Quantized TDDFT dynamics --- Part 1: The basics of nuclear mean-field models ---

Takashi Nakatsukasa (University of Tsukuba)

Basic properties of nuclei

Saturation properties vs Single-particle motion
Mean-field model vs Density functional model

TDDFT for nuclear collective motion

Linear response: High-energy giant resonances vs low-energy modes of excitation
Success and failures

Different faces of nuclei

Liquid

Gas

Nuclear Saturation "Liquid"-like property

 $B/A \sim 8 MeV$

(B/A ~ 16 MeV for nuclear matter)

Density $\rho \approx 0.16 \text{ fm}^{-3}$

Liquid drop model

Bethe-Weizsäcker mass formula

$$B(N,Z) = a_V A - a_S A^{2/3} - a_{sym} \frac{(N-Z)^2}{A} - a_C \frac{Z^2}{A^{1/3}} + \delta(A)$$

Saturation properties of nuclear matter

Symmetric nuclear matter w/o Coulomb

$$- N = Z = \frac{A}{2}$$

- Constant binding energy per nucleon
 - Constant separation energy

$$B/A \approx S_{n(p)} \approx 16 \text{ MeV}$$

Saturation density

$$\rho \approx 0.16 \,\mathrm{fm}^{-3} \implies k_F \approx 1.35 \,\mathrm{fm}^{-1}$$

– Fermi energy

$$T_F = \frac{\hbar^2 k_F^2}{2m} \approx 40 \text{ MeV}$$

Single-particle motion "Gas"-like picture

- Nuclear shell model

 Strong spin-orbit coupling (Mayer-Jensen)
- Mean free path in nuclei
 Neutron scattering

Energy required to remove two neutrons from nuclei

(2-neutron binding energies = 2-neutron "separation" energies)

R. Casten

Nuclear "transparency"

Saturated gas?

- Is the mean-field (gas or single-particle) picture consistent with the saturation property?
 - Analysis with a simple potential model for infinite nuclear matter

$$h = -\frac{\hbar^2}{2m}\nabla^2 + V$$

Saturation properties of nuclear matter

Symmetric nuclear matter w/o Coulomb

$$- N = Z = \frac{A}{2}$$

- Constant binding energy per nucleon
 - Constant separation energy

$$B/A \approx S_{n(p)} \approx 16 \text{ MeV}$$

Saturation density

$$\rho \approx 0.16 \,\mathrm{fm}^{-3} \implies k_F \approx 1.35 \,\mathrm{fm}^{-1}$$

– Fermi energy

$$T_F = \frac{\hbar^2 k_F^2}{2m} \approx 40 \text{ MeV}$$

A constant mean-field potential

Binding energy in the mean field

$$-B = \sum_{i=1}^{A} \left(T_i + \frac{V}{2} \right), \quad T_i = \frac{\hbar^2 k_i^2}{2m}$$
$$= A \left(\frac{3}{5} T_F + \frac{V}{2} \right)$$

$$\mathcal{E}$$

$$\mathcal{E}_F = T_F + V = -S$$

Saturation property

$$S = \frac{B}{A} \implies T_F = -\frac{5}{4}V$$

Inconsistent with nuclear binding

†

Momentum-dependent potential

- State-dependent potential
 - Momentum dependence
 - The lowest order \rightarrow "Effective mass"

$$V = U_0 + U_1 k^2 \implies m^* / m = \left(1 + \frac{U_1 k_F^2}{/T_F}\right)^{-1}$$

$$= \left(\frac{3}{2} + \frac{5}{2}\frac{B}{A}\frac{1}{T_F}\right)^{-1} \approx 0.4$$

– Inconsistent with experiments!

A possible solution for the inconsistency

Energy density functional

$$E[\rho] \Rightarrow h[\rho] |\phi_i\rangle = \varepsilon_i |\phi_i\rangle$$
$$h[\rho] \equiv \frac{\delta E}{\delta \rho}$$

State-dependent effective interaction

 Rearrangement terms

Nuclear energy density functional

- Energy functional for the intrinsic states
- Spin & isospin degrees of freedom
 Spin-current density is indispensable.
- Nuclear superfluidity → Kohn-Sham-Bogoliubov eq.
 - Pair density (tensor) is necessary for heavy nuclei.

Nuclear Landscape

Ab initio

Protons

Configuration Interaction Density Functional Theory

41.....

known nuclei

neutrons

terra incognita

r-proces

126

From SciDAC-UNEDF project

Predicted nuclear mass

Missing correlations for open-shell nuclei

Nuclear deformation as symmetry breaking

$$e^{i\phi J}|\Psi\rangle \neq |\Psi\rangle$$

Quadrupole deformation

$$\beta_{2\mu} = \langle \Psi | r^2 Y_{2\mu} | \Psi \rangle$$
prolate
oblate
triaxial

Octupole deformation

$$\beta_{30} = \langle \Psi | r^3 Y_{30} | \Psi \rangle$$

$$\hat{P} | \Psi \rangle \neq \pm | \Psi \rangle$$
Pear shape (µ=0)

$$e^{i\phi N} |\Psi\rangle \neq |\Psi\rangle$$

Pairing deformation (superfluidity)

$$\Delta = \left< \Psi \middle| \hat{\psi} \hat{\psi} \middle| \Psi \right>$$

Deformation in the gauge space

Nuclear Superconductivity Nuclear Superfluidity

Nuclear deformation

Ebata and T.N., Phys. Scr. 92 (2017) 064005

Nuclear deformation predicted by DFT

Time-dependent density functional theory (TDDFT) for nuclei

Time-odd densities (current density, spin density, etc.)

$$E\left[\rho_{q}(t), \tau_{q}(t), \vec{J}_{q}(t), \vec{j}_{q}(t), \vec{s}_{q}(t), \vec{T}_{q}(t); \kappa_{q}(t)\right]$$

kinetic current spin-kinetic spin-current spin pair density

• TD Kohn-Sham-Bogoliubov-de-Gennes eq.

$$i\frac{\partial}{\partial t} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix} = \begin{pmatrix} h(t) - \lambda & \Delta(t) \\ -\Delta^{*}(t) & -(h(t) - \lambda)^{*} \end{pmatrix} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix}$$

Linear response calculation

Linear response (RPA) equation

Assuming the external field with a fixed frequency and expanding $\delta \phi_i$ in terms of particle (unoccupied) orbitals,

$$\begin{split} \delta\phi_i(t) &= \sum_{m>A} \phi_m^0 \left\{ X_{mi} \exp(-i\omega t) + Y_{mi}^* \exp(i\omega t) \right\} \\ &\left\{ \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} - \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \begin{pmatrix} X_{mi}(\omega) \\ Y_{mi}(\omega) \end{pmatrix} = - \begin{pmatrix} (V_{\text{ext}})_{mi} \\ (V_{\text{ext}})_{im} \end{pmatrix} \\ &A_{mi,nj} = (\varepsilon_m - \varepsilon) \delta_{mn} \delta_{ij} + \left\{ \phi_m \left| \frac{\partial V}{\partial \rho_{nj}} \right|_{\rho_0} |\phi_i\rangle \right\} \\ &B_{mi,nj} = \left\{ \phi_m \left| \frac{\partial V}{\partial \rho_{jn}} \right|_{\rho_0} |\phi_i\rangle \right\} \end{split}$$

Deformation effects for photoabsorption cross section

Low-energy states

Large amplitude collective motion

- Decay modes
 - Spontaneous fission
 - Alpha decay
- Low-energy reaction
 - Sub-barrier fusion reaction
 - Alpha capture reaction (element synthesis in the stars)

Summary (part 1)

- Success of nuclear (TD)DFT
 - Unified picture of liquid-like and gas-like properties (saturation and indep. part. motion)
 - Giant resonances (*linearized TDDFT*)
- Problems
 - Low-energy collective motion
 - Many-body tunneling (spontaneous fission, sub-barrier fusion, astrophysical reaction)
- Possible solutions
 - Improving DF (ω -dep., beyond LDA, etc.)
 - *Re-*quantization of TDDFT

Quantized TDDFT dynamics --- Part 2: Missing correlations and quantization ---

Takashi Nakatsukasa (University of Tsukuba)

- •Main origin of missing correlations
 - Quantum fluctuation associated with "slow" collective motion
 - Improving the density functional seems to be difficult
- •Re-quantization of "slow" collective motion
 - Deriving a collective subspace
 - Quantization on the subspace

Classical Hamilton's form

Blaizot, Ripka, "Quantum Theory of Finite Systems" (1986) Yamamura, Kuriyama, Prog. Theor. Phys. Suppl. 93 (1987)

The TDDFT can be described by the classical form.

$$\begin{split} \dot{\xi}^{ph} &= \frac{\partial H}{\partial \pi_{ph}} \\ \dot{\pi}_{ph} &= -\frac{\partial H}{\partial \xi^{ph}} \\ \end{split} \qquad H(\xi, \pi) &= E[\rho(\xi, \pi)] \\ \end{split}$$
The canonical variables (ξ^{ph}, π_{ph})
 $\rho_{pp'} &= [(\xi + i\pi)(\xi + i\pi)^{\dagger}]_{pp'} \quad \rho_{hh'} &= [1 - (\xi + i\pi)^{\dagger}(\xi + i\pi)]_{hh'}$
 $\rho_{ph} &= [(\xi + i\pi)\{1 - (\xi + i\pi)^{\dagger}(\xi + i\pi)\}]_{ph}$

Number of variables = Number of *ph* degrees of freedom

Strategy

- Purpose
 - Recover quantum fluctuation effect associated with "slow" collective motion
- Difficulty
 - Non-trivial collective variables
- Procedure
 - 1. Identify the collective subspace of such slow motion, with canonical variables (q, p)
 - 2. Quantize on the subspace $[q, p] = i\hbar$

Expansion for "slow" motion

Hamiltonian

 $H = H(\xi, \pi) \approx \frac{1}{2} B^{\alpha\beta}(\xi) \pi_{\alpha} \pi_{\beta} + V(\xi)$ expanded up to 2nd order in π [$\alpha, \beta = (ph)$]

• Transformation $(\xi^{\alpha}, \pi_{\alpha}) \rightarrow (q^{\mu}, p_{\mu})$

$$p_{\mu} = \frac{\partial \xi^{\alpha}}{\partial q^{\mu}} \pi_{\alpha}, \qquad \pi_{\alpha} = \frac{\partial q^{\mu}}{\partial \xi^{\alpha}} p_{\mu}$$

Hamiltonian

$$\overline{H} = \overline{H}(\boldsymbol{q}, \boldsymbol{p}) \approx \frac{1}{2} \overline{B}^{\mu\nu}(\boldsymbol{q}) \boldsymbol{p}_{\mu} \boldsymbol{p}_{\nu} + V(\boldsymbol{q})$$

Decoupled submanifold

• Collective canonical variables (q, p)

$$-\{\xi^{\alpha},\pi_{\alpha}\} \rightarrow \{q,p;q^{a},p_{a};a=2,\cdots,N_{ph}\}$$

- Finding a decoupled submanifold
 - $\frac{\partial V}{\partial \xi^{\alpha}} \frac{\partial V}{\partial q} \frac{\partial q}{\partial \xi^{\alpha}} = 0 \qquad \text{Moving mean-field eq.} \\ B^{\beta \gamma} \left(\nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}} \right) \frac{\partial q}{\partial \xi^{\beta}} = \omega^2 \frac{\partial q}{\partial \xi^{\alpha}} \qquad \text{Moving RPA eq.} \\ \nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}} \equiv \frac{\partial^2 V}{\partial \xi^{\gamma} \partial \xi^{\alpha}} \Gamma^{\beta}_{\alpha \gamma} \frac{\partial V}{\partial \xi^{\beta}} \\ \Gamma^{\beta}_{\alpha \nu} : \text{Affine connection with metric} \quad g_{\alpha \beta} \equiv \sum_{\mu} \frac{\partial q^{\mu}}{\partial \xi^{\alpha}} \frac{\partial q^{\mu}}{\partial \xi^{\beta}} \\ \end{array}$

Numerical procedure

 $\frac{\partial V}{\partial \xi^{\alpha}} - \frac{\partial V}{\partial q} \frac{\partial q}{\partial \xi^{\alpha}} = 0 \qquad \text{Moving mean-field eq.} \\ B^{\beta \gamma} \left(\nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}} \right) \frac{\partial q}{\partial \xi^{\beta}} = \omega^2 \frac{\partial q}{\partial \xi^{\alpha}} \qquad \text{Moving RPA eq.}$

Tangent vectors (Generators)

 $q_{,\alpha} = \frac{\partial q}{\partial \xi^{\alpha}} \qquad \xi_{,q}^{\alpha} = \frac{\partial \xi^{\alpha}}{\partial q} \qquad [\xi]$ Moving MF eq. to determine the point: ξ^{α} Move to the next point $\xi^{\alpha} + \delta \xi^{\alpha} = \xi^{\alpha} + \varepsilon \xi_{,q}^{\alpha}$

Canonical variables and quantization

- Solution
 - 1-dimensional state: $\xi(q)$
 - Tangent vectors: $\frac{\partial q}{\partial \xi^{\alpha}}$ and $\frac{\partial \xi^{\alpha}}{\partial q}$
 - Fix the scale of q by making the inertial mass $\bar{B} = \frac{\partial q}{\partial \xi^{\alpha}} B^{\alpha\beta} \frac{\partial q}{\partial \xi^{\alpha}} = 1$
- Collective Hamiltonian

$$-\overline{H}_{\text{coll}}(\boldsymbol{q},\boldsymbol{p}) = \frac{1}{2}\boldsymbol{p}^2 + \overline{V}(\boldsymbol{q}), \qquad \overline{V}(\boldsymbol{q}) = V(\boldsymbol{\xi}(\boldsymbol{q}))$$

– Quantization $[q, p] = i\hbar$

3D real space representation

- 3D space discretized in lattice
- BKN functional
- Moving mean-field eq.: Imaginary-time method
- Moving RPA eq.: Finite amplitude method (PRC 76, 024318 (2007))

Wen, T.N., arXiv: 1703.04319 Wen, T.N., PRC 94, 054618 (2016). Wen, Washiyama, Ni, T.N., Acta Phys. Pol. B Proc. Suppl. 8, 637 (2015)

At a moment, no pairing

1-dimensional reaction path extracted from the Hilbert space of dimension of $10^4 \sim 10^5$.

Simple case: $\alpha + \alpha$ scattering

 α particle(⁴He)

 α particle (⁴He)

- Reaction path
- After touching
 - No bound state, but
 - a resonance state in ⁸Be

⁸Be: Tangent vectors (generators)

⁸Be: Collective potential

Represented by the relative distance R*Transformation:* $q \rightarrow R$

⁸Be: Collective inertial mass

Transformation: $q \rightarrow R$

Nuclear phase shift

Effect of dynamical change of the inertial mass Dashed line: Constant reduced mass ($M(R) \rightarrow 2m$)

¹⁶O + α scattering

- Important reaction to synthesize heavy elements in giant stars
 - Alpha reaction

²⁰Ne: Collective potential

Alpha reaction: $^{16}O + \alpha$

Nuclear reaction to produce ²⁰Ne

Fusion reaction: Astrophysical S-factor

Dashed line: Constant reduced mass ($M(R) \rightarrow 3.2m$)

Summary (Part-2)

- Missing correlations in nuclear density functional
 - Correlations associated with low-energy collective motion
- Re-quantize a specific mode of collective motion
 - Derive the slow collective motion
 - Quantize the collective Hamiltonian
 - Applicable to nuclear structure and reaction

Summary (Part-2)

- Review articles
 - T.N., Prog. Theor. Exp. Phys. 2012, 01A207 (2012)
 - T.N. et al., Rev. Mod. Phys. 88, 045004 (2016)

- Collaborators
 - Shuichiro Ebata (Hokkaido Univ.)
 - Kai Wen (Univ. Surrey)
 - Kenichi Yoshida (Kyoto Univ.)

