Ideas for heavy baryon at ILC

Kiyoshi Tanida

Japan Atomic Energy Agency

@ILCハドロン物理検討会 May 22, 2017

Introduction – Heavy quark baryons

- Heavy quark in Baryon
 - Bare quark \doteqdot constituent quark
 - Makes a "static core", light quarks play around
 → Diquark correlation enhanced?
 - New symmetry heavy quark symmetry
 - \rightarrow Hyperfine doublet for heavy quark spin.

Charmed baryon

HQS: spin Approximately conserved

Indistinguishable pairs

Light di-quark with inert charm?

HQ baryonの状況

- Charm baryon は全部で20~30個くらい知られている。
 - $-\Lambda_{c}/\Sigma_{c}$ 、 Ξ_{c} が10個ずつくらい
 - 最近LHCbが Ω_c 共鳴を5個一気に見つけて、 Ω_c は7つ。
- Bottom baryonは全部で10個程度
- Heavy quark (c,b)が2つ以上入ったバリオンはまだ見つ かっていない。
- 励起エネルギー < 400 MeV程度までは、クォークモデル (λモードのL=1励起)で良く理解できるが、それ以上の励 起状態はうまく分類できていない
 - QMで複数の予想。そのどれでもなさそうに見えるものも。
 - エキゾチック状態はあるか?
 - スピン・パリティーの測定は必須だが、ほとんど決まっていない。

例: A_c(2880)

- Ex>400 MeVのHQバリオンで、唯一」^Pが決まっている例
 - 5/2⁺ [Belle, PRL98 (2007) 262001]
- Quark Modelでは、5/2+ならばL=2
 - つまり2⁺のBrown-muck + spin 1/2 (c) → 5/2⁺, 3/2⁺のダブレット
- すると、 Λ_c (2880) $\rightarrow \Sigma_c \pi$, $\Sigma_c^* \pi$ の分岐比をうまく説明できない

$$R = \frac{\Gamma(\Lambda_c^* \to \Sigma_c^* \pi)}{\Gamma(\Lambda_c^* \to \Sigma_c \pi)} = 0.225 \pm 0.062 \pm 0.025$$

- 5/2⁺ -> 3/2⁺の崩壊はP波が可能なので、5/2⁺->1/2⁺の崩壊(F波)より圧倒的に大きくならなくてはいけない。
 [Nagahiro et al., PRD 95.014023]
- ・ 分岐比を説明するには、Brown-muck j^Pは3⁺が必要

 今度はQMでの解釈が困難。

High energy e⁺e⁻ collider

- Necessary for beauty baryons
 - Comparison with charm baryons
 - Finding heavy quark symmetry partners
- Statistics is the first issue
 - High luminosity x high cross section

Statistics@√s=M_Z

- Λ_b multiplicity: 3.1±1.6 per 100 hadron production events
 → Cross section: ~ 1nb
- For integrated luminosity of 1 ab⁻¹ → 10⁹ events
- 10⁵ reconstructed events

- Similar level as $\Xi_{\rm c}$ at Belle
 - Enough statistics
 - Chance for exotics
 - Smaller statistics than LHC

Merit?

- So, what is good for ILC compared to LHC?
 - 1. Smaller backgrounds
 - Good for excited states
 - 2. Polarization
 - Produced b is
 > 90% polarized
 - Charm is also ~60% polarized
- Physics with polarization is possible.

Determination of parity

- Spin is rather easy to determine from e.g., decay angle distribution, but parity is difficult
- Why?
 - For the case J \rightarrow 1/2 + 0 (e.g., Y $\rightarrow \Lambda + \pi$), different parity gives exactly the same decay distribution
 - E.g., for J=3/2, the decay is either P-wave (λ=1) or D-wave (λ=2) (for parity conserving case), so the problem is to determine λ.
 - However...

Example distribution

$3/2 \rightarrow 1/2 + 0$ $-\lambda$ =1 (P-wave) $J_{,=3/2} \rightarrow J_{,'=1/2}$: m= $\Delta J_{,=1}$ $W(\theta, \varphi) \propto |Y_{11}|^2 \propto \sin^2 \theta$ $J_{z}=1/2 \rightarrow J_{z}'=1/2$, -1/2: m= $\Delta J_{z}=0,1$ (weight by C-G coefficient) $W(\theta, \varphi) \propto \frac{2}{2} |Y_{10}|^2 + \frac{1}{2} |Y_{11}|^2 \propto 3\cos^2 \theta + 1$ $-\lambda$ =2 (D-wave) $J_{,}=3/2 \rightarrow J_{,}'=\pm 1/2$: m= $\Delta J_{,}=1,2$ $W(\theta, \varphi) \propto \frac{1}{5} |Y_{21}|^2 + \frac{4}{5} |Y_{22}|^2 \propto \sin^2 \theta$ $J_{2}=1/2 \rightarrow J_{2}'=\pm 1/2$: m= $\Delta J_{2}=0,1$ $W(\theta, \varphi) \propto \frac{2}{5} |Y_{20}|^2 + \frac{3}{5} |Y_{21}|^2 \propto 3\cos^2 \theta + 1$

Generally, λ cannot be distinguished

Determination of parity

- Spin is rather easy to determine from e.g., decay angle distribution, but parity is difficult
- Why?
 - For the case J \rightarrow 1/2 + 0 (e.g., Y $\rightarrow \Lambda + \pi$), different parity gives exactly the same decay distribution
 - E.g., for J=3/2, the decay is either P-wave (λ=1) or D-wave (λ=2) (for parity conserving case), so the problem is to determine λ.

One more information is necessary

 \rightarrow Polarization is most powerful

Model independent

Example: Spin 1/2 case

- Ex: $\Sigma_c \rightarrow \Lambda_c + \pi (1/2^? \rightarrow 1/2^+ + 0^-)$
 - S-wave decay (P=–):

 $\overrightarrow{P_{\Lambda_c}} = \overrightarrow{P_{\Sigma_c}}$, independent of decay angle

– P-wave decay (P=+):

 $\overrightarrow{P_{\Lambda_c}} = P_{\Sigma_c} \cdot \widehat{n}(2\theta)$, depends on decay angle (note: $\langle \overrightarrow{P_{\Lambda_c}} \rangle = 0$ for this case, so feed down correction to Λ_c polarization is straightforward)

• In case of Σ_c , $P_{\Sigma c} = -\frac{1}{3}P_c \sim 0.2$ is expected from QM

 $-\delta P < 0.01 \rightarrow$ determination of Σ_c parity is possible!

Higher excited states, too.

Spin structure study from polarization

- Helicity PDF: Δq , Δg
 - → distribution of (longitudinally) polarized parton in a baryon.
- Analog in fragmentation: polarization transfer
 - Polarized quark \rightarrow polarized baryon
 - Also reflects quark helicity structure
 - The fragmentation polarization transfer factor is equal to the fraction of spin carried by the f-flavor-quark divided by the average number of quark of flavor f in the hyperon
 - First suggested by Augustin and Renard in 1979
- Longitudinal polarization in weak decays
 - Quark polarization: reliably calculable
 - Baryon polarization: measurable

Past measurements (1) -- LEP

- OPAL and ALEPH measured Λ polarization in Z⁰ decay
 - $-Z^{0} \rightarrow s$: polarized by -0.94
 - Contamination by ss-bar pair creation during fragmentation
 → treated in simulation, with sizable uncertainty
 - Consistent with quark model within the uncertainty

Another analysis

- By Liu and Liang (arXiv:hep-ph/0005172v1)
 - Quark model (SU(6)) vs DIS + Hyperon- β + SU_f(3)
 - QM is favored, but uncertainty in pair creation is not taken into account

	Λ				
		SU(6)	DIS		
ΔU	$\frac{1}{3}(\Sigma - D)$	0	-0.17		
ΔD	$\frac{1}{3}(\Sigma - D)$	0	-0.17		
ΔS	$\tfrac{1}{3}(\Sigma+2D)$	1	0.62		

Past measurements (2) -- DIS

- Example in HERMES: polarization transfer from beam positron to $\Lambda.$ [PRD 74 (2006) 072004]
- Initially, u&d quarks dominate, and the result is not unexpected

Interpretation is limited by fragmentation uncertainty

So, what can we do?

- Problem: Λ can be produced from u/d quark
 → Uncertainty for dilution
- This problem does not appear in heavier quarks

Proposed measurement: Polarization of charmed/bottom baryons, especially Λ_c/Λ_b

Polarization measurements

- Using decay asymmetries in $\Lambda_b \rightarrow \Lambda_c + \pi^- (\Lambda_c \rightarrow \Lambda + \pi^+)$
 - W(θ)=1+Pαcosθ
 - Examples:

 $\Lambda_{\rm b} \rightarrow \Lambda + J/\psi: \alpha = 0.18 \pm 0.13, BR \sim 0.03\%(?)$

 $\Lambda_{c} \rightarrow \Lambda + \pi: \alpha = -0.91 \pm 0.15, BR \sim 2\%$

 $\Lambda_c \rightarrow \Lambda + e, \mu + \nu: \alpha = -0.86 \pm 0.04$, BR~3% each

- Can be better determined \leftarrow Should be measured first
- $\delta P^{0.01}$ would be possible with 10⁵ reconstructed events

Comparison with model calculation

- To what extent can we distinguish models?
 - In QM, $P_{\Lambda b} = P_b^{\sim} 0.9$
 - $\delta P_{\Lambda b}$ ~0.01 gives $\delta \Delta C$ ~0.01
 - Easy to distinguish ΔC^{1} and $\Delta C^{0.6}$

	Λ				
		SU(6)	DIS		
ΔU	$\frac{1}{3}(\Sigma - D)$	0	-0.17		
ΔD	$\frac{1}{3}(\Sigma - D)$	0	-0.17		
ΔS	$\tfrac{1}{3}(\Sigma+2D)$	1	0.62		

- Theoretically, heavy quark symmetry supports QM
- Note: contributions from higher resonances, such as $\Sigma_{\rm b},$ should be taken into account.
 - Such contributions (on yields) are measurable
 - Polarizations of such excited baryons should be modeled, too.

Yet another possibility

- Polarization can be measured for excited baryons
 - Can be used to study baryon structure
- For example, $\Lambda_{\rm c}(2593)$ may be
 - A three quark state of spin-0 diquark + c with relative L=1 (QM + Heavy quark symmetry)
 - 2. A bound state of DN (Hyodo et al.)

- If 1. is the case, $P = -\frac{1}{3}P_c$ - If 2., P = 0
- Would be a powerful tool to identify exotic baryons

Double HQ baryon from top

- In ILC energy, top can be also produced
- Top itself does not make a baryon, but...
- Top decay: $t \rightarrow b + W \rightarrow b + c + \bar{s}$ \rightarrow Two heavy quarks are produced (spatially) nearby

- How near in momentum space?
 - When b and c are going to the same direction
 p_b∼67 GeV/c, p_c∼19 GeV/c: y_b∼ y_c ~3.4
- There is a chance to stick and make Ξ_{bc}

Summary

- Rich possibility in ILC
- $Vs=m_Z$ is the best energy for b-baryon spectroscopy
 - Up to O(10⁵) reconstructed events expected
 - Very high polarization.
- Polarization transfer from longitudinally polarized quark to baryon <> helicity contribution of quark in baryon
- Baryon polarization can be further used for other studies
 - Parity determination
 - Exotic search
- Chance for $\Xi_{\rm bc}$ in top decay?

Backup

エキゾチックハドロン

- 単純なクォーク模型で記述できないハドロン
 Non-qq メソン、Non-qqq バリオン
- 閉じ込めはカラー白色だけを要求。必ずしも上の組み合わせ以外でもいい。
- どんなものがありえる?
 - ハドロンの束縛(分子)状態: MM、MB、***
 - クォークの数が違う: qqqqq,q,q,qqqq,,...
 - グルーオン自由度: $q\bar{q}g$ 、グルーボール、・・・
- ・20世紀中には、確実なものは2例だけ。
 - $J^{PC}=1^+$ のメソンは $q\bar{q}$ で書けない。
 - 候補は沢山
- 最近、チャームやボトムで新発見が相次いでいる

X(3872)

- 通常、DDより重いチャーモニウムは広い幅を持つ
- が、この粒子の幅は 狭い(<1.2 MeV)
- ちょうど $D^*\overline{D}$ の真上 (3±200 keV)
- Belleが発見、他の
 多くの実験でも観測
- ・J^{PC}は1⁺⁺と決定 (LHCbによる)
- D*Dの分子的状態と
 ccチャーモニウムの
 混合状態という説が有力

Z(4430)+

- 電荷を持つチャーモニウム!

 - Belleが発見、LHCbによる確認

エキゾチックなチャーモニウム

ボトムでも

バリオンでは

- ペンタクォークP_cの発見(LHCb)
 - $\Lambda_b \rightarrow J/\psi p K^-$ で、J/ $\psi p O$ 不変質量にピーク
 - P_c(4450)ははっきり
 見えるが、P_c(4380)
 はピークには見えない
- どんな状態?
 議論はこれから

フレーバーハドロン物理?

- 強い相互作用はフレーバーによらないはず。
- なのにチャーム、ボトムでエキゾチックハドロンの新発見
 が相次ぐのはなぜ?
 - → QCDはエネルギーによって、多様な顔を見せる
- 重いクォークでエキゾチックができやすい(見えやすい)
 理由として:
 - 単純に質量が大きく、運動エネルギーが小さい
 - 相互作用が弱く、崩壊幅が狭くなりやすい
 OZI rule, Heavy quark symmetry
 - __ •••

OZI rule

- 重いクォーク-反クォーク対は消えにくい
 もちろん、逆に生成しにくい
- 例:
 ↓ メソンは1040 MeVの質量を持ち、同じ量子数 (J^P=1⁻)のω(780)より260MeVも重い

- 幅はωの半分しかない

- しかも崩壊モードは*KK*がメイン(Q=50 MeV)
- $\omega/\phi \rightarrow 3\pi$ の部分幅は大体10倍違う
- φがssの構造を持つとして理解されている
- ・ J/ψやYではさらにこの傾向が顕著

- η_cやη_bはこれほど細くないが、それでも10-30 MeV程度

Heavy Quark Symmetry

• 重いクォークのスピンは、近似的に保存量になる

$$\mathcal{L}_{\mathrm{HQ}} = \bar{Q}(iD - m_{\mathrm{Q}})Q$$

$$Q_v(x) = e^{im_Q v \cdot x} \frac{1 + \psi}{2} Q(x)$$

 $\mathcal{L}_{\text{HQET}} = \bar{Q}_v v \cdot i D Q_v + \bar{Q}_v \frac{(i D_\perp)^2}{2m_Q} Q_v - c(\mu) g_s \bar{Q}_v \frac{\sigma_{\mu\nu} G^{\mu\nu}}{4m_Q} Q_v + \mathcal{O}(1/m_Q^2).$

- J=j+S_Qなので、残り部分の角運動量jも保存
 - Brown-muck
 - J=j±1/2 という2重項ができる
 → Hyperfine splittingのようなもの。Heavy quark doublet
- ・重いクォークのスピンが反転するような崩壊は起きにくい

 h_cはJ/ψに壊れず、η_cに壊れる

さらなる発見は?

- むしろまだ始まったばかり
- どこに何が潜んでいるかわからない楽しみ
- 発見されたエキゾチックハドロンの本質についてもこれ からの議論
 - 本当に共鳴状態なのか、すらはっきりしていない

ハドロン物理の大航海時代

Ex: comparison of Ξ_c and Λ_c/Σ_c

јр	Λ_{c}^{+}	Ξ _c	ΔM(Mev/c²)	Note
1/2+	Λ _c (2286) ⁺	Ξ _c (2470)	181	
1/2+	$\Sigma_{\rm c}$ (2455)	Ξ′ _c (2580)	125	
3/2+	$\Sigma^*_{\rm c}$ (2520)	Ξ [*] _c (2645)	125	
1/2-	Λ _c (2595)+	Ξ _c (2790)	194	Λ(1405) like
3/2-	Λ _c (2625) ⁺	Ξ _c (2815)	188	Λ(1520) like
??	Λ _c (2765) ^{+?}	Ξ _c (2980)??	215	
??	Σ _c (2800)	Ξ _c (3055)??	255	
5/2+	Λ _c (2880) ⁺	Ξ _c (3080)??	200	
??	Λ _c (2940) ⁺	Ξ _c (3123)??	180	

• Which corresponds to which??

 \rightarrow Measurements allow systematic discussions

Analog state of Λ_c (2880)?

- Mass difference of low-lying Ξ_c and $\Lambda_c \sim 200 \text{ MeV}$ $\rightarrow \Xi_c(3080)$ is the analog of $\Lambda_c(2880)$?
- Branching ratio for $\Lambda_c(2880)$ [Belle, PRL98 (2007) 262001] $B(\Lambda_c^* \to \Sigma_c^* \pi)/B(\Lambda_c^* \to \Sigma_c \pi) = 0.225 \pm 0.062 \pm 0.025$
- The ratio is much larger for $\Xi_c(3080)$ [Belle, PRD94, 032002 (2016)] $B(\Xi_c(3080)^+ \rightarrow \Sigma_c^{*++}K^-)/B(\Sigma_c^{++}K^-) = 1.27 \pm 0.27 \pm 0.01$
 - Must be similar (or even smaller for phase space) for analog states if HQS holds.
 - They are not analog?

Analog state of $\Lambda_c(2880)$? (cont.) $B(\Xi_c \rightarrow \Sigma_c^{*++}K^-)/B(\Sigma_c^{++}K^-)$ is small for $\Xi_c(3055)$ \rightarrow This may be the analog state of $\Lambda_c(2880)$

