Persistence of nuclear shell closures far from stability: γ spectroscopy of ⁷⁹Cu at Riken

L. Olivier,¹ S. Franchoo,¹ M. Niikura,² Z. Vajta,³ D. Sohler,³ P. Doornenbal,⁴ A. Obertelli,^{5,4} Y. Tsunoda,² T. Otsuka,^{2,4} G. Authelet,⁵ H. Baba,⁴ D. Calvet,⁵ F. Château,⁵ A. Corsi,⁵ A. Delbart,⁵ J.-M. Gheller,⁵
A. Gillibert,⁵ T. Isobe,⁴ V. Lapoux,⁵ M. Matsushita,² S. Momiyama,² T. Motobayashi,⁴ H. Otsu,⁴ C. Péron,⁵ A. Peyaud,⁵ E. Pollacco,⁵ J.-Y. Roussé,⁵ H. Sakurai,^{2,4} C. Santamaria,^{5,4} M. Sasano,⁴ Y. Shiga,^{4,8}
S. Takeuchi,⁴ R. Taniuchi,^{2,4} T. Uesaka,⁴ H. Wang,⁴ K. Yoneda,⁴ F. Browne,⁹ L. Chung,¹⁰ Z. Dombradi,³ F. Flavigny,¹ F. Giacoppo,¹¹ A. Gottardo,¹ K. Hadyńska-Klęk,¹¹ Z. Korkulu,³ S. Koyama,² Y. Kubota,^{2,4}
J. Lee,¹² M. Lettmann,¹³ C. Louchart,¹³ R. Lozeva,¹⁴ K. Matsui,^{2,4} T. Miyazaki,² S. Nishimura,⁴ K. Ogata,¹⁵ S. Ota,² Z. Patel,¹⁶ E. Sahin,¹¹ C. Shand,¹⁶ P.-A. Söderström,⁴ I. Stefan,¹ D. Steppenbeck,² T. Sumikama,¹⁷ D. Suzuki,¹ V. Werner,¹³ J. Wu,^{4,18} and Z. Xu¹²

The Seastar collaboration: ¹ IPN Orsay; ² University of Tokyo; ³ Atomki Debrecen; ⁴ Riken Wakoshi;
 ⁵ Irfu Saclay; ⁸ Rikkyo University; ⁹ University of Brighton; ¹⁰ Vinatom Hanoi; ¹¹ University of Oslo;
 ¹² University of Hong Kong; ¹³ Technical University of Darmstadt; ¹⁴ IPHC Strasbourg; ¹⁵ University of Osaka; ¹⁶ University of Surrey; ¹⁷ Tohoku University; ¹⁸ University of Peking

THE UNIVERSITY OF TOKYO

Towards doubly magic ⁷⁸Ni

Monopole migration in neutron-rich copper

laser spectroscopy of ⁷⁵Cu at Cris Isolde hyperfine parameters best agree for 5/2-

K Flanagan et al, PRL 103 (2009)

- $\pi f_{5/2}$ becomes ground state in ⁷⁵Cu
- $\pi f_{5/2}$ single-particle nature from Coulex
- two (one?) candidates for $\pi f_{7/2}$ in ⁷¹Cu
- related to addition of $l+\frac{1}{2}$ neutrons in $g_{9/2}$?

Extensive theory landscape

also Lisetskiy et al, PRC 70 (2004), Honma et al, PRC 80 (2009)... $\pi f_{5/2}$ well described... what about its spin-orbit partner $\pi f_{7/2}$?

proton pick-up into ⁷¹Cu at Ganil

 θ_{CM} (deg)

P Morfouace et al, PLB 751, 306 (2015)

proton pick-up into ⁷¹Cu at Ganil

- $^{72}Zn(d,\tau)^{71}Cu$ proton transfer • resolution $\Delta E_x = 300$ keV
- πf_{7/2} centroid at 3.5 MeV (80%)
- no proton hole strength at 1 MeV: 7/2- = 2⁺ x { $\pi p_{_{3/2}}$, $\pi f_{_{5/2}}$ }

P Morfouace et al, PLB 751, 306 (2015)

 $\pi f_{7/2}$ - $\pi f_{5/2}$ spin-orbit splitting maintained in ⁷¹Cu

P Morfouace et al, PLB 751, 306 (2015)

RIKEN RI Beam Factory (RIBF)

Intense (80 kW max.) H.I. beams (up to U) of 345AMeV at SRC Fast RI beams by projectile fragmentation and U-fission at BigRIPS

- I0 pnA ²³⁵U at 345 AMeV on ⁹Be
- fission fragments separated in Bigrips + Zerodegree
- Wasabi + Eurica

E Sahin et al, PRL 118, 242502 (2017)

Seastar collaboration "Shell evolution and search for two-plus energies at RIBF"

- ⁸⁰Zn(p,2p)⁷⁹Cu proton knock-out at 270 AMeV in Minos
- identification before and after with Bigrips and Zerodegree
- in-beam γ spectroscopy with Dali-2
- E(2⁺) from ⁵²Ar to ¹¹⁰Zn including doubly magic ⁷⁸Ni & single-particle states in ⁷⁹Cu

Ζ

L Olivier et al, PRL 119, 192501 (2017)

yy coincidences

good agreement with MCSM

• $\pi p_{1/2}$ at 1.5 MeV from absence of direct feeding

- multiplet allows for estimation of 2⁺(⁷⁸Ni)
- $\pi f_{_{7/2}}$ hole fragmented at 4 MeV ?

L Olivier et al, PRL 119, 192501 (2017)

inclusive DWIA cross section with SF from MCSM $\sigma_{th} = 9.2 \text{ mb}$ $\sigma_{exp} = 7.9(4) \text{ mb}$ \longrightarrow consistent with other Seastar results

exclusive cross sections					experim	ent	
					Energy levels (keV)	$\sigma_{exc} \; (mb)$	
					0	< 3.8(8)	
					656(5)	0.04(29)	
					1511(8)	0	
					2260(20)	0.19(4)	
theory				2730(30)	0.33(9)		
	J				2900(40)	0.08(4)	
E (MeV)	σ (mb)	SF	σ.SF		2940(60)	0.69(13)	
5/2- 0	1.04	1.33	1.38		3100(40)	0.44(7)	> 4.1(\$
3/2- 0.29	1.31	0.57	0.75		3260(40)	0.84(15)	
7/2- 2.04	1.14	5.58	6.36]	3880(40)	0.71(9)	
7/2- 2.65	1.14	0.15	0.17	} 7.02	4300(40)	0.65(9)	
7/2- 2.99	1.14	0.43	0.49	J.	4580(30)	0.58(13)	

K Ogata, private communication T. Wakasa, K. Ogata, and T. Noro, PPNP 96 (2017) L Olivier, PhD U Paris-Saclay (2017)

γ spectroscopy of ^{83,85}Ga at Riken

⁸¹Ga: D Verney et al, PRC 76 (2007)

Ga: L Olivier, PhD U Paris-Saclay (2017) Zn: C Shand et al, PLB 773 (2017)

Conclusions

