From *ab initio* structure predictions to reaction calculations via effective field theory

P. Capel, D. Phillips, H.-W. Hammer and L. Moschini

5 June 2018

Introduction Halo nuclei are exotic nuclei with large matter radius :

seen as a compact core

+ one or two loosely bound neutrons

Ex. : ${}^{11}Be \equiv {}^{10}Be + n$, ${}^{6}He \equiv {}^{4}He + n + n$

 \Rightarrow challenging for nuclear-structure models Recently ¹¹Be has been computed *ab initio* by Calci *et al.* [PRL 117, 242501 (2016)]

How can we test their prediction?

 $\tau_{1/2}(^{11}\text{Be})=13 \text{ s} \Rightarrow \text{studied by reactions like breakup}$ Breakup $^{11}\text{Be} \rightarrow ^{10}\text{Be} + n$ has been measured on Pb and C

- 70AMeV @ RIKEN [Fukuda et al. PRC 70, 054606 (2004)]
- 520AMeV @ GSI [Palit *et al.* PRC 68, 054606 (2003)]

Using *ab initio* wave function in reaction calculation is too heavy \Rightarrow we use a Halo-EFT description of ¹¹Be fitting the *ab initio* outputs

Breakup calculations of ¹¹Be into ¹⁰Be+n

- RIKEN experiment 70AMeV
- GSI experiment 520AMeV

Framework

Projectile (P) modelled as a two-body nucleus : core (c)+loosely bound neutron (n) described by

- $H_0 = T_r + V_{cn}(\boldsymbol{r})$
- V_{cn} effective interaction describes the *c*-n system with ground state Φ_0

Target T seen as structureless

Interaction with target simulated by optical potentials \Rightarrow breakup reduces to three-body scattering problem :

 $[T_R + H_0 + V_{cT} + V_{nT}] \Psi(\boldsymbol{r}, \boldsymbol{R}) = E_T \Psi(\boldsymbol{r}, \boldsymbol{R})$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow[Z \to -\infty]{} e^{iKZ} \Phi_0(\mathbf{r})$ We use the Dynamical Eikonal Approximation (DEA) [Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

Reaction model

Breakup calculations of ¹¹Be into ¹⁰Be+n

- RIKEN experiment 70AMeV
- GSI experiment 520AMeV

Ab initio description of ¹¹Be

Calci et al. 's NCSMC calculation of ¹¹Be [PRL 117, 242501 (2016)]

FIG. 2. NCSMC spectrum of ¹¹Be with respect to the $n + {}^{10}$ Be threshold. Dashed black lines indicate the energies of the 10 Be states. Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

•
$$\frac{1}{2}^+$$
 ground state :
 $\epsilon_{\frac{1}{2}^+} = -0.500 \text{ MeV}$
 $C_{\frac{1}{2}^+} = 0.786 \text{ fm}^{-1/2}$
 $S_{1s\frac{1}{2}} = 0.90$

• $\frac{1}{2}^{-}$ bound excited state : $\epsilon_{\frac{1}{2}^{-}} = -0.184 \text{ MeV}$ $C_{\frac{1}{2}^{-}} = 0.129 \text{ fm}^{-1/2}$ $S_{0p\frac{1}{2}} = 0.85$

Halo-EFT description of ¹¹Be

Halo EFT : clear separation of scales (in energy or in distance) \Rightarrow provides an expansion parameter (small scale / large scale) along which the low-energy behaviour is expanded

Original idea : Bertulani, Hammer, Van Kolck, NPA 712, 37 (2002) Review : Hammer, Ji, Phillips JPG 44, 103002 (2017)

Use narrow Gaussian potentials

$$V_{lj}(r) = V_0^{lj} e^{-\frac{r^2}{2\sigma^2}} + V_2^{lj} r^2 e^{-\frac{r^2}{2\sigma^2}}$$

Fit V_0^{lj} and V_2^{lj} to reproduce ϵ_{nlj} , and C_{nlj} (@ NLO)

 σ = 1.2, 1.5 or 2 fm is a parameter used to evaluate the sensitivity of the calculations to this effective model

 ϵ_{nlj} is known experimentally, but what about C_{nlj} ? Fortunately, for ¹¹Be, we've got the *ab initio* calculation of Calci *et al.* [A. Calci *et al.* PRL 117, 242501 (2016)]

$s_{\frac{1}{2}}^{1}$: @ NLO potentials fitted to $\epsilon_{\frac{1}{2}^{+}}$ and $C_{\frac{1}{2}^{+}}$

Potentials fitted to $\epsilon_{1s\frac{1}{2}} = -0.503$ MeV and $C_{1s\frac{1}{2}} = 0.786$ fm^{-1/2}

- Wave functions : same asymptotics but different interior
- $\delta_{s_2^1}$: all effective potentials are in good agreement with *ab initio* up to 1.5 MeV (same effective-range expansion)
- Similar results obtained for $p\frac{1}{2}$ (excited bound state)

Reaction model

- Halo-EFT description of ¹¹Be
- Breakup calculations of ¹¹Be into ¹⁰Be+n
 - RIKEN experiment 70AMeV
 - GSI experiment 520AMeV

Breakup calculations of ¹¹Be into ¹⁰Be+n RIKEN experiment 70AMeV

NLO analysis of ¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV

Total breakup cross section and p contributions

Folded with experimental resolution

- All calculations provide very similar results, for all σ, despite difference in internal part of wave function ⇒ reaction is peripheral
- Excellent agreement with data [Fukuda et al. PRC 70, 054606 (2004)]

NLO analysis of ¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV

Exp. [Fukuda et al. PRC 70, 054606 (2004)]

All potentials produce very similar breakup cross sections
 ⇒ still peripheral (even if nuclear dominated)

[Nunes, P. C. PRC 75, 054609 (2007)]

- Order of magnitude of experiment well reproduced
- Breakup strength missing at the 5/2⁺ and 3/2⁺ resonances
- \Rightarrow for this observable, the continuum must be better described

NLO analysis of GSI data @ 520AMeV

Using the same NLO description of ¹¹Be ($\sigma = 1.2$ fm) and an eikonal description of reaction, with relativistic corrections we compare our calculations to Palit *et al.* PRC 68, 054606 (2003)

Calculations by L. Moschini

• On Pb : Fair agreement with data, problem at low E (?)

• On C : good order of magnitude (missing resonances)

Summary

We have coupled a Halo-EFT description of ¹¹Be with an accurate model of breakup

- \Rightarrow constrain the projectile description to *ab initio* outputs
 - identify the most significant degrees of freedom (ANC, δ_l)
 - and the missing ones (resonances in nuclear breakup)
- Good agreement with data (RIKEN and GSI)
 - validates the prediction of Calci et al.
 - one description of ¹¹Be can reproduce both data sets What about dB(E1)/dE then ?

