encoding in density matrix renormalization group
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Tensor train (Matrix product)

12 _A4
Aa1a2 ACLS'"G,N
ﬂz ﬂz /12

UeAIl

[teratively reducmg the degrees of freedom



Tensor decompositions in terms of pairs
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1. Decomposition of Levi-Civita (permutation tensor)

Eal,---aN = 2 sgn(a) Ea(al),a(az) Ea(aN_l),a(aN) = Pf(e)al,---aN

OESN

2. Tensorization of an antisymmetric matrix A using Pfaffian N/2 times

-,

Pf(A)al,---aN = z sgn(a) Aa(dl),a(az) AG(aN_l),a(aN) =AQR A QRA

OESN

3. General antisymmetric tensor can be decomposed using matrices as
Rank N/2 times N/2 times

el ZPf<A>a1 ay =A@ @A+ A7 @ — BA +

CP decomposition




Meaning of the tensor decompositions

= X V— —— > =S i ———— - — — = = =

1. Antisymmetrized geminal powers (AGP) in canonical representation

N/2
AT AT = NP
Za €al,ay Ca1 CaN|0> == (Eabcacb) |O>

2. General AGP = BCS, HF-Bogoliubov, or GCM with fixed NV

1 an

' N/2 N
S PE(A)ay -ay Cay + E5,10) = (Aapedel) " 10) = AN/Z |0)
3. Linear combination of AGP (AGP-CI)

: = = Es N/2 - ,\.‘N/z
Y Pf(Al)al,---aN Cll C;LN|0> =i (A'dbcgcg) = Zi(Al)' 10)



cf. Theory of Fermion pairs
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= Interacting boson model (nuclear physics)

» Valence shell electron pair repulson theory, GVB,,, (chemistry)



AGP-CI of a water molecule
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Uemura, Kasamatsu & OS, PRA (2015)
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STO-3G (Gaussian type atomic orbital basis

A’s are fully optimized (non-perturbative)
4 6 8 10 12
K (number of terms)

4 terms are sutficient to converge the total-energy

Approximate tensor rank = 4



Property of AGP  [#46P) = A¥/2 |0) = |A)
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= A mean field theory of the pair, which is exact for a two-body system

» Closely related to BCS, HFB & GCM (nuclear physics)
[WECS) = exp(A) [0)  |PAGP) = exp(At) IO)‘tN/2

» 15t order density matrix is related to the 27 order one (Onishi formula)

'<B ehe A> -
I ; ; l; = |(1+48%)"4B"]
(Blescacser|A)  (Bleper|4) (B|eies|A) (Bleger|A) (Blepes|A)
(BlA) (BlA4) (BlA)  (BlA) (Bl4)

; [(1 = ABH)_lALS [BH(1 = ABH)_l]qp



AGP + DFT = possible alternative to Kohn-Sham

x —— . —— e~ = -

= Kohn-Sham theory takes non-interacting electron system as the

reference and relate the density (15t order DM) to the interaction
energy not included in HF (2"d order DM).

‘Similarly, Exc(HF) — Ex.(AGP)

= Taking AGP-reference will be another direction to go although
unsuccessful yet as far as [ know.

= Will be more advantageous if an interacting AGP theory 1s available.



Theory of interacting AGP

——— . ——— - = — = 3

. AGP-CI |Lp>:M(l),@(l)...,@(l)+A<z>,4(z>...,4(z)+...]|o)

= “Different geminal for different pair” as alternative symmetric
decomposition

_ AW A@) ... A(N/2)
)y = AWAD ... A0N/2))0)

$ Waring decomposition into non-interacting AGP’s
= [3(1)3(1) B 4 B@BD) ... D) 4 )
BDO = ¢ AW+ A® 4 wov 4 ¢y, AN



Waring decomposition of homogeneous polynomial

x —— . —— e~ = -

nqy+--+ny=M

pM(x' Y "';Z) = z Cnlr"'annl cee ZIN

nloa.nN

rank

M
pM(ny;'";Z) = z aA(C{Lx = Cély sl C]/;{IZ)
' A

rank< M;’l’ fM =generic rank
ex.
Bty +2)° =z =y =y 7)
XyzZ = = - e

24 24 24 24



Extension of “different geminal for different pair’

S— - ———— - = —— —— = e -

= An extension using surplus geminals and a homogeneous polynomial
|P) ='z Al G2 ... Aing2) 10)
iy <ie<iyn/p<M

= ey (A(l), e A(M)) | 0) Elemgntary symmetric polynomial of A’s

e;(x,y,z) =x+y+z
e, (x,y,z) =xy +yz+ zx

§(3)




1D Anderson single-impurity model (U=10)
AE /t | % = ey i R

o AGP augmented by the 4-body
> correlation term at the impurity site 7

M 0000000

N AGPB F= ) Fa 6262
s AGP-CI(K=2) F — =
AGP-CHK=3) g B (= Z Gabitit aCh i),
T \ / ab |
B =

. i Nluzmberlollf electlr%ns ]\/18 - A. Kawasaki & OS; JCP(2016)



A. Kawasaki & OS; JCP(2016)

1D Anderson single-impurity model (U=10)

AGP-CI(1)
AGP4

DenSity matriCes [ i ‘ Exact diagopalization ‘

8 D) 12 14

Pair correlation function
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Exact diagonalization
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Pair correlation function

1 2 3 456 7 8 9 1011 12 13 14 15 16 17 18 S

T l T l T l i oo . 2 . | Exact diagonalization
site i and spin o — . ‘

8 12 14 16 18



Short summary

= X V— > =S i ———— - — — = = =

= AGP is a mean-field theory of particle pairs and is called as an
extended Hartree-Fock

= With AGP’s, one can compactly encode the wave function using
the tensor decomposition techniques

= Data decoding, however, requires CPU time scaled exponentially

= Tensor decomposition is currently developed in mathematics
and 1s applied to information technology like signal processing
and face recognition



Conclusion

E———— = ——

= Density functional theory provides economical and reliable
computational methods, provided that the target system can be
properly modeled.

= Preparing various reference systems and exchange-correlation
functionals should be an important research topic.

. Many-body Green’s function methods have advanced recently,
further stimulating advance of TD-DFT.

= Tensor decomposition may provide a way to attack the strongly
correlated electron systems within DFT.



