Linking nuclear reactions and nuclear structure to on DRFB18 6/5/2018 the way to the drip lines

🐺 Washington University in St.Louis

- Motivation
- Green's functions/propagator method
 - as a framework to link data at positive and negative energy (and to generate predictions for exotic nuclei)

Hossein Mahzoon (Ph.D. 2015) -> dispersive optical model (DOM <- Claude Mahaux)

- Recent DOM extension to non-local potentials
- Revisit the (e,e'p) data from NIKHEF
- Neutron skin in ⁴⁸Ca (importance of total xsections)
- Ongoing and future applications

Recent DOM review:

WD, Bob Charity, Hossein Mahzoon J. Phys. G: Nucl. Part. Phys. 44 (2017) 033001

Wim Dickhoff

Bob Charity

Lee Sobotka

Natalya Calleya

Michael Keim

Conclusions

Motivation

- Rare isotope physics requires a much stronger link between nuclear reactions and nuclear structure descriptions
- We need an ab initio approach for optical potential —> optical potentials must therefore become nonlocal and dispersive
- Current status to extract structure information from nuclear reactions involving strongly interacting probes unsatisfactory
- Intermediate step: dispersive optical model as originally proposed by Claude Mahaux —> recent extensions discussed here

Dispersive Optical Model

- Claude Mahaux 1980s
 - connect traditional optical potential to bound-state potential
 - crucial idea: use the dispersion relation for the nucleon self-energy
 - smart implementation: use it in its subtracted form
 - applied successfully e.g. to ⁴⁰Ca and ²⁰⁸Pb in a limited energy window
 - employed traditional volume and surface absorption potentials and a local energy-dependent Hartree-Fock-like potential
 - Reviewed in Adv. Nucl. Phys. 20, 1 (1991)
- Radiochemistry group at Washington University in St. Louis: Charity and Sobotka propose to use the DOM for a sequence of Ca isotopes —> data-driven extrapolations to the drip line
 - First results PRL 97, 162503 (2006)
 - Subsequently —> attention to data below the Fermi energy related to ground-state properties —> Dispersive Self-energy Method (DSM)

Optical potential <--> nucleon self-energy

- e.g. Bell and Squires --> elastic T-matrix = reducible self-energy
- e.g. Mahaux and Sartor Adv. Nucl. Phys. 20, 1 (1991)
 - relate dynamic (energy-dependent) real part to imaginary part
 - employ subtracted dispersion relation
 - contributions from the hole (structure) and particle (reaction) domain

General dispersion relation for self-energy: $\operatorname{Re} \Sigma(E) = \Sigma^{HF} - \frac{1}{\pi} \mathcal{P} \int_{E^+}^{\infty} dE' \frac{\operatorname{Im} \Sigma(E')}{E - E'} + \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{E_T} dE' \frac{\operatorname{Im} \Sigma(E')}{E - E'}$ Calculated at the Fermi energy $\varepsilon_F = \frac{1}{2} \left\{ (E_0^{A+1} - E_0^A) + (E_0^A - E_0^{A-1}) \right\}$ $\operatorname{Re} \Sigma(\varepsilon_{F}) = \Sigma^{HF} - \frac{1}{\pi} \mathcal{P} \int_{E_{T}^{+}}^{\infty} dE' \frac{\operatorname{Im} \Sigma(E')}{\varepsilon_{F} - E'} + \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{E_{T}^{-}} dE' \frac{\operatorname{Im} \Sigma(E')}{\varepsilon_{F} - E'}$ Subtract Re $\Sigma(E) = \operatorname{Re} \Sigma^{\overline{HF}}(\varepsilon_F)$ $-\frac{1}{\pi}(\varepsilon_F - E)\mathcal{P}\int_{E^+}^{\infty} dE' \frac{\operatorname{Im}\Sigma(E')}{(E - E')(\varepsilon_F - E')} + \frac{1}{\pi}(\varepsilon_F - E)\mathcal{P}\int_{-\infty}^{E_T} dE' \frac{\operatorname{Im}\Sigma(E')}{(E - E')(\varepsilon_F - E')}$

reactions and structure

Functional form and fitting

- Choice of potentials based on empirical knowledge
- Volume absorption -> WS
- Surface absorption -> WS'
- Coulomb
- Spin-orbit
- Hartree-Fock —> WS & WS'
- non-locality —> Gaussian
- E-dependence imaginary part <--> some theory
- Many parameters have canonical values

Elastic scattering data for protons and neutrons

J. Mueller et al. PRC83,064605 (2011), 1-32

•

Local DOM analysis

J. Mueller et al. PRC83,064605 (2011), 1-32

Nonlocal DOM implementation PRL112,162503(2014)

- Particle number --> nonlocal imaginary part
- Ab initio FRPA & SRC --> different nonlocal properties above and below the Fermi energy Phys. Rev. C84, 034616 (2011) & Phys. Rev.C84, 044319 (2011)
- Include charge density in fit
- Describe high-momentum nucleons <--> (e,e'p) data from JLab

Implications

- Changes the description of hadronic reactions because interior nucleon wave functions depend on non-locality
- Consistency test of interpretation (e,e'p) reaction (see later)

Differential cross sections and analyzing powers

Critical experimental data—> charge density

High-momentum nucleons -> JLab can also be described -> E/A

Spectral function for bound states

[0,200] MeV —> constrained by elastic scattering data

Another look at (e,e'p) data

- collaboration with Louk Lapikás and Henk Blok
- Data published at $E_p = 100$ MeV Kramer thesis NIKHEF for ${}^{40}Ca(e,e'p){}^{39}K$ Phys.Lett.B227(1989)199 Results: $S(d_{3/2})=0.65$ and $S(s_{1/2})=0.51$
- More data at 70 and 135 MeV (only in a conference paper)
- What do these spectroscopic factor numbers really represent?
 - Assume DWIA for the reaction description
 - Use kinematics (momentum transfer parallel to initial proton momentum) favoring simplest part of the excitation operator (no two-body current)
 - Overlap function:
 - WS with radius adjusted to shape of cross section
 - Depth adjusted to separation energy
 - Distorted proton wave from standard "global optical potential"
 - Fit normalization of overlap function to data -> spectroscopic factor

Why go back there? --> "THE" DIRECT REACTION reactions and structure

Removal probability for valence protons from NIKHEF data L. Lapikás, Nucl. Phys. A553,297c (1993)

S \approx 0.65 for valence protons Reduction \Rightarrow both SRC and LRC

Weak probe but propagation in the nucleus of removed proton using standard optical potentials to generate distorted wave --> associated uncertainty ~ 5-15%

Why: details of the interior scattering wave function uncertain since non-locality is not constrained (so far....)
but now available for ⁴⁰Ca!

NIKHEF analysis PLB227,199(1989)

- Schwandt et al. (1981) optical potential
- BSW from adjusted WS

NIKHEF data PLB227,199(1989)

- NIKHEF: S(d_{3/2})=0.65±0.06
- Only DOM ingredients

NIKHEF data unpublished for 70 and 135 MeV protons

- Only DOM ingredients and modified DWEEPY code from C. Giusti
- · Collaboration: M.Atkinson, L. Lapikás, H. Blok, W.D. in preparation

NIKHEF data unpublished

Only DOM ingredients

at this energy DWIA may no longer be the whole story

Thesis G. J. Kramer (1990)

Corrects DOM spectroscopic factor to 0.61 for state at 2.5 MeV

NIKHEF data unpublished

Only DOM ingredients

NIKHEF data PLB227,199(1989)

• NIKHEF: S(s_{1/2})=0.51±0.05

NIKHEF data unpublished

Only DOM ingredients

Message

- Nonlocal dispersive potentials yield consistent input and gives a correct description of the (e,e'p) for certain kinematics
- Constraints from other data generate spectroscopic factors $S(d_{3/2})=0.71$ in ⁴⁰Ca for ground state transition
- Experimental $s_{1/2}$ strength distribution: 2.5 MeV S($s_{1/2}$)=0.61
- NIKHEF 0.65±0.06 and 0.51±0.05, respectively (local potentials)
- Slight increase due to nonlocal potentials for distorted waves
- Implications for transfer reactions significant and under study
- (p,2p) reaction for stable targets can be constrained/calibrated and then extended to unstable one

Reviewed in Prog. Part. Nucl. Phys. 52 (2004) 377-496

Location of single-particle strength in closed-shell (stable) nuclei

For example: protons in ²⁰⁸Pb

SRC

JLab E97-006

Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

DOM results for ⁴⁸Ca

- Change of proton properties when 8 neutrons are added to ⁴⁰Ca?
- Change of neutron properties?
- Can hard to measure quantities be indirectly constrained?

What about neutrons?

- ⁴⁸Ca —> charge density has been measured
- Recent neutron elastic scattering data —> PRC83,064605(2011)
- Local DOM OLD

Nonlocal DOM NEW

Results ⁴⁸Ca

- Density distributions
- DOM \rightarrow neutron distribution $\rightarrow R_n R_p$

Comparison of neutron skin with other calculations and future experiments...

Figure adapted from

C.J. Horowitz, K.S. Kumar, and R. Michaels, Eur. Phys. J. A (2014)

G. Hagen et al., Nature Phys. 12, 186 (2016)

--> drip line

Constraining the neutron radius

Using total neutron cross sections

M.H. Mahzoon, M.C. Atkinson, R.J. Charity, W.D.
 Phys. Rev. Lett. 119, 222503 (2017)

²⁰⁸Pb Charge density

Possible to get a good charge density (preliminary)

Comparison of neutron skin with other calculations and future experiments...

Figure adapted from

C.J. Horowitz, K.S. Kumar, and R. Michaels, Eur. Phys. J. A (2014)

G. Hagen et al., Nature Phys. 12, 186 (2016)

--> drip line

Linking nuclear reactions and nuclear structure -> DOM

Ongoing work

- ²⁰⁸Pb fit —> neutron skin prediction
- ⁴⁸Ca(e,e'p)
- ¹¹²Sn and ¹²⁴Sn total neutron cross sections being analyzed
- ⁶⁴Ni measurement of total neutron cross section just completed
- Local then nonlocal fit to Sn, and Ni isotopes
- Integrate DOM ingredients with $(d,p) (n,\gamma)$ surrogate- and (p,d) codes
- Insert correlated Hartree-Fock contribution from realistic NN interactions in DOM self-energy—> tensor force included in mean field
- Extrapolations to the respective drip lines becoming available necessitating inclusion of pairing in the DOM
- Analyze energy density as a function of density and nucleon asymmetry
- Ab initio optical potential calculations initiated CC and Green's function method

Conclusions

- It is possible to link nuclear reactions and nuclear structure
- Vehicle: nonlocal version of Dispersive Optical Model (Green's function method) as developed by Mahaux -> DSM
- Can be used as input for analyzing nuclear reactions
- Can predict properties of exotic nuclei
- Can describe ground-state properties
 - charge density & momentum distribution
 - spectral properties including high-momentum Jefferson Lab data
- Elastic scattering determines depletion of bound orbitals
- Outlook: reanalyze many reactions with nonlocal potentials...
- For N ≥ Z sensitive to properties of neutrons —> weak charge prediction, large neutron skin, perhaps more...