Resonance scattering with exotic beams - past, present, and future

G.V. Rogachev

Outline

- **Mistorical perspective**
- **Markov** Experimental aspects
- **M** Proton rich nuclei
- **Clustering** phenomena
- **Meutron rich nuclei**

Early days of RS...

 Well understood theoretically
 Perfect energy resolution (~10 keV)
 Limited accessible energy range

Special cases:

✦ IAS (ex. J. Fox, D. Robson in 60s at FSU)

◆ alpha clusters (ex. H.T. Richards, et

al., U of Wis. - Mad).

Mew Experimental approach

Experimental evolution

FROM:

Thick Target Inverse Kinematics technique

TO: Active Targets

TexAT

AT-TPC

Proton rich nuclei

Proton rich nuclei

Evolution of 1p1/2 and 2s1/2 shells for neutron deficient Z=7 isotopes

Clustering phenomena

Clustering plays important role in nuclear structure Alpha clusters manifest strongly in resonance scattering

Negative parity α cluster band in ¹⁸O

15- 14		<u>13.82</u> 5-θ² < 0.01	1-	3-
13— 12—	10.0 0			<u>11.95 3</u> - θ ² = 0.17
11-			<u>10.8 1-</u> $\theta^2 = 0.29$	
10- S	<u>9.70 3-</u>	<u>9.70 3</u> $\theta^2 = 0.04$	$9.76 \ 1^{-} \ \theta^2 = 0.46$	<u>9.35 3-</u> $\theta^2 = 0.48$
exc (Me)	<u>8.04 1-</u>	$8.04 \ 1^{-} \ \theta^2 = 0.02$	9.19 1 $\theta^2 = 0.20$	$8.28 3^{-} \theta^2 = 0.18$
ш 7— 6—		R-matrix fit to the ¹⁴ C+α experimental	R-matrix fit to the ¹⁴ C+α experimental	R-matrix fit to the ¹⁴ C+α experimental
5—	W. von	data	data	data
4 —	Oertzen,	et al.		
3—	EPJ A 43 (2010)			Ā

Cluster structure of ¹⁰Be

- Rotational band with high moment of inertia built on 0⁺ at 6.18 MeV
- 10.15 MeV state reported to be 4⁺ [1,2] and extremely clustered [1]. Other spin-parity assignment was reported 3⁻[3].
- Believed to be associated with α-2n-α molecular rotational band.
- The next member of the highly deformed rotational band, 6⁺, was predicted [4].

[1] M. Freer, et al., PRL 96, 042501 (2006)
[2] M. Milin, et al., NPA 753, 263 (2005)
[3] N. Curtis, et al., PRC 64, 044604 (2001)
[4] Yu. Tchuvil'skiy, et al., Phys. At. Nucl. 73 (2010)

Cluster structure of 10Be 6 He+ α 100 6 He+ α 100

o/dΩ (mb/sr) 60 50 do/dΩ (mb/sr) 130 90 10012040 $\theta_{c.m.}$ (deg) $\theta_{\rm cm} = 85^{\circ}-95^{\circ}$ D. Suzuki, et al., 30 Phys. Rev. C 87 (2013) 20 6+?? 10 0 3 6 7 8 5 E_{c.m.} (MeV) E. Koshchiy, et al., NIM A (2017)

No evidence for 6⁺

Also talk of D. Kim on Tuesday: ${}^{15}\text{O}+\alpha$ and ${}^{15}\text{N}+\alpha$

IAS in neutron rich nuclei $p + {}^{8}He -> {}^{9}Li(T=5/2) -> p + {}^{8}He$

ALSO:

Structure of ⁹He

Future of resonance scattering

Active target inside a magnet
 200 µm position resolution
 Energy resolution of few keV
 Narrow resonances (IAS, astrophysics)

Conclusion

- Resonance scattering with exotic beams has many application and significant advantages
- Many results on structure of proton rich nuclei have been obtained
- Clustering phenomena studies with exotic
 beams is in its infancy high statistics and wide
 angular range needs to be measured
- IAS states studies open a way to explore neutron rich nuclei - theoretical issues need to be resolved

Positive parity inversion doublet quasi-rotation band in ¹⁸O

¹¹Be $\frac{1}{2}$ + g.s. ¹¹N $\frac{1}{2}$ + g.s.

¹⁰N ?

⁹He – all over the place

Resonance scattering

Structure of ¹⁰N and ⁹He studied using resonance elastic scattering
 Resonances in ¹⁰N were directly populated in ⁹C+p elastic scattering
 Resonances in ⁹He were studied through T=5/2 IAS in ⁹Li, populated in ⁸He+p elastic scattering

Test with ¹²C beam - states in ¹³N

Structure of ¹⁰N

Excitation function for ⁹C+p elastic scattering

Structure of ¹⁰N

The only previous ¹⁰N result - A. Lepine-Szily, et al., PRC 65 (2002): possible observation of a broad structure at 2.6 MeV

¹¹Li frg dσ/dE _{cn}(mb/MeV) 100 50 MeV) +n energ

a = -30 fm - virtual s-stateE = 0.51 MeV, Γ=0.54 MeV

H. Simon, et al., Nucl. Phys. A 791 (2007) 267

Potential model extrapolation

PM parameters: $r_0 = 1.25$ fm, a=0.7 fm, $r_c = 1.3$ fm

All values are in MeV. The experimental values for the known states are given. Potential model extrapolation are in parenthesis in red.

Previous results for ⁹He

Level structure of ⁹He inferred from the ⁸He+p measurements and the phase shifts

Acknowledgement

Texas A&M University: G. Chubarian, V.Z. Goldberg, *J. Hooker*, C. Hunt, E. Koshchiy, H. Jayatissa, D. Melconian, B. Roeder, *E. Uberseder*, A. Saastamoinen, A. Spiridon, R.E. Tribble.

TRIUMF: M. Alcorta, B. Davids

