Assessing the foundation of the Trojan Horse Method

C.A. Bertulani

CB, Hussein, Typel, Phys. Lett. B 776, 217 (2018)

Transfer reactions

Transfer reactions

Consider the reaction

Transfer reactions

Consider the reaction
B
$\mathrm{A}+\underbrace{(\mathrm{x}+\mathrm{b})} \rightarrow \mathrm{b}+\mathrm{c}+\mathrm{C}$

bound (a)

Need to solve (neglect anti-symmetrization)

$$
\begin{aligned}
& {\left[\mathrm{E}-\left(\mathrm{K}_{\mathrm{x}}+\mathrm{K}_{\mathrm{b}}+\mathrm{K}_{\mathrm{A}}+\mathrm{V}_{\mathrm{xb}}+\mathrm{U}_{\mathrm{xA}}+\mathrm{U}_{\mathrm{bA}}\right)\right]\left|\Psi_{3 \mathrm{~B}}^{(+)} \Phi_{\mathrm{A}} \phi_{\mathrm{a}}\right\rangle=0} \\
& \left|\Psi_{3 \mathrm{~B}}^{(+)}\right\rangle=\text {full 3-body x+b+A wavefunction }
\end{aligned}
$$

A brief history - 1

Optical Background Representation

A brief history - 1

Optical Background Representation

- "Modification of Hauser-Feshbach calculations by direct-reaction channel coupling" Kawai, Kerman, McVoy, Ann. Phys.75, 156 (1973)

A brief history - 1

Optical Background Representation

- "Modification of Hauser-Feshbach calculations by direct-reaction channel coupling" Kawai, Kerman, McVoy, Ann. Phys.75, 156 (1973)
- "Fluctuations in two-step reactions through doorways" Kerman, McVoy, Ann. Phys. 122, 197 (1979)

A brief history - 1

Optical Background Representation

- "Modification of Hauser-Feshbach calculations by direct-reaction channel coupling" Kawai, Kerman, McVoy, Ann. Phys.75, 156 (1973)
- "Fluctuations in two-step reactions through doorways" Kerman, McVoy, Ann. Phys. 122, 197 (1979)

DWBA - Prior form

A brief history - 1

Optical Background Representation

- "Modification of Hauser-Feshbach calculations by direct-reaction channel coupling" Kawai, Kerman, McVoy, Ann. Phys.75, 156 (1973)
- "Fluctuations in two-step reactions through doorways" Kerman, McVoy, Ann. Phys. 122, 197 (1979)

DWBA - Prior form

- "The break-up of the deuteron and stripping to unbound states" Baur, Trautmann, Phys. Rep. 25, 293 (1976)

A brief history - 1

Optical Background Representation

- "Modification of Hauser-Feshbach calculations by direct-reaction channel coupling"
Kawai, Kerman, McVoy, Ann. Phys.75, 156 (1973)
- "Fluctuations in two-step reactions through doorways" Kerman, McVoy, Ann. Phys. 122, 197 (1979)

DWBA - Prior form

- "The break-up of the deuteron and stripping to unbound states" Baur, Trautmann, Phys. Rep. 25, 293 (1976)
- "Fragmentation processes in nuclear reactions" Baur, Rösel, Trautmann, Shyam, Phys. Rep. 111, 333 (1984)

A brief history - 2

DWBA - Post form

A brief history - 2

DWBA - Post form

- "Derivation of breakup-fusion cross sections from the optical theorem" Udagawa, Tamura, PRC 24, 1348 (1981)

A brief history - 2

DWBA - Post form

- "Derivation of breakup-fusion cross sections from the optical theorem" Udagawa, Tamura, PRC 24, 1348 (1981)
- "Formulation of elastic and inelastic breakup-fusion reactions" Udagawa, Tamura, PRC 33, 494 (1986)

A brief history - 2

DWBA - Post form

- "Derivation of breakup-fusion cross sections from the optical theorem" Udagawa, Tamura, PRC 24, 1348 (1981)
- "Formulation of elastic and inelastic breakup-fusion reactions" Udagawa, Tamura, PRC 33, 494 (1986)
- "Exact and approximate sum rules for inclusive breakup reactions" Udagawa, Tamura, Mastroleo, PRC 37, 2261 (1988)

A brief history - 2

DWBA - Post form

- "Derivation of breakup-fusion cross sections from the optical theorem" Udagawa, Tamura, PRC 24, 1348 (1981)
- "Formulation of elastic and inelastic breakup-fusion reactions" Udagawa, Tamura, PRC 33, 494 (1986)
- "Exact and approximate sum rules for inclusive breakup reactions" Udagawa, Tamura, Mastroleo, PRC 37, 2261 (1988)
- "Equivalence of post and prior sum rules for inclusive breakup reactions" Ichimura, Austern, Vincent, PRC 32, 431 (1985); PRC 34, 2326 (1986); PRC 37, 2264 (1988)

A brief history - 2

DWBA - Post form

- "Derivation of breakup-fusion cross sections from the optical theorem" Udagawa, Tamura, PRC 24, 1348 (1981)
- "Formulation of elastic and inelastic breakup-fusion reactions" Udagawa, Tamura, PRC 33, 494 (1986)
- "Exact and approximate sum rules for inclusive breakup reactions" Udagawa, Tamura, Mastroleo, PRC 37, 2261 (1988)
- "Equivalence of post and prior sum rules for inclusive breakup reactions" Ichimura, Austern, Vincent, PRC 32, 431 (1985); PRC 34, 2326 (1986); PRC 37, 2264 (1988)
- "Inclusive projectile fragmentation in the spectator model" Hussein, McVoy, NPA, 445, 124 (1984); NPA 491, 468 (1989)

A brief history - 2

DWBA - Post form

- "Derivation of breakup-fusion cross sections from the optical theorem" Udagawa, Tamura, PRC 24, 1348 (1981)
- "Formulation of elastic and inelastic breakup-fusion reactions" Udagawa, Tamura, PRC 33, 494 (1986)
- "Exact and approximate sum rules for inclusive breakup reactions" Udagawa, Tamura, Mastroleo, PRC 37, 2261 (1988)
- "Equivalence of post and prior sum rules for inclusive breakup reactions" Ichimura, Austern, Vincent, PRC 32, 431 (1985); PRC 34, 2326 (1986); PRC 37, 2264 (1988)
- "Inclusive projectile fragmentation in the spectator model" Hussein, McVoy, NPA, 445, 124 (1984); NPA 491, 468 (1989)

A brief history - 3 CDCC

A brief history - 3 CDCC

- "Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions"
Austern, Iseri, Kamimura, Kawai, Rawitscher, Yahiro, Phys. Rep. 154, 125 (1987)

A brief history - 3 CDCC

- "Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions"
Austern, Iseri, Kamimura, Kawai, Rawitscher, Yahiro, Phys. Rep. 154, 125 (1987)

Trojan horse

A brief history - 3 CDCC

- "Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions"
Austern, Iseri, Kamimura, Kawai, Rawitscher, Yahiro, Phys. Rep. 154, 125 (1987)

Trojan horse

- "Breakup reactions as an indirect method to investigate low-energy charged-particle reactions relevant for nuclear astrophysics" G. Baur, Phys. Lett. B 178, 135 (1986)

A brief history - 3

CDCC

- "Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions"
Austern, Iseri, Kamimura, Kawai, Rawitscher, Yahiro, Phys. Rep. 154, 125 (1987)

Trojan horse

- "Breakup reactions as an indirect method to investigate low-energy charged-particle reactions relevant for nuclear astrophysics" G. Baur, Phys. Lett. B 178, 135 (1986)
- Contrib. to "Problems of Fundamental Modern Physics II", Spitaleri, World Sci. 21 (1991); Spitaleri et al., PAN 74, 1763 (2011)

A brief history - 3

CDCC

- "Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions"
Austern, Iseri, Kamimura, Kawai, Rawitscher, Yahiro, Phys. Rep. 154, 125 (1987)

Trojan horse

- "Breakup reactions as an indirect method to investigate low-energy charged-particle reactions relevant for nuclear astrophysics" G. Baur, Phys. Lett. B 178, 135 (1986)
- Contrib. to "Problems of Fundamental Modern Physics II", Spitaleri, World Sci. 21 (1991); Spitaleri et al., PAN 74, 1763 (2011)
- "Indirect techniques in nuclear astrophysics" Tribble, CB, La Cognata, Mukhamedzhanov, Spitaleri,Rep. Prog. Phys. 77 106901 (2014)

A brief history - 3

CDCC

- "Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions"
Austern, Iseri, Kamimura, Kawai, Rawitscher, Yahiro, Phys. Rep. 154, 125 (1987)

Trojan horse

- "Breakup reactions as an indirect method to investigate low-energy charged-particle reactions relevant for nuclear astrophysics" G. Baur, Phys. Lett. B 178, 135 (1986)
- Contrib. to "Problems of Fundamental Modern Physics II", Spitaleri, World Sci. 21 (1991); Spitaleri et al., PAN 74, 1763 (2011)
- "Indirect techniques in nuclear astrophysics" Tribble, CB, La Cognata, Mukhamedzhanov, Spitaleri,Rep. Prog. Phys. 77 106901 (2014)

Trojan Horse versus Surrogate Reactions

Trojan Horse versus Surrogate Reactions

Trojan Horse Method:

Specific direct reaction induced by a tertiary beam See, e.g. ${ }^{12} \mathrm{C}+12 \mathrm{C}$ fusion with THM: Tumino et al, Nature 2018

Trojan Horse versus Surrogate Reactions

Trojan Horse Method:

Specific direct reaction induced by a tertiary beam See, e.g. ${ }^{12} \mathrm{C}+12 \mathrm{C}$ fusion with THM: Tumino et al, Nature 2018

Surrogate Reaction Method:
Relies on specific compound nuclear reaction induced by a tertiary beam

Trojan Horse versus Surrogate Reactions

Trojan Horse Method:

Specific direct reaction induced by a tertiary beam See, e.g. ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion with THM: Tumino et al, Nature 2018

Surrogate Reaction Method:

Relies on specific compound nuclear reaction induced by a tertiary beam

General theory: Inclusive breakup

- "Faddeev and DWBA description of inclusive break-up and incomplete fusion reactions"
Hussein, Frederico, Mastroleo, NPA 511, 269 (1990)

Trojan Horse versus Surrogate Reactions

Trojan Horse Method:

Specific direct reaction induced by a tertiary beam See, e.g. ${ }^{12} \mathrm{C}+12 \mathrm{C}$ fusion with THM: Tumino et al, Nature 2018

Surrogate Reaction Method:

Relies on specific compound nuclear reaction induced by a tertiary beam

General theory: Inclusive breakup

- "Faddeev and DWBA description of inclusive break-up and incomplete fusion reactions"
Hussein, Frederico, Mastroleo, NPA 511, 269 (1990)
- "Relation among theories of inclusive breakup reactions"
M. Ichimura, PR C 41, 834 (1990)

Trojan Horse versus Surrogate Reactions

Trojan Horse Method:

Specific direct reaction induced by a tertiary beam See, e.g. ${ }^{12} \mathrm{C}+12 \mathrm{C}$ fusion with THM: Tumino et al, Nature 2018

Surrogate Reaction Method:

Relies on specific compound nuclear reaction induced by a tertiary beam

General theory: Inclusive breakup

- "Faddeev and DWBA description of inclusive break-up and incomplete fusion reactions"
Hussein, Frederico, Mastroleo, NPA 511, 269 (1990)
- "Relation among theories of inclusive breakup reactions"
M. Ichimura, PR C 41, 834 (1990)

Trojan horse method

Trojan horse method

Measuring

$\mathrm{A}+(\mathrm{b}+\mathrm{x}) \rightarrow \mathrm{b}+\mathrm{c}+\mathrm{C}$
$\mathrm{A}+\mathrm{x} \rightarrow \mathrm{C}+\mathrm{c}$
(astrophysics)

Trojan horse method Measuring

$$
\mathrm{A}+(\mathrm{b}+\mathrm{x}) \rightarrow \mathrm{b}+\mathrm{c}+\mathrm{C}
$$

$$
A+x \rightarrow C+c
$$

(astrophysics)

$\sigma_{\mathrm{xA} \rightarrow \mathrm{CC}}=\frac{\pi}{\mathrm{k}_{\mathrm{x}}^{2}} \sum_{l}(21+1)\left|S_{I c}\right|^{2} \sim \frac{\mathrm{~S}_{0}}{\mathrm{E}} \mathrm{e}^{-2 \pi m(\mathrm{E})}$
(astrophysics)

Trojan horse method Measuring
$\mathrm{A}+(\mathrm{b}+\mathrm{x}) \rightarrow \mathrm{b}+\mathrm{c}+\mathrm{C}$

$$
\mathrm{A}+\mathrm{x} \rightarrow \mathrm{C}+\mathrm{c}
$$

(astrophysics)

$\sigma_{\mathrm{xA} \rightarrow \mathrm{CC}}=\frac{\pi}{\mathrm{k}_{\mathrm{x}}^{2}} \sum_{l}(2 /+1)\left|S_{I \mathrm{c}}\right|^{2} \sim \frac{\mathrm{~S}_{0}}{\mathrm{E}} \mathrm{e}^{-2 \pi n(\mathrm{E})}$
(astrophysics)
(Trojan horse)
$\frac{\mathrm{d}^{3} \sigma}{\mathrm{~d} \Omega_{\mathrm{b}} \mathrm{d} \Omega_{\mathrm{c}} \mathrm{dE}_{\mathrm{b}}}=\frac{\mathrm{m}_{\mathrm{a}} \mathrm{m}_{\mathrm{b}} \mathrm{m}_{\mathrm{c}}}{(2 \pi)^{5} \hbar^{6}} \frac{\mathrm{k}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}}{\mathrm{k}_{\mathrm{a}}}\left|\sum_{\mathrm{l}} \mathrm{T}_{\mathrm{lm}}\left(\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{b}}, \mathrm{k}_{\mathrm{x}}\right) \mathrm{S}_{/ \mathrm{c}} \mathrm{Y}_{l \mathrm{~m}}\left(\mathrm{k}_{\mathrm{c}}\right)\right|^{2}$

Trojan horse method

Trojan horse method

Post-form DWBA

Trojan horse method

Post-form DWBA

$$
\mathrm{T}_{\mathrm{lm}}=\left\langle\chi_{\mathrm{b}}^{(-)} \Psi_{\mathrm{xA}}^{(-)}\right| \mathrm{V}_{\mathrm{bx}}\left|\Psi_{\mathrm{bxA}}^{(+)} \phi_{\mathrm{a}}\right\rangle \approx\left\langle\chi_{\mathrm{b}}^{(-)} \chi_{\mathrm{x}}^{(-)}\right| \mathrm{V}_{\mathrm{bx}}\left|\chi_{\mathrm{a}}^{(+)} \phi_{\mathrm{a}}\right\rangle
$$

surface-dominated $x+A$
w.f.
$\mathrm{k}_{\mathrm{x}} \rightarrow 0(\eta \rightarrow 0)$$\left\{\begin{array}{l}\chi_{\mathrm{x}}^{(-)} \sim \frac{1}{\mathrm{k}_{\mathrm{x}} \mathrm{R}} \mathrm{Y}_{/ \mathrm{m}}^{\prime} \mathrm{e}^{\pi \eta /}, \mathrm{K}_{2 /+1}\left(\sqrt{\frac{8 \mathrm{R}}{\mathrm{a}_{\mathrm{B}}}}\right) \\ S_{l_{c}} \sim \mathrm{e}^{-\pi \eta_{1}}\end{array}\right.$

Trojan horse method

Post-form DWBA

$$
\mathrm{T}_{\mathrm{lm}}=\left\langle\chi_{\mathrm{b}}^{(-)} \Psi_{\mathrm{xA}}^{(-)}\right| \mathrm{V}_{\mathrm{bx}}\left|\Psi_{\mathrm{bxA}}^{(+)} \phi_{\mathrm{a}}\right\rangle \approx\left\langle\chi_{\mathrm{b}}^{(-)} \chi_{\mathrm{x}}^{(-)}\right| \mathrm{V}_{\mathrm{bx}}\left|\chi_{\mathrm{a}}^{(+)} \phi_{\mathrm{a}}\right\rangle
$$

surface-dominated $x+A$
w.f.
$\mathrm{k}_{\mathrm{x}} \rightarrow 0(\eta \rightarrow 0)$$\left\{\begin{array}{l}\chi_{\mathrm{x}}^{(-)} \sim \frac{1}{\mathrm{k}_{\mathrm{x}} \mathrm{R}} \mathrm{Y}_{/ \mathrm{m}}^{\prime}, \mathrm{e}^{\pi \eta /}, \mathrm{K}_{2 /+1}\left(\sqrt{\frac{8 \mathrm{R}}{\mathrm{a}_{\mathrm{B}}}}\right. \\ S_{l_{c}} \sim \mathrm{e}^{-\pi \eta_{1}}\end{array}\right.$

Trojan horse method

Post-form DWBA

$$
\mathrm{T}_{\mathrm{lm}}=\left\langle\chi_{\mathrm{b}}^{(-)} \Psi_{\mathrm{xA}}^{(-)}\right| \mathrm{V}_{\mathrm{bx}}\left|\Psi_{\mathrm{bxA}}^{(+)} \phi_{\mathrm{a}}\right\rangle \approx\left\langle\chi_{\mathrm{b}}^{(-)} \chi_{\mathrm{x}}^{(-)}\right| \mathrm{V}_{\mathrm{bx}}\left|\chi_{\mathrm{a}}^{(+)} \phi_{\mathrm{a}}\right\rangle
$$

surface-dominated $x+\mathrm{A}$
w.f.
$\mathrm{k}_{\mathrm{x}} \rightarrow 0(\eta \rightarrow 0)$$\left\{\begin{array}{l}\chi_{\mathrm{x}}^{(-)} \sim \frac{1}{\mathrm{k}_{\mathrm{x}} \mathrm{R}} \mathrm{Y}_{l \mathrm{~m}}, \mathrm{e}^{\pi \eta_{i}}, \mathrm{~K}_{2 l+1}\left(\sqrt{\frac{8 \mathrm{R}}{\mathrm{a}_{\mathrm{B}}}}\right) \\ S_{l_{c}} \sim\left(\mathrm{e}^{-\pi \eta_{1}}\right.\end{array}\right.$

$d^{3} \sigma$
 \rightarrow const.
 (Trojan horse)
 $\mathrm{d} \Omega_{\mathrm{b}} \mathrm{d} \Omega_{\mathrm{c}} \mathrm{dE} \mathrm{b}_{\mathrm{b}}$
 G. Baur, Phys. Lett. B 178, 135 (1986)

Typel, Baur, Ann. Phys. (NY) 305, 228 (2003)

Trojan horse method: quasi-free kinematics

Trojan horse method: quasi-free kinematics

Trojan horse method: quasi-free kinematics

Inclusive Non-Elastic Breakup Cross Section (INEB)

Inclusive Non-Elastic Breakup Cross Section (INEB) Consider the reaction

$$
A+(b+x) \rightarrow b+c+C
$$

Inclusive Non-Elastic Breakup Cross Section (INEB)

Consider the reaction

$$
\begin{aligned}
& \mathrm{A}+(\mathrm{b}+\mathrm{x}) \rightarrow \mathrm{b}+\mathrm{c}+\mathrm{C} \\
& \text { INEB } \\
& \frac{\mathrm{d} \sigma}{\mathrm{dE}_{\mathrm{b}} \mathrm{~d} \Omega_{\mathrm{b}}}=\rho_{\mathrm{b}}\left(\mathrm{E}_{\mathrm{b}}\right) \sigma_{\mathrm{R}}^{\mathrm{x}}
\end{aligned}
$$

$\sigma_{R}^{x}=-\frac{K_{x}}{E_{x}}\left\langle{\hat{\rho_{x}}}_{x}\left(\boldsymbol{r}_{x}\right)\right| W_{x}\left(\boldsymbol{r}_{x}\right)\left|{\hat{\rho_{r}}}_{x}\left(\boldsymbol{r}_{x}\right)\right\rangle$
$\hat{\mathrm{P}}_{\mathrm{x}}\left(\mathbf{r}_{\mathrm{x}}\right)=\left(\mathcal{X}_{\mathrm{b}}^{(-)} \mid{\underset{Y}{3 B}}_{(+)}^{3}\right)$
imaginary part opt. pot.

Inclusive Non-Elastic Breakup Cross Section (INEB)

Consider the reaction

$$
\begin{aligned}
& \mathrm{A}+(\mathrm{b}+\mathrm{x}) \rightarrow \mathrm{b}+\mathrm{c}+\mathrm{C} \\
& \text { INEB } \\
& \frac{\mathrm{d} \sigma}{\mathrm{dE} \mathrm{D}_{\mathrm{b}} \mathrm{~d} \Omega_{\mathrm{b}}}=\rho_{\mathrm{b}}\left(\mathrm{E}_{\mathrm{b}}\right) \sigma_{\mathrm{R}}^{\mathrm{x}}
\end{aligned}
$$

$\sigma_{\mathrm{R}}^{\mathrm{x}}=-\frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{E}_{\mathrm{x}}}\left\langle\hat{\rho}_{\mathrm{x}}\left(\mathbf{r}_{\mathrm{x}}\right)\right| \mathrm{W}_{\mathrm{x}}\left(\mathbf{r}_{\mathrm{x}}\right)\left|\hat{\rho}_{\mathrm{x}}\left(\mathbf{r}_{\mathrm{x}}\right)\right\rangle$
$\hat{\rho}_{\mathrm{x}}\left(\mathbf{r}_{\mathrm{x}}\right)=\left(\chi_{\mathrm{b}}^{(-)}\left|\Psi_{3 \mathrm{~B}}^{(+)}\right\rangle\right.$
imaginary part opt. pot.
Ichimura, Austern, Vincent, PRC 32, 431 (1985) - post form

$$
\left|\Psi_{3 \mathrm{~B}}^{(+)}\right\rangle=\left(\mathrm{E}-\mathrm{K}_{\mathrm{b}}-\mathrm{U}_{\mathrm{b}}-\mathrm{K}_{\mathrm{x}}-\mathrm{U}_{\mathrm{x}}+\mathrm{i} \varepsilon\right)^{-1} \mathrm{~V}_{\mathrm{xb}}\left|\phi_{\mathrm{bx}} \chi_{\mathrm{bx}}^{(+)}\right\rangle
$$

Inclusive Non-Elastic Breakup Cross Section (INEB)

$$
\begin{aligned}
& \Rightarrow \quad \hat{\rho}_{x}^{\mathrm{IAV}}\left(\mathbf{r}_{\mathrm{x}}\right)=\mathrm{G}_{\mathrm{x}}^{(+)}\left(\mathrm{E}_{\mathrm{x}}\right)\left(\chi_{\mathrm{b}}^{(-)}\left|V_{\mathrm{bx}}\right| \phi_{\mathrm{a}} \chi_{\mathrm{a}}^{(+)}\right\rangle \\
& \mathrm{G}_{\mathrm{x}}^{(+)}\left(\mathrm{E}_{\mathrm{x}}\right)=\left(\mathrm{E}_{\mathrm{x}}-\mathrm{K}_{\mathrm{x}}-\mathrm{U}_{\mathrm{x}}+\mathrm{i} \varepsilon\right)^{-1} \quad \mathrm{E}_{\mathrm{x}}=\mathrm{E}-\mathrm{E}_{\mathrm{b}}
\end{aligned}
$$

Inclusive Non-Elastic Breakup Cross Section (INEB)

$$
\begin{aligned}
& \Rightarrow \quad \hat{\rho}_{\mathrm{x}}^{\mathrm{IAV}}\left(\mathbf{r}_{\mathrm{x}}\right)=\mathrm{G}_{\mathrm{x}}^{(+)}\left(\mathrm{E}_{\mathrm{x}}\right)\left(\chi_{\mathrm{b}}^{(-)}\left|\mathrm{V}_{\mathrm{bx}}\right| \phi_{\mathrm{a}} \chi_{\mathrm{a}}^{(+)}\right\rangle \\
& \mathrm{G}_{\mathrm{x}}^{(+)}\left(\mathrm{E}_{\mathrm{x}}\right)=\left(\mathrm{E}_{\mathrm{x}}-\mathrm{K}_{\mathrm{x}}-\mathrm{U}_{\mathrm{x}}+\mathrm{i} \varepsilon\right)^{-1} \quad \mathrm{E}_{\mathrm{x}}=\mathrm{E}-\mathrm{E}_{\mathrm{b}}
\end{aligned}
$$

Structure of W_{x}
Consider the scattering $x+A$ with dynamics governed by H_{x} open $x+A$ channels

$$
\begin{aligned}
& P_{x}+Q_{x}=1, \quad P_{x} Q_{x}=Q_{x} P_{x}=0 \\
& P_{x}^{2}=P_{x}, \quad Q_{x}^{2}=Q_{x}
\end{aligned}
$$

Structure of W_{x} \Rightarrow

Structure of W_{x}
 $$
\left(E_{x}-P_{x} H_{x} P_{x}-P_{x} H_{x} Q_{x} \frac{1}{E_{x}-Q_{x} H_{x} Q_{x}} Q_{x} H_{x} P_{x}\right) P_{x}\left|\Psi_{x A}^{(+)}\right\rangle=0
$$

Exact but useless!

Structure of W_{x}
 $$
\left(E_{x}-P_{x} H_{x} P_{x}-P_{x} H_{x} Q_{x} \frac{1}{E_{x}-Q_{x} H_{x} Q_{x}} Q_{x} H_{x} P_{x}\right) P_{x}\left|\Psi_{x A}^{(+)}\right\rangle=0
$$

Exact but useless!

- Average over CN states
- Define optical $\mathbf{x + A}$ open channels $\left|\overleftarrow{\boldsymbol{\Psi}}_{\mathrm{xA}}^{(+)}\right\rangle$
- Split P_{x} into $\mathrm{P}_{\mathrm{x}}^{(0)}($ elastic breakup of $\mathbf{b}+\mathbf{x}+\mathbf{A})+\mathrm{P}_{\mathrm{x}}^{(\mathrm{D})}$ (all open non-elastic direct channels)

Structure of W_{x}

$$
\left(E_{x}-P_{x} H_{x} P_{x}-P_{x} H_{x} Q_{x} \frac{1}{E_{x}-Q_{x} H_{x} Q_{x}} Q_{x} H_{x} P_{x}\right) P_{x}\left|\Psi_{x A}^{(+)}\right\rangle=0
$$

Exact but useless!

- Average over CN states
- Define optical $\mathbf{x + A}$ open channels $\left|\overleftarrow{\boldsymbol{\Psi}}_{\mathrm{xA}}^{(+)}\right\rangle$
- Split P_{x} into $\mathrm{P}_{\mathrm{x}}^{(0)}($ elastic breakup of $\mathbf{b}+\mathbf{x}+\mathbf{A})+\mathrm{P}_{\mathrm{x}}^{(\mathrm{D})}$ (all open non-elastic direct channels)
$\left(\mathrm{E}_{\mathrm{x}}-\mathrm{H}_{\mathrm{x}}^{(\text {eff })}-\mathrm{H}_{\mathrm{x}}^{(\text {eff })} \mathrm{P}_{\mathrm{x}}^{(\mathrm{D})} \mathrm{G}_{\mathrm{x}}^{(+), \mathrm{D}} \mathrm{P}_{\mathrm{x}}^{(\mathrm{D})} \mathrm{H}_{\mathrm{x}}^{(\text {eff })}\right) \mathrm{P}_{\mathrm{x}}\left|\bar{\Psi}_{\mathrm{xA}}^{(+)}\right\rangle=0$

Structure of W_{x}

Structure of W_{x}

$$
\begin{aligned}
\mathrm{W}_{\mathrm{x}}= & \operatorname{Im} \mathrm{U}_{\mathrm{x}}=\mathrm{W}_{\mathrm{x}}^{\mathrm{CN}}+\mathrm{W}_{\mathrm{x}}^{\mathrm{D}} \\
& \operatorname{ImH}_{\mathrm{x}}^{(\text {eff })} \quad \operatorname{Im}\left[\mathrm{H}_{\mathrm{x}}^{(\text {eff })} \mathrm{P}_{\mathrm{x}}^{(\mathrm{D})} \mathrm{G}_{\mathrm{x}}^{(+), \mathrm{D}} \mathrm{P}_{\mathrm{x}}^{(\mathrm{D})} \mathrm{H}_{\mathrm{x}}^{(\mathrm{eff})}\right] \\
\mathrm{G}_{\mathrm{x}}^{(+), \mathrm{D}}= & {\left[\mathrm{E}_{\mathrm{x}}-\mathrm{P}_{\mathrm{x}}^{(\mathrm{D})} \mathrm{H}_{\mathrm{x}}^{(\mathrm{eff})} \mathrm{P}_{\mathrm{x}}^{(\mathrm{D})}+\mathrm{i} \varepsilon\right]^{-1} }
\end{aligned}
$$

Structure of W_{x}

$$
\begin{aligned}
\mathrm{W}_{\mathrm{x}}= & \operatorname{Im} \mathrm{U}_{\mathrm{x}}=\mathrm{W}_{\mathrm{x}}^{\mathrm{CN}}+\mathrm{W}_{\mathrm{x}}^{\mathrm{D}} \\
& \operatorname{ImH}_{\mathrm{x}}^{(\mathrm{eff})} \quad \operatorname{Im}\left[\mathrm{H}_{\mathrm{x}}^{(\mathrm{eff})} \mathrm{P}_{\mathrm{x}}^{(\mathrm{D})} \mathrm{G}_{\mathrm{x}}^{(+), \mathrm{D}} \mathrm{P}_{\mathrm{x}}^{(\mathrm{D})} \mathrm{H}_{\mathrm{x}}^{(\mathrm{eff})}\right] \\
\mathrm{G}_{\mathrm{x}}^{(+), \mathrm{D}}= & {\left[\mathrm{E}_{\mathrm{x}}-\mathrm{P}_{\mathrm{x}}^{(\mathrm{D})} \mathrm{H}_{\mathrm{x}}^{(\mathrm{eff})} \mathrm{P}_{\mathrm{x}}^{(\mathrm{D})}+\mathrm{i} \varepsilon\right]^{-1} }
\end{aligned}
$$

Spectral decomposition

$$
\left.\left.\operatorname{Im} G_{\mathrm{x}}^{(+), \mathrm{D}}=-\pi \sum_{\mathrm{D}} \int \frac{\mathrm{~d} \mathbf{k}_{\mathrm{D}}}{(2 \pi)^{3}} \right\rvert\, \chi_{\mathbf{k}_{\mathrm{D}}}^{(-)}\right) \delta\left(\mathrm{E}_{\mathrm{x}}-\mathrm{E}_{\mathrm{k}_{\mathrm{D}}}\right)\left(\chi_{\mathbf{k}_{\mathrm{D}}}^{(-)} \mid\right.
$$

Inclusive Non-Elastic Breakup Cross Section (INEB)

Inclusive Non-Elastic Breakup Cross Section (INEB)

$$
\frac{\mathrm{d}^{2} \sigma_{\mathrm{b}}^{\mathrm{INEB},(\mathrm{D})}}{\mathrm{dE}_{\mathrm{b}} \mathrm{~d} \Omega_{\mathrm{b}}}=\rho_{\mathrm{b}}\left(\mathrm{E}_{\mathrm{b}}\right) \frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{E}_{\mathrm{x}}}\left\langle\rho_{\mathrm{x}}^{(+\operatorname{IAV}}\right| \mathrm{W}_{\mathrm{x}}^{\mathrm{D}}\left|\rho_{\mathrm{x}}^{(+) \operatorname{IAV}}\right\rangle
$$

Inclusive Non-Elastic Breakup Cross Section (INEB)

$$
\frac{\mathrm{d}^{2} \sigma_{\mathrm{b}}^{\mathrm{INEB},(\mathrm{D})}}{\mathrm{dE}_{\mathrm{b}} \mathrm{~d} \Omega_{\mathrm{b}}}=\rho_{\mathrm{b}}\left(\mathrm{E}_{\mathrm{b}}\right) \frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{E}_{\mathrm{x}}}\left\langle\rho_{\mathrm{x}}^{(+\operatorname{IAV}}\right| \mathrm{W}_{\mathrm{x}}^{\mathrm{D}}\left|\rho_{\mathrm{x}}^{(+) \mathrm{IAV}}\right\rangle
$$

All interactions coupling the ground to direct inelastic states

$$
\begin{gathered}
\mathrm{W}_{\mathrm{x}}^{\mathrm{D}}=-\pi \sum_{\mathrm{f}} \frac{\mathrm{~d} \mathbf{k}_{\mathrm{f}}}{(2 \pi)^{3}} \mathrm{~V}_{(0, \mathrm{f})}\left|\chi_{\mathrm{f}}^{(-)}\left(\mathbf{k}_{\mathrm{f}}\right)\right\rangle\left\langle\chi_{\mathrm{f}}^{(-)}\left(\mathbf{k}_{\mathrm{f}}\right)\right| \mathrm{V}_{(0, \mathrm{f})} \delta\left(\mathrm{E}_{\mathrm{x}}-\mathrm{E}_{\mathrm{f}}\right) \\
\mathrm{V}_{(0, \mathrm{f})}=\mathrm{P}_{\mathrm{x}}^{(0)} \mathrm{VP}_{\mathrm{x}}^{(\mathrm{D})}
\end{gathered}
$$

Inclusive Non-Elastic Breakup Cross Section (INEB)

Inclusive Non-Elastic Breakup Cross Section (INEB)

$$
\left.\frac{\mathrm{d}^{2} \sigma_{\mathrm{b}}^{\mathrm{INEB},(\mathrm{D})}}{\mathrm{dE}_{\mathrm{b}} \mathrm{~d} \Omega_{\mathrm{b}}}=-\pi \rho_{\mathrm{b}}\left(\mathrm{E}_{\mathrm{b}}\right) \frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{E}_{\mathrm{x}}} \sum_{\mathrm{f}} \frac{\mathrm{~d} \mathbf{k}_{\mathrm{f}}}{(2 \pi)^{3}} \delta\left(\mathrm{E}_{\mathrm{x}}-\mathrm{E}_{\mathrm{f}}\right)\left|\left\langle\chi_{\mathrm{f}}^{(-)}\left(\mathbf{k}_{\mathrm{f}}\right)\right| \mathrm{V}_{(0, \mathrm{f})}\right| \rho_{\mathrm{x}}^{(+) \mathrm{IAV}}\right\rangle\left.\right|^{2}
$$

Inclusive Non-Elastic Breakup Cross Section (INEB)

$$
\left.\frac{\mathrm{d}^{2} \sigma_{\mathrm{b}}^{\mathrm{INEB},(\mathrm{D})}}{\mathrm{dE}_{\mathrm{b}} \mathrm{~d} \Omega_{\mathrm{b}}}=-\pi \rho_{\mathrm{b}}\left(\mathrm{E}_{\mathrm{b}}\right) \frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{E}_{\mathrm{x}}} \sum_{\mathrm{f}} \frac{\mathrm{~d}_{\mathrm{f}}}{(2 \pi)^{3}} \delta\left(\mathrm{E}_{\mathrm{x}}-\mathrm{E}_{\mathrm{f}}\right)\left|\left\langle\chi_{\mathrm{f}}^{(-)}\left(\mathbf{k}_{\mathrm{f}}\right)\right| \mathrm{V}_{(0, \mathrm{f})}\right| \rho_{\mathrm{x}}^{(+) I A \mathrm{~V}}\right\rangle\left.\right|^{2}
$$

Consider a particular $\mathrm{x}+\mathrm{A}$ channel, i.e., $\mathrm{y}+\mathrm{B}$

$$
\frac{d^{2} \sigma_{b}^{\mathrm{INEB},(\mathrm{D})}}{\mathrm{dE}_{\mathrm{b}} \mathrm{~d} \Omega_{\mathrm{b}} \mathrm{dE}} \mathrm{y} \text { d } \Omega_{\mathrm{y}} \quad=-\pi \rho_{\mathrm{b}}\left(\mathrm{E}_{\mathrm{b}}\right) \rho_{\mathrm{y}}\left(\mathrm{E}_{\mathrm{y}}\right) \frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{E}_{\mathrm{x}}}
$$

$$
\times \mid\left\langle\chi_{\mathrm{y}}^{(-)}\left(\mathbf{k}_{\mathrm{y}}\right)\right| \mathrm{V}_{(\mathrm{x}, \mathrm{y})} \mathrm{G}_{\uparrow}^{(+)}|\underbrace{\left|\chi_{\mathrm{b}}^{(-)}\right| \mathrm{V}_{\mathrm{xb}}\left|\phi_{\mathrm{a}} \chi_{\mathrm{a}}^{(+)}\right\rangle}_{\uparrow}|^{2}
$$

transition to y channel propagation of x elastic breakup

The Trojan Horse formula

The Trojan Horse formula

Assume factorization $\quad \chi_{\mathrm{a}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}, \mathbf{r}_{\mathrm{x}}\right)=\chi_{\mathrm{b}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}\right) \chi_{\mathrm{x}}^{(+)}\left(\mathbf{r}_{\mathrm{x}}\right)$

The Trojan Horse formula

Assume factorization $\quad \chi_{\mathrm{a}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}, \mathbf{r}_{\mathrm{x}}\right)=\chi_{\mathrm{b}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}\right) \chi_{\mathrm{x}}^{(+)}\left(\mathbf{r}_{\mathrm{x}}\right)$
and define $\quad \hat{S}_{\mathrm{b}}\left(\mathbf{r}_{\mathrm{x}}\right)=\left\langle\chi_{\left(\mathrm{b}, \mathbf{k}_{\mathrm{b}}\right)}^{(-)}\left(\mathbf{r}_{\mathrm{b}}\right) \phi_{\mathrm{a}}\left(\mathbf{r}_{\mathrm{x}}, \mathbf{r}_{\mathrm{b}}\right) \mid \chi_{\left(\mathrm{b}, \mathbf{k}_{\mathrm{b}}\right)}^{(+)}\left(\mathbf{r}_{\mathrm{b}}\right)\right\rangle$

The Trojan Horse formula

Assume factorization $\quad \chi_{\mathrm{a}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}, \mathbf{r}_{\mathrm{x}}\right)=\chi_{\mathrm{b}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}\right) \chi_{\mathrm{x}}^{(+)}\left(\mathbf{r}_{\mathrm{x}}\right)$
and define $\quad \hat{\mathrm{S}}_{\mathrm{b}}\left(\mathbf{r}_{\mathrm{x}}\right)=\left\langle\chi_{\left(\mathrm{b}, \mathbf{k}_{\mathrm{b}}\right)}^{(-)}\left(\mathbf{r}_{\mathrm{b}}\right) \phi_{\mathrm{a}}\left(\mathbf{r}_{\mathrm{x}}, \mathbf{r}_{\mathrm{b}}\right) \mid \chi_{\left(\mathrm{b}, \mathbf{k}_{\mathrm{b}}\right)}^{(+)}\left(\mathbf{r}_{\mathrm{b}}\right)\right\rangle$
$\left.\Rightarrow \frac{\mathrm{d}^{2} \sigma_{\mathrm{b}}^{\mathrm{INEB},(\mathrm{D})}}{\mathrm{dE} \mathrm{E}_{\mathrm{b}} \mathrm{d} \Omega_{\mathrm{b}}}=\rho_{\mathrm{b}}\left(\mathrm{E}_{\mathrm{b}}\right) \frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{E}_{\mathrm{x}}}\left|\left\langle\chi_{\mathrm{y}}^{(-)}\right| \mathrm{V}_{(\mathrm{x}, \mathrm{y})} \hat{S}_{\mathrm{b}}\left(\mathbf{r}_{\mathrm{x}}\right)\right| \chi_{\mathrm{x}}^{(+)}\right\rangle\left.\right|^{2}$

The Trojan Horse formula

Assume factorization $\quad \chi_{\mathrm{a}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}, \mathbf{r}_{\mathrm{x}}\right)=\chi_{\mathrm{b}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}\right) \chi_{\mathrm{x}}^{(+)}\left(\mathbf{r}_{\mathrm{x}}\right)$
and define $\quad \hat{\mathrm{S}}_{\mathrm{b}}\left(\mathbf{r}_{\mathrm{x}}\right)=\left\langle\chi_{\left(\mathrm{b}, \mathbf{k}_{\mathrm{b}}\right)}^{(-)}\left(\mathbf{r}_{\mathrm{b}}\right) \phi_{\mathrm{a}}\left(\mathbf{r}_{\mathrm{x}}, \mathbf{r}_{\mathrm{b}}\right) \mid \chi_{\left(\mathrm{b}, \mathbf{k}_{\mathrm{b}}\right)}^{(+)}\left(\mathbf{r}_{\mathrm{b}}\right)\right\rangle$
$\left.\Rightarrow \frac{\mathrm{d}^{2} \sigma_{\mathrm{b}}^{\mathrm{INEB},(\mathrm{D})}}{\mathrm{dE}_{\mathrm{b}} \mathrm{d} \Omega_{\mathrm{b}}}=\rho_{\mathrm{b}}\left(\mathrm{E}_{\mathrm{b}}\right) \frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{E}_{\mathrm{x}}}\left|\left\langle\chi_{\mathrm{y}}^{(-)}\right| \mathrm{V}_{(\mathrm{x}, \mathrm{y})} \hat{S}_{\mathrm{b}}\left(\mathbf{r}_{\mathrm{x}}\right)\right| \chi_{\mathrm{x}}^{(+)}\right\rangle\left.\right|^{2}$

Approximation: maximum survival

$$
\hat{\mathrm{S}}_{\mathrm{b}}\left(\mathbf{r}_{\mathrm{x}}\right) \approx \phi_{\mathrm{a}}\left(\mathbf{r}_{\mathrm{b}}\right)
$$ probability for b

The Trojan Horse formula

Assume factorization $\quad \chi_{\mathrm{a}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}, \mathbf{r}_{\mathrm{x}}\right)=\chi_{\mathrm{b}}^{(+)}\left(\mathbf{r}_{\mathrm{b}}\right) \chi_{\mathrm{x}}^{(+)}\left(\mathbf{r}_{\mathrm{x}}\right)$
and define $\quad \hat{\mathrm{S}}_{\mathrm{b}}\left(\mathbf{r}_{\mathrm{x}}\right)=\left\langle\chi_{\left(\mathrm{b}, \mathbf{k}_{\mathrm{b}}\right)}^{(-)}\left(\mathbf{r}_{\mathrm{b}}\right) \phi_{\mathrm{a}}\left(\mathbf{r}_{\mathrm{x}}, \mathbf{r}_{\mathrm{b}}\right) \mid \chi_{\left(\mathrm{b}, \mathbf{k}_{\mathrm{b}}\right)}^{(+)}\left(\mathbf{r}_{\mathrm{b}}\right)\right\rangle$
$\left.\Rightarrow \frac{d^{2} \sigma_{b}^{\text {INEB },(D)}}{d E_{b} d \Omega_{b}}=\rho_{b}\left(E_{b}\right) \frac{k_{x}}{E_{x}}\left|\left\langle\chi_{y}^{(-)}\right| V_{(x, y)} \hat{S}_{b}\left(\mathbf{r}_{\mathrm{x}}\right)\right| \chi_{\mathrm{x}}^{(+)}\right\rangle\left.\right|^{2}$

Approximation: maximum survival

$$
\hat{\mathrm{S}}_{\mathrm{b}}\left(\mathbf{r}_{\mathrm{x}}\right) \approx \phi_{\mathrm{a}}\left(\mathbf{r}_{\mathrm{b}}\right)
$$ probability for b

$$
\frac{\mathrm{d}^{2} \sigma_{\mathrm{b}}^{\text {INEB,(D) }}}{\mathrm{dE}_{\mathrm{b}} \mathrm{~d} \Omega_{\mathrm{b}}}=\frac{\mathrm{d}^{2} \sigma_{\mathrm{b}}^{(\mathrm{THM})}}{\mathrm{dE}_{\mathrm{b}} \mathrm{~d} \Omega_{\mathrm{b}}}=\mathrm{K}_{(\mathrm{THM})}\left|\phi\left(\mathbf{k}_{\mathrm{b}}\right)\right|^{2} \sigma_{(\mathrm{x}+\mathrm{A} \rightarrow \mathrm{y}+\mathrm{B})}
$$

Conclusions

Conclusions

- The inclusive breakup formalism contains all information about the two-body clustered projectile reacting with a target.

Conclusions

- The inclusive breakup formalism contains all information about the two-body clustered projectile reacting with a target.
- The Trojan Horse quasi-free cross section for the $x+A$ subsystem can be obtained under approximations:

Conclusions

- The inclusive breakup formalism contains all information about the two-body clustered projectile reacting with a target.
- The Trojan Horse quasi-free cross section for the $x+A$ subsystem can be obtained under approximations:
- No antisymmetrization

Conclusions

- The inclusive breakup formalism contains all information about the two-body clustered projectile reacting with a target.
- The Trojan Horse quasi-free cross section for the $x+A$ subsystem can be obtained under approximations:
- No antisymmetrization
- Weak influence of spectator b on $x+A$

Conclusions

- The inclusive breakup formalism contains all information about the two-body clustered projectile reacting with a target.
- The Trojan Horse quasi-free cross section for the $x+A$ subsystem can be obtained under approximations:
- No antisymmetrization
- Weak influence of spectator b on $x+A$
- Factorization of 3-body wavefunctions

Conclusions

- The inclusive breakup formalism contains all information about the two-body clustered projectile reacting with a target.
- The Trojan Horse quasi-free cross section for the $x+A$ subsystem can be obtained under approximations:
- No antisymmetrization
- Weak influence of spectator b on $x+A$
- Factorization of 3-body wavefunctions
- Compound nucleus formation only included as a statistical contribution to potentials and wavefunctions

Conclusions

- The inclusive breakup formalism contains all information about the two-body clustered projectile reacting with a target.
- The Trojan Horse quasi-free cross section for the $x+A$ subsystem can be obtained under approximations:
- No antisymmetrization
- Weak influence of spectator b on $x+A$
- Factorization of 3-body wavefunctions
- Compound nucleus formation only included as a statistical contribution to potentials and wavefunctions
- Peripherality, i.e., maximum survival probability of b

CB, Hussein, Typel, Phys. Lett. B 776, 217 (2018)

Conclusions

- The inclusive breakup formalism contains all information about the two-body clustered projectile reacting with a target.
- The Trojan Horse quasi-free cross section for the $x+A$ subsystem can be obtained under approximations:
- No antisymmetrization
- Weak influence of spectator b on $x+A$
- Factorization of 3-body wavefunctions
- Compound nucleus formation only included as a statistical contribution to potentials and wavefunctions
- Peripherality, i.e., maximum survival probability of b

CB, Hussein, Typel, Phys. Lett. B 776, 217 (2018)

Conclusions

- The inclusive breakup formalism contains all information about the two-body clustered projectile reacting with a target.
- The Trojan Horse quasi-free cross section for the $x+A$ subsystem can be obtained under approximations:
- No antisymmetrization
- Weak influence of spectator b on $x+A$
- Factorization of 3-body wavefunctions
- Compound nucleus formation only included as a statistical contribution to potentials and wavefunctions
- Peripherality, i.e., maximum survival probability of b

CB, Hussein, Typel, Phys. Lett. B 776, 217 (2018)

