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•Basic properties of nuclei
–Saturation properties vs Single-particle motion
–Mean-field model vs Density functional model

•TDDFT for nuclear collective motion
–Linear response: High-energy giant resonances vs 
low-energy modes of excitation
–Success and failures



Different faces of nuclei

Liquid Gas



Nuclear Saturation
“Liquid”-like property
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Bethe-Weizsäcker mass formula

B/A ~ 8 MeV

(B/A ~ 16 MeV for nuclear matter)

Density ρ ≈ 0.16 fm-3

Liquid drop model



Saturation properties of nuclear matter

• Symmetric nuclear matter w/o Coulomb
–

• Constant binding energy per nucleon
– Constant separation energy

• Saturation density

– Fermi energy
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Single-particle motion
“Gas”-like picture

• Nuclear shell model
– Strong spin-orbit coupling (Mayer-Jensen)

• Mean free path in nuclei
– Neutron scattering
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Nuclear “transparency”

Optical-model analysis
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( ) EWEV 1.02~0,3.050 +≈−−≈− in units of MeV

Neutron scattering cross section

Bohr and Mottelson,          
Nuclear Structure Vol.1 (1969) 

R>>λ

Real and imaginary potentials

for low-energy neutrons
𝜆: mean free path of neutrons
R: Size of nucleus



Saturated gas?

• Is the mean-field (gas or single-particle) 
picture consistent with the saturation property?
– Analysis with a simple potential model for infinite 

nuclear matter
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Saturation properties of nuclear matter

• Symmetric nuclear matter w/o Coulomb
–

• Constant binding energy per nucleon
– Constant separation energy

• Saturation density

– Fermi energy
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A constant mean-field potential

• Binding energy in the mean field

• Saturation property

Inconsistent with 
nuclear binding
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Momentum-dependent potential

• State-dependent potential
– Momentum dependence
– The lowest order → “Effective mass”

– Inconsistent with experiments!
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A possible solution for the 
inconsistency

• Energy density functional

• State-dependent effective interaction
– Rearrangement terms
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Nuclear energy density functional
• Energy functional for the intrinsic states
• Spin & isospin degrees of freedom

– Spin-current density is indispensable.
• Nuclear superfluidity à Kohn-Sham-

Bogoliubov eq.
– Pair density (tensor) is necessary for heavy 

nuclei.

[ ]qqqq JE κτρ ;,,
!

spin-current

kinetic pair density



From SciDAC-UNEDF project



FIGURE 2. (Color online) Ground-state deformations β (left) and two-neutron separation energies S2n
(right) obtained within HFBTHO using SkP (top) and SLy4 (bottom) interactions.
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FIGURE 3. (Color online) Deviations of ground-state HFBTHO energies from experiment [13] for
SkP (left) and SLy4 (right) interactions. Positive values correspond to underbound nuclei. No corrections
beyond mean field were included.
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Nuclear deformation as symmetry breaking

ΨΨ= µµβ 2
2

2 Yr
Quadrupole deformation

prolate           oblate        triaxial

Octupole deformation

ΨΨ= 30
3

30 Yrβ

Pear shape (µ=0)

Pairing deformation 
(superfluidity)

Ψ≠ΨJie φ Ψ≠ΨNie φ

ΨΨ=Δ ψψ ˆˆ

Nuclear Superconductivity 
Nuclear Superfluidity

Deformation in the gauge space

Ψ±≠ΨP̂



Nuclear deformation

S. Ebata, T. Nakatsukasa

2016 71st JPS meeting @ Touhoku Gakuin Univ.

3D HF+BCS Cal. w/ SkM* From N=Z to N=2Z, Z=6-92 even-even (Total # 1005)

Results
Ebata and T.N., Phys. Scr. 92 (2017) 064005 

Deformation landscape Quadrupole deformation



S. Ebata, T. Nakatsukasa

2016 71st JPS meeting @ Touhoku Gakuin Univ.

3D HF+BCS Cal. w/ SkM* From N=Z to N=2Z, Z=6-92 even-even (Total # 1005)

Results

Nuclear deformation predicted by DFT
Intrinsic	Q	moment

Deformation landscape

N = 82

Z = 50



Time-dependent	density	functional	
theory	(TDDFT)	for	nuclei

• Time-odd	densities	(current	density,	spin	
density,	etc.)

• TD	Kohn-Sham-Bogoliubov-de-Gennes eq.
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Linear	response	(RPA)	equation
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Deformation effects for photoabsorption cross section

SkM*	functional

Intrinsic	Q	moment

Yoshida and TN, Phys. Rev. C 83, 021404 (2011)
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FIG. 2: (Color online) Energies of �-vibrational states from a) experiment [43], b) SkM⇤, c) SLy4, and d) Delaroche et al. [54].

FIG. 3: (Color online) B(E2; 0+
gs

! 2+� ) corresponding to Fig. 2. The value for 162Dy in c) is 0.562 e

2b2. This figure has no
panel d) because the results from the calculation of Delaroche et al. [54] are not published. We include only those experimental
data that are labeled �-vibrations in Ref. [43]. The symbols for particular isotopic chains are the same in each panel.

where E

cal

and E

exp

are the calculated and experimen-
tal energies of the �-vibrational state. The results are
in Tab. I. SLy4 actually does better than SkM⇤ in the
averages, but gives much larger dispersions.

Table II shows the statistical measures for the spherical

nuclei treated in Ref. [53] and for the subset of those
nuclei that exhibit “low softness.” (Some of the other
nuclei in Ref. [53] are transitional.) There are far more
nuclei in the spherical data set than in the deformed rare-
earth set, so it is hard to make a precise comparison of

Low-energy states
• Low-energy collective states

– Linear response cal.
– Not as good as GR

Terasaki, Engel, Phys. Rev. C 84, 014332 (2011)

gamma vib.
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Large amplitude collective motion

• Decay modes
– Spontaneous fission
– Alpha decay

• Low-energy reaction
– Sub-barrier fusion reaction
– Alpha capture reaction (element synthesis in 

the stars)



Summary (part 1)
• Success of nuclear (TD)DFT

– Unified picture of liquid-like and gas-like 
properties (saturation and indep. part. motion)

– Giant resonances (linearized TDDFT)
• Problems

– Low-energy collective motion
– Many-body tunneling (spontaneous fission, 

sub-barrier fusion, astrophysical reaction)
• Possible solutions

– Improving DF (𝜔-dep., beyond LDA, etc.) 
– Re-quantization of TDDFT



Quantized TDDFT dynamics
--- Part 2: Missing correlations and quantization ---

Takashi Nakatsukasa (University of Tsukuba)

2017.6.19-23 @RIKEN, Wako, Japan

•Main origin of missing correlations
– Quantum fluctuation associated with “slow” collective 
motion
– Improving the density functional seems to be difficult 

•Re-quantization of “slow” collective motion
– Deriving a collective subspace
– Quantization on the subspace



Classical Hamilton’s form

The TDDFT can be described by the classical form.

The canonical variables

Number of variables = Number of ph degrees of freedom

ξ ph =
∂H
∂π ph

π ph = −
∂H
∂ξ ph

Blaizot, Ripka, “Quantum Theory of Finite Systems” (1986)  
Yamamura, Kuriyama, Prog. Theor. Phys. Suppl. 93 (1987)

𝐻 𝜉, 𝜋 = 𝐸 𝜌(𝜉, 𝜋)

𝜌445 = 𝜉 + 𝑖𝜋 𝜉 + 𝑖𝜋 8
445

𝜉49,𝜋49
𝜌995 = 1 − 𝜉 + 𝑖𝜋 8 𝜉 + 𝑖𝜋 995

𝜌49 = 𝜉 + 𝑖𝜋 1 − 𝜉 + 𝑖𝜋 8 𝜉 + 𝑖𝜋 49



Strategy

• Purpose
– Recover quantum fluctuation effect 

associated with “slow” collective motion
• Difficulty

– Non-trivial collective variables
• Procedure

1. Identify the collective subspace of such slow 
motion, with canonical variables (𝑞, 𝑝)

2. Quantize on the subspace    𝑞, 𝑝	 = 𝑖ℏ



Expansion for “slow” motion
• Hamiltonian

𝐻 = 𝐻 𝜉, 𝜋 ≈
1
2
𝐵BC 𝜉 𝜋B𝜋C + 𝑉(𝜉)

expanded up to 2nd order in 𝜋 [α, 𝛽 = (𝑝ℎ)]

• Transformation  𝜉B, 𝜋B → 𝑞I, 𝑝I
𝑝I =

JKL

JMN
𝜋B ,         𝜋B =

JMN

JKL
𝑝I

• Hamiltonian
𝐻O = 𝐻O 𝑞, 𝑝 ≈

1
2
𝐵PIQ 𝑞 𝑝I𝑝Q + 𝑉(𝑞)



Decoupled submanifold
• Collective canonical variables (𝑞, 𝑝)
– 𝜉B, 𝜋B → 𝑞, 𝑝; 	𝑞T , 𝑝T; 			𝑎 = 2,⋯ ,𝑁49

• Finding a decoupled submanifold
JX
JKL

− JX
JM

JM
JKL

= 0 Moving mean-field eq.

𝐵CZ 𝛻Z
JX
JKL

JM
JK\

= 𝜔] JM
JKL

Moving RPA eq.

𝛻Z
JX
JKL ≡

J_X
JK`JKL − ΓBZ

C JX
JK\

ΓBZ
C : Affine connection with metric   𝑔BC ≡ ∑ JMN

JKL
JMN

JK\I



Numerical procedure

𝜉𝑞,B =
𝜕𝑞
𝜕𝜉B

JX
JKL

− JX
JM

JM
JKL

= 0 Moving mean-field eq.

𝐵CZ 𝛻Z
JX
JKL

JM
JK\

= 𝜔] JM
JKL

Moving RPA eq.

Move to the next point
𝜉B + 𝛿𝜉B = 𝜉B + 𝜀𝜉,MB

Moving MF eq. to 
determine the point: 𝜉B

𝜉,MB =
𝜕𝜉B

𝜕𝑞

Tangent vectors (Generators)



Canonical variables and quantization

• Solution
– 1-dimensional state:  ξ 𝑞

– Tangent vectors:   JM
JKL

and JK
L

JM

– Fix the scale of 𝑞	by making the inertial mass                          
𝐵P = JM

JKL
𝐵BC JM

JKL
= 1

• Collective Hamiltonian
– 𝐻O#h%% 𝑞, 𝑝 = i

]
𝑝] + 𝑉P(𝑞),       𝑉P 𝑞 = 𝑉(ξ 𝑞 )

– Quantization   𝑞, 𝑝	 = 𝑖ℏ



3D real space representation

X [ fm ]

y 
[ f

m
 ]

Wen, T.N., arXiv: 1703.04319
Wen, T.N., PRC 94, 054618 (2016).
Wen, Washiyama, Ni, T.N.,  Acta Phys. Pol. 
B Proc. Suppl. 8, 637 (2015)

• 3D space discretized in lattice
• BKN functional
• Moving mean-field eq.: Imaginary-time method
• Moving RPA eq.： Finite amplitude method (PRC 

76, 024318 (2007) )

At a moment, no pairing

1-dimensional reaction path 
extracted from the Hilbert space of 
dimension of 104 ~105.



• Reaction path
• After touching

– No bound state, but
– a resonance state in 8Be

Simple case: α + α scattering

α particle（4He） α particle（4He）



8Be: Tangent vectors (generators)
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FIG. 1. (Color online) Calculated translational mass of the ↵
particle in units of nucleon’s mass m, as functions of adoptd
mesh size h.

with various mesh sizes h = 0.5 ⇠ 1.4 fm. Note that
the ground state of the system is a trivial solution of the
ASCC equation (6). We can clearly identify the three
translational modes for x, y, and z directions, degener-
ated in energy at !com  1 MeV. Using smaller mesh
size, the eigenfrequency of the translational motion ap-
proaches to zero. There are no low-lying excited states in
the ↵ particle because of its compact and doubly-closed
characters. The calculated energy of the lowest excited
state is larger than 20 MeV.

Using Eqs. (19) and (22) with R as the center of mass,
we calculate the inertial mass of the translational motion
of the ↵ particle. Figure 1 shows the results calculated
with di↵erent mesh size h of the 3D grid. Since this is
the trivial center-of-mass motion of the total system, this
should equal the total mass,M = Am with A = 4. As the
mesh size decreases, the total mass certainly converges to
the value of 4m. In the follwoing, we adopt the mesh size
h = 0.8 fm.

2. Relative motion of two ↵ particles in 8Be

Figure 2 shows the calculated eigenfrequencies for the
ground state of 8Be and the two well separated ↵’s at
distance R = 7.2 fm. Since the ground state of 8Be
is deformed, there appear the rotational modes of exci-
tation as the zero modes, in addition to the three in-
dependent modes of the translational motion. Because
of the axial symmetry of the ground state, the rota-
tion about the symmetry axis (z axis) does not ap-
pear. In Fig. 2 the calculation produces two rotational
modes of excitation around 2.8 MeV with large transi-
tion matrix element of the K = 1 quadrupole operator,
Q̂2±1 ⌘ R

r2Y2±1(r̂) ̂†(~r) ̂(~r)d~r. The finite energy of
these rotational modes comes from the finite mesh size
discretizing the space. Besides these five zero modes,
the lowest mode of excitation turns out to have a sizable
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FIG. 2. (Color online) Calculated eigenfrequencies for the
ground state of 8Be (left column) and the two well-separated
↵’s at distance R = 7.2 fm (right column). The three modes
of translational motion and two modes of rotational motion
are shown by thin lines, while the thick line indicates the
K = 0 quadrupole oscillation.
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FIG. 3. (Color online) The density distribution ⇢(~r) for 8Be
in the upper panels, and the transition density �⇢(~r) of the
lowest mode of excitation in the lower panels. The left panels
show those at the ground state and the right at R = 7.2 fm.
Those on the y � z plane are plotted.

transition strength of the K = 0 quadrupole operator
Q̂20 ⌘ R

r2Y20(r̂) ̂†(~r) ̂(~r)d~r. This mode corresponds
to the elongation of 8Be. The transition density is given
by

�⇢(~r) ⌘ h!| ̂(~r) ̂†(~r)|0i = h0|
h

⌦,  ̂(~r) ̂†(~r)
i

|0i

=

r

2

!

X

i

P
i

(~r)'
i

(~r). (41)

The left panels of Fig. 3 show the density profile of 8Be
and the transition density �⇢(r) corresponding to the low-
est RPA normal mode. We can see an elongated struc-
ture along the z direction in the ground state. The lowest
mode of excitation corresponds to the change of its elon-
gation (�-vibration).

𝜌(�⃗�)

𝛿𝜌(�⃗�)

Tangent vectors (Generators)



8Be: Collective potential
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FIG. 4. (Color online) Potential energy as a function of the
relative distance R. The solid (blue) line corresponds to V (R)
on the ASCC collective path, while the dashed (red) line
shows 4e2/R+ 2E↵ for reference.

We also perform the same calculation for the state in
which two ↵ particles are located far away, at the rel-
ative distance R = 7.2 fm. In the right panel of Fig.
3, we clearly see that the two ↵ particles are well sepa-
rated, and the quadrupole mode in fact corresponds to
the translational motion of the ↵ particles in the opposite
directions, namely, the relative motion of two ↵’s. The
excitation energy almost vanishes for this normal mode
(Fig. 2).

B. Results of the ASCC method

In Sec. III A 2, we show that the the lowest quadrupole
mode of excitation at the ground state of 8Be may change
its character and lead to the relative motion of two ↵’s
at the asymptotic region. We adopt this mode as the
generators (Q̂(q), P̂ (q)) of the collective variables (q, p),
then, construct the collective path.

1. Collective path, potential, and inertial mass

We successfully derive the collective path {| (q)i; q =
0, �q, 2�q, · · · } connecting the ground state of 8Be into the
well-separated two ↵ particles. The inertial mass M(q)
is taken as unity and the collective potential is calcu-
lated according to Eq. (9). Then, according to Sec. II B,
the collective coordinate q is mapped onto the relative
distance R ⌘ h (q)|R̂| (q)i with Eq. (18). Figure 4
shows the obtained potential energy along the ASCC
collective path. As a reference, we also show the pure
Coulomb potential between two ↵ particles at distance
R, 4e2/R+2E

↵

, where E
↵

is the calculated ground state
energy of the isolated ↵ particle. Apparently, it asymp-
totically approaches the pure Coulomb potential. As two
↵’s get closer, the potential starts to deviate from the
Coulomb potential at R < 6 fm and finally reaches the
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FIG. 5. (Color online) !2 in Eq. (13) and @2V/@q2 of the
ASCC calculation as a function of relative distance R.

ground state of 8Be. The ground state is at R = 3.54
fm, and the top of the Coulumb barrier is at R = 6.6
fm. Note that the path is determined self-consistently
without any a priori assumption.
With this calculated potential, we may check the self-

consistency of the ASCC potential and the eigenfre-
quency. If the collective path perfectly follows the di-
rection defined by the local generators (Q̂(p), P̂ (q)) at
each point of q, the second derivative of the potential
d2V/dq2 should coincide with the eigenfrequency !2 of
the moving RPA equation. The almost perfect agree-
ment between these is shown in Fig. 5.
For the region of R < 3.5 fm, there exists some discrep-

ancy between d2V/dq2 and !2. In this region, the 8Be
nucleus has even more compact shapes than the ground
state, then, the coordinate q and R become almost or-
thogonal to each other, losing the one-to-one correspon-
dence between them. In other words, the states | (q)i
change as q gets smaller, but keep R = h (q)|R̂| (q)i al-
most constant. In addition, the moving RPA frequency !
becomes larger than the particle threshold energy, enter-
ing in the continuum. Thus, in this region of R < 3.5 fm,
the results somewhat depend on the adopted box size.
Figure 6 shows the obtained inertial mass M(R) as a

function of R for the scattering between two ↵’s As the
two ↵’s are far away, the ASCC inertial mass asymp-
totically produces the exact reduced mass of 2m. This
means that the collective coordinate q becomes parallel
to the relative distance R, even though we do not assume
so. At R < 3.54 fm, the value of inertial mass M(R) in-
creases. This is due to the decrease of the factor dR/dq
in Eq. (19). Making the sytem even more compact than
the ground state, M(R) rises up drastically, which means
that the coordinates q and R become almost orthogonal.

2. Phase shift for ↵� ↵ scattering

The ASCC calculation provides us the collective
Hamiltonian along the optimal reaction path. Using this,

Represented by the relative distance R
Transformation: 𝑞 → 𝑅

𝑉 𝑅 = 𝑉(𝑞 𝑅 )

R
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we demonstrate the calculation of nuclear phase shift. We
should take this result in a qualitative sense, because of
a schematic nature of the BKN interaction.

Using the collective potential V (R) and the inertial
mass M(R) obtained in the ASCC calculation, the nu-
clear phase shift for the angular momentum L at incident
energy E is calculated in the WKB approximation as [41]

�
L

(E) =

Z 1

R0

k(R)dR�
Z 1

Rc

k
c

(R)dR, (42)

with

k2(R) = 2M(R)

(

E � V (R)�
�

L+ 1
2

�2

4mR2

)

,

k2
c

(R) = 4m

(

E � 4e2

R
�

�

L+ 1
2

�2

4mR2

)

, (43)

where k(R) and k
c

(R) are the wave numbers in the
radial motion with and without the nuclear potential.

R0 and Rc are the outer turning points for the po-
tentials V (R) and 4e2/R, respectively, i.e. k(R0) =
k
c

(R
c

) = 0. The centrifugal potential is approximated
as (L + 1/2)2/(2µR2) with the reduced mass µ = 2m
and the semiclassical approximation for L(L+ 1).
Figure 7 shows the calculated nuclear phase shifts for

the scattering between two ↵’s. The dashed line is calcu-
lated with the same potential V (R) but with the constant
reduced mass, M(R) ! µ = 2m. We can see the promi-
nent increase of the nuclear phase shift caused by the
coordinate-dependent ASCC inertial mass M(R). We
should remark that the energy of the resonance in 8Be is
not reproduced with the BKN interaction. In fact, the
present calculation leads to the stable ground state for
8Be; E8Be < 2E

↵

. Thus, we should regard this result
as a quatlitative one. Nevertheless, the basic features of
phase shifts for the ↵�↵ scattering are reproduced. This
demonstrates the usefulness of the requantization using
the ASCC calculation.

C. Comparison with other approaches

We compare the present ASCC results with those ob-
tained with other approaches: (i) CHF + cranking in-
ertia, (ii) CHF + local RPA, and (iii) ATDHF. We
adopt the same model space as the ASCC calculations
for these calculations. For the constraint operators of
CHF calculation in (i) and (ii), we adopt the K = 0
mass quadrupole operator Q̂20 and the relative distance
R̂.

1. CHF + cranking inertia

Since 8Be is the simplest system and has a promi-
nent ↵ + ↵ structure even at the ground state, the
collective path can be approximated by more conven-
tional CHF calculations with a constraint operator as
either Q̂20 or R̂. The potential is defined as VCHF(R) =
h CHF(R)|Ĥ| CHF(R)i. For the inertial mass, the In-
glis’s cranking formula is widely used. There are two
kinds of cranking formulae: The original formula is de-
rived by the adiabatic perturbation, which is given for
the 1D collective motion as

MNP
cr (R) = 2

X

m,i

|h'
m

(R)|@/@R|'
i

(R)i|2
e
m

(R)� e
i

(R)
, (44)

where the single-particle states and energies are defined
with respect to hCHF(R) = hHF[⇢]� �(R)Ô as

hCHF(R)|'
µ

(R)i = e
µ

(R))|'
µ

(R)i, µ = i,m. (45)

Note that, depending on choice of the constraint oper-
ator, Ô = (Q̂20, R̂), we obtain slightly di↵erent |'

i

(R)i
even at the same R.
Another formula, which is more frequently used in

many applications and also called the cranking inertial

Reduced	mass

𝐵P(𝑅) =
𝜕𝑅
𝜕𝑞 𝐵

P 𝜕𝑅
𝜕𝑞 =

𝜕𝑅
𝜕𝑞

]

𝑀O(𝑅) =
1

𝐵P(𝑅)

Transformation: 𝑞 → 𝑅

𝑀O(𝑅) → 2𝑚
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we demonstrate the calculation of nuclear phase shift. We
should take this result in a qualitative sense, because of
a schematic nature of the BKN interaction.

Using the collective potential V (R) and the inertial
mass M(R) obtained in the ASCC calculation, the nu-
clear phase shift for the angular momentum L at incident
energy E is calculated in the WKB approximation as [41]

�
L

(E) =

Z 1
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k(R)dR�
Z 1

Rc

k
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(R)dR, (42)

with
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)

,
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, (43)

where k(R) and k
c

(R) are the wave numbers in the
radial motion with and without the nuclear potential.

R0 and Rc are the outer turning points for the po-
tentials V (R) and 4e2/R, respectively, i.e. k(R0) =
k
c

(R
c

) = 0. The centrifugal potential is approximated
as (L + 1/2)2/(2µR2) with the reduced mass µ = 2m
and the semiclassical approximation for L(L+ 1).
Figure 7 shows the calculated nuclear phase shifts for

the scattering between two ↵’s. The dashed line is calcu-
lated with the same potential V (R) but with the constant
reduced mass, M(R) ! µ = 2m. We can see the promi-
nent increase of the nuclear phase shift caused by the
coordinate-dependent ASCC inertial mass M(R). We
should remark that the energy of the resonance in 8Be is
not reproduced with the BKN interaction. In fact, the
present calculation leads to the stable ground state for
8Be; E8Be < 2E

↵

. Thus, we should regard this result
as a quatlitative one. Nevertheless, the basic features of
phase shifts for the ↵�↵ scattering are reproduced. This
demonstrates the usefulness of the requantization using
the ASCC calculation.

C. Comparison with other approaches

We compare the present ASCC results with those ob-
tained with other approaches: (i) CHF + cranking in-
ertia, (ii) CHF + local RPA, and (iii) ATDHF. We
adopt the same model space as the ASCC calculations
for these calculations. For the constraint operators of
CHF calculation in (i) and (ii), we adopt the K = 0
mass quadrupole operator Q̂20 and the relative distance
R̂.

1. CHF + cranking inertia

Since 8Be is the simplest system and has a promi-
nent ↵ + ↵ structure even at the ground state, the
collective path can be approximated by more conven-
tional CHF calculations with a constraint operator as
either Q̂20 or R̂. The potential is defined as VCHF(R) =
h CHF(R)|Ĥ| CHF(R)i. For the inertial mass, the In-
glis’s cranking formula is widely used. There are two
kinds of cranking formulae: The original formula is de-
rived by the adiabatic perturbation, which is given for
the 1D collective motion as

MNP
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X
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(R)i|2
e
m

(R)� e
i
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where the single-particle states and energies are defined
with respect to hCHF(R) = hHF[⇢]� �(R)Ô as

hCHF(R)|'
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(R)i = e
µ

(R))|'
µ

(R)i, µ = i,m. (45)

Note that, depending on choice of the constraint oper-
ator, Ô = (Q̂20, R̂), we obtain slightly di↵erent |'

i

(R)i
even at the same R.
Another formula, which is more frequently used in

many applications and also called the cranking inertial

Nuclear	phase	shift

Effect	of	dynamical	change	of	the	inertial	mass
Dashed	line:			Constant	reduced	mass	(	𝑀 𝑅 → 2𝑚)



16O + α scattering

• Important reaction to synthesize heavy 
elements in giant stars
– Alpha reaction

16O 4He
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20Ne: Inertial mass

Reduced	mass
𝑀 𝑅 → 3.2𝑚

Strong increase in the mass near 
the ground state of 20Ne
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Alpha reaction：16O + α
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produce 20Ne
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pecially near the SD state. Our result shows a peculiar
increase in the inertial mass near the SD local minimum
(R = 4.9 fm). On the contrary, the ATDHF result of
Ref. [32] even shows a decrease near the ending point at
R ≈ 5 fm. In our previous study on α + α →8Be, we
have also found that the ATDHF potential is relatively
similar to that of the ASCC, while the inertial masses are
different.

C. Sub-barrier fusion cross section

The ASCC calculation provides us the collective
Hamiltonian on the optimal reaction path. Using this,
we demonstrate the calculation of sub-barrier fusion cross
section for 16O+α→ 20Ne and 16O+16O→32S. We follow
the procedure in Ref. [32].
Using the collective potential V (R) and the inertial

mass M(R) obtained in the ASCC calculation, the sub-
barrier fusion cross section is evaluated with the WKB
approximation. The transmission coefficient for the par-
tial wave L at incident energy Ec.m. is given by

TL(Ec.m.) = [1 + exp(2IL)]
−1, (29)

with

IL(Ec.m.) =

∫ b

a
dR

{
2M(R)

×
(
V (R) +

L(L+ 1)

2µredR2
− Ec.m.

)}1/2
, (30)

where a and b are the classical turning points on the inner
and outer sides of the barrier respectively. The centrifu-
gal potential is approximated as L(L+1)/(2µredR2). The
fusion cross section is given by

σ(Ec.m.) =
π

2µredEc.m.

∑

L

(2L+ 1)TL(Ec.m.). (31)

For identical incident nuclei, Eq. (31) must be modified
according to the proper symmetrization. Only the partial
wave with even L contribute to the cross section as

σ(Ec.m.) =
π

2µredEc.m.

∑

L

[1 + (−)L](2L+ 1)TL(Ec.m.).

(32)

Instead of σ(Ec.m.), one usually refers to the astrophys-
ical S factor defined by

S(Ec.m.) = Ec.m.σ(Ec.m.) exp[2πZ1Z2e
2/!v], (33)

where v is the relative velocity at R → ∞. The as-
trophysical S factor is preferred for sub-barrier fusion
because it removes the change by tens of orders of mag-
nitude present in the cross section due to the trivial pen-
etration through the Coulomb barrier. The S factor may
reveal in a more transparent way the influence of the nu-
clear structure and dynamics.
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FIG. 11. (Color online) The astrophysical S factor for the sub-
barrier fusion of 16O+α (upper panel) and 16O+16O (lower
panel), as a function of incident energy Ec.m.. The solid line
indicates the results obtained with the ASCC inertial mass
M(R), the dashed lines are calculated with the constant re-
duced mass µred.

Figure 11 shows the calculated S factor for the scatter-
ing of 16O+α and 16O+16O, respectively. For 16O+16O,
the values of the S factor are plotted in log scale. The
dashed line is calculated with the same potential V (R)
but with the reduced mass, replacing M(R) by the con-
stant value of µred in Eq. (30). Effect of the inertial
mass is significant in the deep sub-barrier energy region,
especially for the reaction of 16O+16O at Ec.m. < 4 MeV.
Because of a schematic nature of the BKN density func-
tional, we should regard this result as a qualitative one.
Nevertheless, it suggests the significant effect of the iner-
tial mass and roughly reproduces basic features of exper-
imental S factor for the 16O-16O scattering. This demon-
strates the usefulness of the requantization approach us-
ing the ASCC collective Hamiltonian.

IV. SUMMARY

Based on the ASCC method we developed a numerical
method to determine the collective path for the large
amplitude nuclear collective motion. We applied this
method to the nuclear fusion reactions; 16O+α →20Ne
and 16O+16O→32S. In the grid representation of the 3D
coordinate space, the reaction paths, collective poten-
tials, and the inertial masses are calculated.

The ASCC collective path smoothly connects the ini-

E [ MeV ]
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𝐸
𝑃 𝐸 ×𝑆(𝐸)

Fusion reaction:
Astrophysical S-factor

Effect	of	dynamical	change	of	the	inertial	mass
Dashed	line:			Constant	reduced	mass	(	𝑀 𝑅 → 3.2𝑚)



Summary (Part-2)

• Missing correlations in nuclear density 
functional
– Correlations associated with low-energy 

collective motion
• Re-quantize a specific mode of collective 

motion
– Derive the slow collective motion
– Quantize the collective Hamiltonian
– Applicable to nuclear structure and reaction
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