Direct Measurement of Resonances in 7Be(α,γ)11C With DRAGON

Devin Connolly
Postdoctoral Research Fellow, DRAGON
Direct Reactions with Exotic Beams
Matsue, Japan
5th June 2018
Outline

• Motivation

• Experimental technique

• Analysis and Preliminary results

• Future plans
Heavy Element Nucleosynthesis

• Isotopic abundances of elements heavier than Fe explained by s-process, r-process and p-process nucleosynthesis

• Isotopic abundances of elements heavier than Fe explained by s-process, r-process and p-process nucleosynthesis

• Origin of p-nuclei still not fully understood
Heavy Element Nucleosynthesis

- Isotopic abundances of elements heavier than Fe explained by s-process, r-process and p-process nucleosynthesis
- Origin of p-nuclei still not fully understood
- p- and γ- processes under-predict abundances of several p-nuclei

• Isotopic abundances of elements heavier than Fe explained by s-process, r-process and p-process nucleosynthesis

• Origin of p-nuclei still not fully understood

• p– and γ– processes underpredict abundances of several p–nuclei

• νp– process thought to occur in ejecta of CCSN, probable site of synthesis of p-nuclei
$^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ and the νp-process

- $^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ competes with 3α in breakout from p-p chain
$^7\text{Be}(\alpha,\gamma)^{11}\text{C}$ and the νp-process

- $^7\text{Be}(\alpha,\gamma)^{11}\text{C}$ competes with 3α in breakout from $p-p$ chain

- Recent sensitivity study found that altering $^7\text{Be}(\alpha,\gamma)^{11}\text{C}$ rate significantly alters p-nuclei abundances

$^7\text{Be}(\alpha,\gamma)^{11}\text{C}$ and the νp-process

- $^7\text{Be}(\alpha,\gamma)^{11}\text{C}$ competes with 3α in breakout from p-p chain
- Recent sensitivity study found that altering $^7\text{Be}(\alpha,\gamma)^{11}\text{C}$ rate significantly alters p-nuclei abundances
- $^7\text{Be}(\alpha,\gamma)^{11}\text{C}$ reaction rate poorly known over temperature range of interest (1.5 – 3 GK)

Previous Measurements

<table>
<thead>
<tr>
<th>E_x [MeV]</th>
<th>E_r [MeV]</th>
<th>J^π</th>
<th>Γ_α [eV]</th>
<th>Γ_p [eV]</th>
<th>$\omega\gamma$ [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9003</td>
<td>1.355</td>
<td>$9/2^+$</td>
<td>8 keV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.699(2)2,3</td>
<td>1.154</td>
<td>$5/2^+$</td>
<td>15(1) keV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.654(4)2,3</td>
<td>1.109</td>
<td>$7/2^+$</td>
<td>≤ 5 keV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.420(2)1</td>
<td>0.877</td>
<td>$5/2^-$</td>
<td>12.6(3.8)</td>
<td>3.1(1.3)</td>
<td>3.80</td>
</tr>
<tr>
<td>8.105(17)1</td>
<td>0.560</td>
<td>$3/2^-$</td>
<td>6^{+12}_{-2}</td>
<td>0.350(56)</td>
<td>0.331</td>
</tr>
</tbody>
</table>

Experiment

ISAC-I

- 50 μA 500 MeV p^+ from main cyclotron
- Ta target
- $A = 7$ extracted from target using TRIUMF Resonant Ionization Laser Ion Source (TRILIS)
- Transported to high resolution mass separator
- Reaccelerated to 454 A keV by ISAC-I accelerators (RFQ & DTL)
- Delivered to DRAGON gas target
- $I_{\text{avg}} = 2.0(1.4) \times 10^7$ pps
• 3 main parts:
 • Head
 • Differentially-pumped windowless gas target
 • High geometric efficiency BGO γ-ray array
 • Detects prompt γ emissions of excited recoil nuclei
 • Body
 • High-suppression electromagnetic mass separator
 • 2 stages of separation (MD, ED, MD, ED)
 • Tail
 • Suite of heavy ion detectors
 • Dual MCP for TOF
 • DSSSD, IC, or Hybrid for E-loss / deposition
• Performed $^6,^7\text{Li}(\alpha,\gamma)^{10,11}\text{B}$ yield measurements for background / acceptance characterization

• Performed Yield measurements of $E_r = 1.155\ \text{MeV}$ and $E_r = 1.109\ \text{MeV}$ resonances
Analysis

- $E_r = 1.155$ MeV
- Candidate recoils identified via TOF between coincident γ and heavy ion signals
- $E_r = 1.155$ MeV
- Candidate recoils identified via TOF between coincident γ and heavy ion signals
- Gating on TRILIS signal provides further discrimination of $^{11}\text{C} / ^{11}\text{B}$
• $E_r = 1.155$ MeV
• Candidate recoils identified via TOF between coincident γ and heavy ion signals
• Gating on TRILIS signal provides further discrimination of 11C / 11B
• 8 candidate 11C recoils pass gates on Separator TOF, TRILIS, E_{BGO}, E_{DSSSD}
\(\frac{(m_{7Be} - m_{7Li})}{m_{7Be}} = 0.00013 \rightarrow \text{expect significant } ^7\text{Li contamination} \)

- Average \(^7\text{Li} / ^7\text{Be} \) ratio = 520:1
- Observed total of 172 candidate recoil events (signal + bg region)
- Given detection efficiencies, number or signal / bg events and ratio of signal / bg regions yields an upper limit\(^1\) of 15 detected \(^{11}\text{C} \) recoils (given detection efficiencies and ratio of signal / bg regions)

\[
Y = \frac{N_{rec}}{N_b \eta_{DRA}} = 6.39 \times 10^{-11}
\]

→ Preliminary \((1 - \sigma) \) upper limit \((E_r = 1.155 \text{ MeV resonance})\)

\[
\omega \gamma = \frac{2 Y_\infty}{\lambda_r^2} \frac{m_{7Be}}{m_{7Be} + m_\alpha} \epsilon_{lab} = 0.64 \text{ eV}
\]

\(^1\)W. A. Rolke et al., Nucl. Instrum. Meth. A 551, 493 (2005)
Further analysis of current data

→ upper limits on $E_r = 1.155$ MeV and $E_r = 1.109$ MeV resonances

Post-experiment 7Be beam development on UC$_x$ target yielded intensities as high as 2.4×10^8 pps

• Suggests use of pure SiC target could yield intensities $\sim 10^9$ pps
• Possible to post-strip in HEBT beamline at these intensities
 → pure 7Be on target by selecting $q = 4$
• Reperform previous measurements of $E_r = 1.109$ MeV and $E_r = 1.155$ MeV resonances with pure 7Be on target
• Probe possible existence of $E_r = 1.355$ MeV resonance
Summary

• $^7\text{Be}(\alpha,\gamma)^{11}\text{C}$ reaction rate impacts isotopic abundances of ρ-nuclei in ν_p-process nucleosynthesis

• 2 resonances in $^7\text{Be}(\alpha,\gamma)^{11}\text{C}$ were directly measured with DRAGON $E_r = 1.155$ MeV and $E_r = 1.109$ MeV
 • Preliminary $(1 - \sigma)$ upper limit 0.64 eV ($E_r = 1.155$ MeV resonance)

• Beam Development suggests use of pure SiC target could yield a background-free measurement
Thank You!

A. Psaltis1, D. Connolly2, A. A. Chen1, B. Davids2,3, N. Esker2, G. Gilardy4, R. Giri5, U. Greife6, W. Huang7, D. A. Hutcheon2, J. Karpesky6, A. Lennarz2, J. Liang1, M. Lovely6, S. Paneru5, C. Ruiz2,9, G. Tenkila8, M. Williams2,10

1McMaster University
2TRIUMF
3Simon Fraser University
4University of Notre Dame
5Ohio University
6Colorado School of Mines
7University of Northern British Columbia
8University of British Columbia
9University of Victoria
10University of York