Manifestation of a-clustering in Be isotopes via a-knockout reaction

Mengjiao LYU (呂梦蛟 / メンジャオ リュウ)

^AResearch Center for Nuclear Physics (RCNP), Osaka University

in collaboration with ^{A,B} K. Ogata, ^C K. Yoshida and ^D Y. Kanada-En'yo

^BOsaka City University, ^CJapan Atomic Energy Agency ^DKyoto University

DREB2018, Matsue, Japan, Jun. 6, 2018

How to probe the α -cluster ?

The α knockout reaction

- *Well established theory* employing the DWIA framework
- *Peripherality* only the surface region contributes
- Clean

DWIA framework for α -knockout reaction

• The *transition amplitude* of α -knockout reaction

 $T_{K_0K_1K_2} = \langle \chi_{1,K_1}^{(-)}(\mathbf{R}_1)\chi_{2,K_2}^{(-)}(\mathbf{R}_2) \big| t_{p\alpha}(\mathbf{s}) \big| \chi_{0,K_0}^{(+)}(\mathbf{R}_0)\phi_{\alpha}(\mathbf{R}_2) \rangle$

• With the asymptotic momentum approximation [1]

$$\bar{T}_{K_0K_1K_2} = \int d\boldsymbol{R} F_{K_0K_1K_2}(\boldsymbol{R})\phi_{\alpha}(\boldsymbol{R})$$

• where

$$F_{K_0K_1K_2}(\mathbf{R}) = \chi_{1,K_1}^{*(-)}(\mathbf{R}_1)\chi_{2,K_2}^{*(-)}(\mathbf{R}_2)\chi_{0,K_0}^{(+)}(\mathbf{R}_0)e^{-iK_0\cdot\mathbf{R}A_{\alpha}/A_{\alpha}}$$

- $\chi_{1,K_1}^{(-)}, \chi_{2,K_2}^{(-)}$ distorted w. f. in initial channel
- $\chi_{0,K_0}^{(+)}$ distorted w. f. in final channel

[1]K. Yoshida, K. Minomo, and K. Ogata, Phys. Rev. C 94, 044604 (2016).

Triple differential cross section for α -knockout reaction

• The triple *differential cross section (TDX)*

$$\frac{d^{3}\sigma}{dE_{1}d\Omega_{1}d\Omega_{2}} = F_{kin}C_{0}\frac{d\sigma_{p\alpha}}{d\Omega_{p\alpha}}(\theta_{p\alpha}, E_{p\alpha})\left|\bar{T}_{K_{0}K_{1}K_{2}}\right|^{2}$$

• F_{kin} : kinematical factor

$$F_{kin} = J_L \frac{K_1 K_2 E_1 E_2}{\hbar^4 c^4} \left[1 + \frac{E_2}{E_B} + \frac{E_2}{E_B} \frac{(K_1 \cdot K_2)}{K_2^2}\right]$$

• Scattering energy

$$E_{p\alpha} = \frac{\hbar^2 \kappa'^2}{2\mu_{p\alpha}}$$

• **κ**': asympototic *p*α relative momentum

- $C_0 = \frac{E_0}{(\hbar c)^2 K_0} \frac{\hbar^4}{(2\pi)^3 \mu_{p\alpha}^2}$
- J_L : Jacobian

[1]K. Yoshida, K. Minomo, and K. Ogata, Phys. Rev. C 94, 044604 (2016).

THSR description of Be and He

• *THSR wave function* for nuclei composed of α-clusters and valence neutrons [1,2]

$$|\Psi\rangle = \left(C_{\alpha}^{\dagger}\right)^{m} \left(c_{n}^{\dagger}\right)^{n} |\text{vac}\rangle$$

• *α-clusters*

$$C_{\alpha}^{\dagger} = \int d^{3}\boldsymbol{R} \exp\left(-\frac{R_{x}^{2} + R_{y}^{2}}{\beta_{\alpha,xy}^{2}} - \frac{R_{z}^{2}}{\beta_{\alpha,z}^{2}}\right) \int d^{3}\boldsymbol{r}_{1} \cdots d^{3}\boldsymbol{r}_{4}$$
$$\times \psi(\boldsymbol{r}_{1} - \boldsymbol{R}) a_{\sigma 1,\tau 1}^{\dagger}(\boldsymbol{r}_{1}) \cdots \psi(\boldsymbol{r}_{4} - \boldsymbol{R}) a_{\sigma 4,\tau 4}^{\dagger}(\boldsymbol{r}_{4})$$

• valance neutrons

$$c_n^{\dagger} = \int d^3 \mathbf{R}_n \exp\left(-\frac{R_{n,x}^2 + R_{n,y}^2}{\beta_{n,xy}^2} - \frac{R_{n,z}^2}{\beta_{n,z}^2}\right) f(\mathbf{R}_n) \int d^3 \mathbf{r}_n$$
$$\times \psi(\mathbf{r}_n - \mathbf{R}) a_{\sigma n,\tau=\downarrow}^{\dagger}(\mathbf{r}_n)$$

• $f(\mathbf{R}_n)$: factors to adjust neutron w. f. $\phi_n = c_n^{\dagger} |0\rangle$ into *p*-orbits or molecular π -orbit and σ -orbits [1,2]

n, *σ*

Approximation for reduced width amplitude

• The *reduced width amplitude* (*RWA*) of α -cluster

$$y_l(a) \equiv \frac{1}{M} \left\langle \frac{\delta(r-a)}{r^2} Y_{00}(\hat{\boldsymbol{r}}) \phi_{\alpha} \phi_A \phi_{c.m.} | \Phi \right\rangle$$

- is approximated by [1] $|ay(a)| \approx ay^{app}(a) = \frac{1}{\sqrt{2}} \left(\frac{n_B n_a}{n_A \pi b^2} \right)^{\frac{1}{4}} \left\langle \Phi_A \right| \Phi_{BB}^{(0+)} \left(\Phi_B^{(0+)}, \alpha; S = a \right) \right\rangle$
- Φ_A : THSR w. f. of target A
- $\Phi_{BB}^{(0+)}(\Phi_B, \alpha; S = a)$: Brink-Bloch-type w. f. of residual B and α -cluster
- $\Phi_B^{(0+)}$: THSR w. f. of residual B

$\alpha\text{-cluster}$ RWA of ^{10}Be

- physical ¹⁰Be nucleus
 - β_{α} =2.6 fm (optimized) (molecular like)
 - E=-61.4 MeV
 - R_c =2.31 fm (Exp: 2.35 fm)
- artificial ¹⁰Be nucleus
 - β_{α} =1.0 fm (shell-model limit)

• β_{α} =6.0 fm (gas like)

Figure: Reduced width amplitude of ¹⁰Be

Density distribution of ¹⁰Be

- (a): $\beta_{\alpha} = 1.0$ fm (*shell-model limit*)
- (b): $\beta_{\alpha} = 2.6 \text{ fm}$ (*physical, molecular-like*)
- (c): $\beta_{\alpha} = 6.0 \text{ fm} (gas like)$

Kinematics for α -knockout reaction of ^{10,12}Be

- Incident proton
 - E = 250 MeV

- Outgoing proton
 - $E_1 = 180 \text{ MeV}$
 - $(\theta_1, \phi_1) = (60.9^\circ, 0^\circ)$
- Outgoing α
 - θ_2 : variated around 51°
 - φ₂: 180°

Transition matrix density (TMD)

- *TMD*: Transition strength as a function of R
- TMD is defined as $\delta(R)$ where

$$\int dR \delta(R) \propto \frac{d^3 \sigma}{dE_1 d\Omega_1 d\Omega_2}$$

• mostly contributed by the surface region

TDX for the ${}^{10}Be(p,p\alpha)^{6}He$ reaction

Coupling of clustering configurations in ¹²Be

- Coupling of ${}^{4}He + {}^{8}He$, ${}^{10}Be + 2n(\pi^*)$ and ${}^{10}Be + 2n(\sigma)$ configurations
- Breaking of neutron magic number N=8
- *Probing* of α -cluster and clustering configurations in ¹²Be

α -cluster RWA of ¹²Be in three configurations

Transition matrix density (TMD)

TDX for the ${}^{12}Be(p,p\alpha)^{8}He$ reaction

Summary

- Proposed fully microscopic framework for α-knockout reaction by integrating microscopic clustering model into DWIA framework
- Approximation of RWA extracted from the THSR description for ¹⁰Be and three configurations of ¹²Be
- Observables (TDX) predicted for future experiment
- For ¹⁰Be, results compared for the shell-model limit, molecular-like and gas-like states.
- For ¹²Be, results compared for ⁴He+⁸He, ¹⁰Be+2n(π^*) and ¹⁰Be+2n(σ) configurations.
- TDX found to be highly sensitive to the extent of clustering, and also to the cluster/molecular configurations.

Many thanks for all collabrators and

thank you very much for your attention!