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Density functional theories (DFT) have been widely used in chemistry and condensed matter physics, and
proven to be a versatile theoretical tool in predicting electronic and geometrical properties of molecules and
solids. Having the success of DFT in mind, a next challenge is to simulate more realistic systems involving
complex interface structures such as Li ion batteries, permanent magnets, and structural materials, for which
the interfaces and grain boundaries play a crucial role in determining the performance of devices. Compu-
tational models for these systems may consist of several thousand atoms at least, and oversimplified models
may lose fundamental physical processes determining the performance of devices. However, such a simula-
tion tends to be hampered by the computational complexity of DFT calculations which intrinsically scales as
O(N3), where N is the number of atoms in the system under investigation. Here, we report our development
of low-order scaling methods in DFT based on quantum nearsightedness of electron, whose computational
scaling is lower than the cube of the number of atoms N [1-5,13], towards realistic large-scale simulations.
An approximate O(N) method based on a Krylov subspace technique [2] and a numerimcally exact low-order
scaling method [4] will be introduced in details together with illustrative applications [8-12]. It will be also
shown that the idea based on the quantum nearsightedness can be applied to developments of an O(N) non-
equibrium Green’s function (NEGF) method and a nearly exact exchange functional [5]. Furthermore, a novel
parallelization method has been developed based on an inertia tensor moment method to realize large-scale
DFT calculations on massively parallel computers typified by the K-computer [6,7].
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