Three-body correlations in direct reactions: Example of ⁶Be populated in (p,n) reaction

Vratislav Chudoba

FLNR, JINR Dubna, Russia Silesian University in Opava, Czech Republic

⁶Be

- alpha core + 2 valence protons
- the lightest true 2p emitter
- information on correlations very limited

Introduction

Theory used for data analysis

- combination of PWIA with Hyperspherical harmonics method
- differential cross section in density-matrix formalism

Parametrization of density matrix

three free parameters:

- ratio of 0⁺ and 2⁺ states
- level of 2⁺ alignment
- level of interference between 0⁺ and 2⁺

Invariant mass spectra fitting

contribution of IVSDM not taken into account for MC

ratio of 0⁺ and 2⁺ states fixed

6

3-body internal correlation

2-body vs. 3-body decay

- 2 parameters for 2-body decay (E,Γ)
- 5 additional parameters at given energy for 3-body decay

3-body internal correlation

2-body vs. 3-body decay

- 2 parameters for 2-body decay (E,Γ)
- 5 additional parameters at given energy for 3-body decay

full description of the internal correlations by parameters ε and θ_k

$$\varepsilon = \frac{E_x}{E_x + E_y}$$

$$\cos \theta_k = \frac{\mathbf{k}_x \cdot \mathbf{k}_y}{k_x k_y}$$

Test on ground state

E_τ<1.4 MeV no free parameters!!!

experiment MC simulation theoretical input

Test on ground state

- well working theoretical model
- efficiency taken into account in correct way

Left slope of ground state

Left slope of ground state

*E*_τ in (1.4,1.9) MeV presence of 2⁺

two free parameters remained:

interference of 0⁺ and 2⁺ alignment of 2⁺

 $1.4 < E_{\tau} < 1.9$ MeV; θ_{Be} in (75,90) deg; T-system

2⁺ nonaligned

 $1.4 < E_{\tau} < 1.9$ MeV; θ_{Be} in (75,90) deg; T-system

 $1.4 < E_{\tau} < 1.9$ MeV; θ_{Be} in (75,90) deg; T-system

External correlations $1.4 < E_{\tau} < 1.9$ MeV; $\theta_{_{Be}}$ in (75,90) deg; constructive incoherent destructive 2+ aligned Counts θ_{α} (rad) θ_{α} (rad) θ_{α} (rad) 2⁺ non-aligned **%** θ_{α} (rad) θ_{α} (rad) θ_{α} (rad)

Right slope of 2⁺

Right slope of 2⁺: ε_{τ} comparison

 $2.5 < E_{\tau} < 3.1 \text{ MeV}; \theta_{Be} \text{ in (75,90) deg; T-system}$

Right slope of 2⁺: θ_{α} comparison $2.5 < E_{\tau} < 3.1 \text{ MeV}; \theta_{Re} \text{ in (75,90) deg};$ constructive incoherent destructive $_{600}$ $\chi^2 = 18.8$ 600[↓] **χ**² = **16.1** $\chi^2 = 19.9$ 2+ aligned Counts θ_{α} (rad) θ_{α} (rad) θ_{α} (rad) 600[↓] **χ**² = **15.7** $600 x^2 = 6.9$ $\chi^2 = 4.2$ 2⁺ non-aligned θ_{α} (rad) θ_{α} (rad) θ_{α} (rad)

Beyond the 2⁺ maximum

Left slope of 2⁺

Best fits: $1.9 < E_{\tau} < 2.5$ MeV

Best fits: $2.5 < E_{\tau} < 3.1 \text{ MeV}$

Conclusion

- IM spectrum populated in $^{6}Li(p,n)^{6}Be$ analyzed for $E_{\tau} < 3 \text{ MeV}$
- internal structure of 3-body continuum with overlapping states may be revealed in correlations
- method may become a general tool for determination of fine effects of reaction mechanism

Conclusion

- IM spectrum populated in $^{6}Li(p,n)^{6}Be$ analyzed for $E_{\tau} < 3 \text{ MeV}$
- internal structure of 3-body continuum with overlapping states may be revealed in correlations
- method may become a general tool for determination of fine effects of reaction mechanism
 Thank for

attention

Appendix: Experiment

Annular telescope T2

3-particle (α and 2p) coincidences

Appendix: Reaction and decay kinematics

Appendix: Correlations

Appendix: Theoretical model

α1

r₁₂

۲_{2r}

Schroedinger equation with source

$$(\hat{H}_3 - E_T)\Psi_{^6\text{Be}}^{JM(+)} = \hat{\mathcal{O}}_{\mu'\mu}\Psi_{^6\text{Li}}^{J^{(\text{in})}M^{(\text{in})}}$$

 information on population of 6Be from 6Li transition operator

$$\hat{\mathcal{O}}_{\mu'\mu} = \sum_{i=1,2} \sum_{lm} f_l(q, r_i) Y_{lm}(\hat{r}_i) Y_{lm}^*(\hat{q}) \ \tau_-^{(i)} \sum_{\nu} (-1)^{\nu} \sigma_{\nu}^{(i)} C_{\frac{1}{2}\mu'\nu}^{\frac{1}{2}\mu'}$$

 analytical form of transition operator thanks to the choice of the N-N potential used in PWIA

$$\hat{V}_{ir}(r_{ir}) = (\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_r)(\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_r) V_0 \exp\left[-\left((\mathbf{r} + \mathbf{r}_i)^2 / r_0^2\right)\right]$$

Appendix: Right slope of 2+

 E_{τ} in (2.5,3.1) MeV

strong contribution of 0+

Appendix: Best fits

E (MeV)	(45,60) °	(60,75) °	(75,90) °	(90,120) °
1.4 - 1.9	AL; 135 deg	AL + 50% NA; 180 deg	AL; 180 deg	AL + 20% NA; 180 deg
1.9 - 2.5	NA + 10% AL; 135 deg	NA + 10% AL; 180 deg	NA; 180 deg	NA + 10% AL; 90 deg
2.5 - 3.1	NA + 10% AL; 180 deg	NA + 30% AL; 180 deg	NA + 20% AL; 180 deg	NA; 135 deg

Appendix: Dipole modes

resonance vs.

mode

- property of particular nucleus
- its population does not depend on reaction mechanism

- characteristic for specific reaction
- its population is given by reaction mechanism