

Interplay of charge-clustering and weak binding in direct reactions of ⁸Li

Kaitlin J. Cook Australian National University 6 June 2018

Dasgupta, PRC <u>70</u>, 024606 (2004) Signorini Eur. Phys. J. A <u>5</u> (1999) Canto Phys. Reports 596 (2015)

7

²⁰⁹Bi

Single Barrier Penetration model calculation vs Experiment

Can the observed suppression of CF be explained by breakup followed by capture of one charged fragment?

Precision measurements at ANU (average barrier determination) → Unambiguous determination of suppression Dasgupta, PRC <u>70,</u> 024606 (2004) Signorini Eur. Phys. J. A <u>5</u> (1999)

Single Barrier Penetration model calculation vs Experiment

Can the observed suppression of CF be explained by breakup followed by capture of one charged fragment?

Mechanism that causes breakup and time-scale crucial.

Focus has been on **breakup into charged clusters** → **fusion suppression**

- How does the picture evolve as we go towards more neutron rich beams, e.g. ⁸Li ... ¹¹Li?
- ⁸Li, CF observed to be suppressed by ~31% (Aguilera PRC 80 044605 (2009))
- Lowest BU threshold:
 ⁸Li → ⁷Li +n (2.03 MeV). Can't suppress CF!

SOLEROO

SOLEROO – <u>sol</u>enoidal <u>exotic rare isotope separator</u> (In-flight transfer)

Production Chamber and Primary Target

- ⁹Be(⁷Li,⁸Li)⁸Be, 5 x 10⁵ pps
- ⁸Li + ²⁰⁹Bi, 38.4 40.94 MeV (1.27-1.36 E/V_B)
- Raw purity 83%, further purification through ToF, PPAC ΔE

Cook et. al. PRC 97, 021601(R) (2018)

Breakup Array for Light Nuclei (BALiN)

- 2 pairs of ΔE E telescopes (ΔE 400 µm + E 500 µm)
- DSSDs \rightarrow (θ , ϕ)
- Large angular acceptance crucial for coincidences
- Particle ID with E + Δ E, ToF
- Identified singles ⁸Li, ⁹Be,
 ⁷Li, α, coin α+Z=1, α+α

Elastic scattering

 Reaction cross-section from OM fit: 1423 ± 9 ± 20 mb at E_{CM} = 38.6 MeV

Cook et. al. PRC 97, 021601(R) (2018)

Elastic scattering

- Reaction cross-section from OM fit: 1423 ± 9 ± 20 mb at E_{CM} = 38.6 MeV
- Calculated Total Fusion
 - ~ 1045 mb

Elastic scattering

- Reaction cross-section from OM fit: 1423 ± 9 ± 20 mb at E_{CM} = 38.6 MeV
- Calculated Total Fusion
 ~ 1045 mb
- Direct reactions?

Direct reaction mechanisms \rightarrow ⁷Li, ⁹Be

 ⁷Li from 1n stripping vs
 ⁷Li from direct breakup distinguished via Q

Direct reaction mechanisms \rightarrow ⁷Li, ⁹Be

 ⁷Li from 1n stripping vs
 ⁷Li from direct breakup distinguished via Q

Australian

National University

- Peaked ~ grazing angle
- None of this leads to ICF...

Cook et. al. PRC <u>97</u>, 021601(R) (2018)

- α+t dominant (19 ± 2 mb)
 - $\alpha + \alpha (6.2 \pm 0.9 \text{ mb})$
 - $\alpha + d (5.6 \pm 0.7 \text{ mb})$
 - $\alpha + p (0.9 \pm 0.4 \text{ mb}).$
- Can these BU modes suppress complete fusion?

What leads to α + t?

- Reconstructed Q-value excitation of target-like nucleus
- >78±6 % neutron stripping $^{8}Li + ^{209}Bi \rightarrow ^{7}Li(\alpha+t) + ^{210}Bi$

Incoming vs outgoing trajectories

Central trajectories: breakup must occur prior to reaching the fusion barrier

Incoming vs outgoing trajectories

Equivalently, outside the grazing angle: breakup must occur prior to reaching the distance of closest approach

Asymptotic breakup

Relative Energy $E_{rel} = \frac{1}{2} \mu v_{rel}^2$

Asymptotic breakup

Near target breakup

Breakup close to the target Modified E_{rel} $E_{rel} = Q_{BU} + E_{p}^{*} + \Delta E_{acc} \ge Q_{BU} + E_{e}^{*}$

Is the breakup happening quickly enough?

• Peak in $E_{rel} \rightarrow$ long-lived resonance, BU far from target. $E_{rel} = E_{p}^{*} + Q_{BU}$

Is the breakup happening quickly enough?

 Peak in E_{rel} → long-lived resonance, BU far from target. E_{rel} = E_p^{*} + Q_{BU}

- How much is fast enough to suppress CF?
 - Classical model
 simulation (see next talk): only 7%!

Breakup from 7/2- state of ⁷Li (Ex = 4.652 MeV, $\tau = 10^{-20}$ s, much longer than fusion timescale)

Unaccompanied α = Inclusive α – NCBU α 161±6 mb = 198 ± 6 mb – 37 ± 2 mb

By Z conservation, unaccompanied $\alpha \rightarrow$ polonium production \rightarrow "Incomplete fusion" \rightarrow CF suppression?

 Unaccompanied α (+CF suppression) + NCBU timescales:

 \rightarrow CF suppression mechanism clearly more complex than BU + capture

- CF suppression mechanism charged cluster transfer?
 - Relevant for n-rich nuclei? (e.g. Kanada-En'yo PTEP (2012))
 - How does transfer of one cluster stop the other one fusing? Next challenge!

- First ⁸Li measurement at ANU
- $\sqrt{\sigma}$ reaction
- $\sqrt{\sigma}$ nucleon transfer to bound states
- $\sqrt{\sigma}$ nucleon transfer to unbound states.
 - -Lots of modes!
 - $-\alpha$ +t too slow.
 - $-\alpha+\alpha$, $\alpha+d$ also too slow, $\alpha+p$ too small Search still on for CF suppression mechanism!

Acknowledgements

Ed Simpson Ian Carter Sunil Kalkal Nanda Dasgupta

David Hinde Lauren Bezzina Chandrima Sengupta Cedric Simenel Ben Swinton-Bland Kirsten Vo-Phouc Elizabeth Williams Yun Jeung ++

