Analysis of isospin dependence of "quenching factors" for (p, pn) and (p, 2p) reactions via the Transfer to the Continuum formalism

M. Gómez-Ramos, A. M. Moro

University of Seville

June 7, 2018

1 Quenching and (p, pN) reactions

- Quenching factors
- (p, pN) reactions

Reaction formalismTransfer to Continuum: TC

3 Results for quenching factors

4 Summary

Contents

1 Quenching and (p, pN) reactions

- Quenching factors
- (p, pN) reactions

Reaction formalismTransfer to Continuum: TC

3 Results for quenching factors

4 Summary

Quenching factors

- SF from IPM or shell-model
- Can be related to experiment through:

$$\sigma_{\rm th} = C^2 S \times \sigma_{s.p.}$$

• Quenching of spectroscopic factors:

$$R_s = \frac{\sigma_{\rm exp}}{\sigma_{\rm th}}$$

• Related to correlations beyond IPM

H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004) NIKHEF data: L. Lapikas Nucl. Phys. A 553, 297c (1993)

With respect to SM

• Knockout reactions

Different trends: reaction description in question?

(p, pN) reactions

- A proton and a nucleus collide in such a way that a proton or neutron is removed and the residual nucleus remains.
- High energies ($\sim 200\text{-}400 \text{ MeV}$) to increase mean free path of nucleon in nucleus.
- Used to obtain single-particle information of nuclei.
- It is sometimes referred to as "quasifree" because the main interaction can be modelled as if it were a free collision between the incoming proton and the removed nucleon.

S. Kawase *et al*, Prog. Theor. Exp. Phys. 2018 (2) (2018), 021D01

L. Atar *et al*, Phys. Rev. Lett. 120, 052501 (2018)

Contents

Quenching and (p, pN) reactions
 Quenching factors

• (p, pN) reactions

Reaction formalismTransfer to Continuum: TC

3 Results for quenching factors

4 Summary

Reaction formalism: Transfer to Continuum

• We consider a calculation without explicit IA, including interaction with residual nucleus in matrix element and without factorization approximation.

Reaction formalism: Transfer to Continuum

• We consider a calculation without explicit IA, including interaction with residual nucleus in matrix element and without factorization approximation.

Reaction formalism: Transfer to Continuum

- We consider a calculation without explicit IA, including interaction with residual nucleus in matrix element and without factorization approximation.
- Prior representation of the T-matrix for the process $p + A \rightarrow p + N + C$, approximating the exact wf $\Psi_f^{(-)}$ by a 3-body CDCC wf $\psi_{f}^{3b-CDCC(-)}$ $\mathcal{T}_{if}^{3b} = \left\langle \psi_f^{3b-CDCC(-)} | V_{pN} + U_{pC} - U_{pA} | \psi_{jlm} \chi_{pA}^{(+)} \right\rangle$ p-N continuum • p-N continuum states discretized in energy bins Deuteron included for (p, pn) $\phi_n^{j,\pi}(k_n, \vec{r'}) = \sqrt{\frac{2}{\pi N}} \int_{k}^{k_n} \phi_n^{j,\pi}(k, \vec{r'}) \mathrm{d}k$ • 3-body final state wavefunction p + AA-1 + (p+N)expanded in proton-nucleon states

Inputs of the calculation

• Nucleon-nucleon interaction: Reid93

- Bound states from Woods-Saxon
 - a = 0.7 fm
 - r_0 chosen to reproduce HF rms (SkX)

- Distorting potentials
 - Folding from Paris-Hamburg g-matrix effective interaction and HF density (SkX)
 - Phenomenological Dirac parametrization (EDAD2)

• SF obtained using WBT interaction

Contents

1 Quenching and (p, pN) reactions

- Quenching factors
- (p, pN) reactions

Reaction formalismTransfer to Continuum: TC

3 Results for quenching factors

Summary

Experimental data

We use recent experimental data from R^3B collaboration (GSI)

Reaction	E/A	Ref	Reaction	E/A	Ref
$^{13}O(p, 2p)$	401	1	$^{21}O(p, 2p)$	449	1
$^{14}{\rm O}(p,2p)$	351	1	$^{21}N(p,pn)$	417	2
$^{15}O(p, 2p)$	310	1	$^{21}N(p,2p)$	417	2
$^{16}O(p, 2p)$	451	1	$^{22}O(p,pn)$	414	2
$^{17}{ m O}(p,2p)$	406	1	$^{22}O(p, 2p)$	414	2
$^{18}O(p, 2p)$	368	1	$^{23}O(p,pn)$	445	2
$^{12}C(p,2p)$	398	3	$^{23}O(p,2p)$	445	2

L. Atar *et al* Phys. Rev. Lett. **120**, 052501 (2018)
 P. Díaz-Fernández *et al* Phys. Rev. C **97**, 024311 (2018)
 V. Panin *et al* Phys. Lett. B **753**, 204 (2016)

Momentum distributions

- Small ΔS dependence
- $R_s \sim 0.7 0.77$

15 / 27

Peripherality of (p, pN) reaction

We perform a "notch test" (introducing a narrow peak in the potential at R_{notch}) to study the sensitivity of the reaction with R.

Quenching factors. KD potentials

- Köning-Delaroche potentials at 200 MeV
- No relativistic modifications
- WS geometry: $r_0 = 1.25$ fm a = 0.65 fm

Contents

1 Quenching and (p, pN) reactions

- Quenching factors
- (p, pN) reactions

Reaction formalismTransfer to Continuum: TC

3 Results for quenching factors

- Transfer to Continuum (TC) developed for the study of (p, pN) reactions at high and intermediate energies.
- "Quenching factors" obtained from all published R^3B data show a systematic reduction ($R_s \sim 0.7 0.77$) with a small dependence on ΔS
 - \Box Agreement with transfer experiments
 - $\hfill\square$ Disagreement with mid-energy knock out reactions
- Reasonable agreement with published eikonal DWIA R_s for small binding energies, but increased disagreement for larger binding energies
- Agreement with Faddeev/AGS results when using the same input parameters.

Fitting of momentum distribution (Backup)

Benchmark with DWIA: ${}^{15}C(p, pn){}^{14}C @ 420 \text{ MeV/A}$ (Backup)

• In collaboration with K. Yoshida and K. Ogata (PRC 97 024608 (2018))

See talk by K. Yoshida

M.G.-R., A.M.M.

Benchmark with Faddeev: ${}^{11}\text{Be}(p,pn){}^{11}\text{Be}$ @ 200 MeV/A (p wave) Reid93 (Backup)

• In collaboration with A. Deltuva

Dirac and PH potentials (Backup)

Dirac and PH potentials (Backup)

IPM Spectroscopic factors (Backup)

Reaction	\sum SF	R_s	$R_s(IPM)$	R_s (Atar <i>et al</i>)	
$^{14}\mathrm{O}(p,2p)$	1.97	0.61(6)	0.60(6)	0.68(7)	
		0.64(6)	0.63(6)		
$^{16}\mathrm{O}(p,2p)$	6.09	0.74(5)	0.75(5)	0.70(5)	
		0.78(6)	0.79(6)	0.10(0)	
$^{17}\mathrm{O}(p,2p)$	2.07	0.66(5)	0.68(5)	0.65(5)	
		0.75(5)	0.78(6)	0.00(0)	
$^{21}\mathrm{O}(p,2p)$	1.88	0.71(5)	0.67(5)	0.58(4)	
		0.81(6)	0.76(6)	0.00(1)	
$^{23}\mathrm{O}(p,2p)$	1.99	0.76(15)	0.76(15)	0.62(13)	
		0.89(17)	0.89(17)	0.02(10)	

