DREB2018 – 10th International Conference on Direct Reactions with Exotic Beams

Contribution ID: 6

Type: Oral contribution

Shape coexistence of neutron-rich ^{69,71,73}Co isotopes

Monday, 4 June 2018 11:03 (18 minutes)

Observation of high 2^+ excitation energy in ⁶⁸Ni (Z = 28, N = 40) had drawn a clear signature of double magic character in this nucleus [1]. And while ⁶⁸Ni can be described as spherical isotope, 2^+ excitation energy of ⁶⁶Fe drops significantly [2], indicating deformed shape of ⁶⁶Fe. ⁶⁷Co isotope is in between ⁶⁸Ni and ⁶⁶Fe nuclei and found to share coexistence of both spherical and deformed structures in low-lying excited states [3]. This effect can be described as superposition of a proton $f_{7/2}$ hole coupled to neighbouring spherical even-even nickel isotope and a prolate proton-intruder state coupled to the ⁶⁶Fe isotope [4]. Discovery of shape coexistence in ⁶⁷Co rose an interesting question about further shape evolution in Co nuclei, namely ^{69,71,73}Co and shell transformation from N = 40 to N = 50.

In-beam gamma experiment was performed at Radioactive Isotope Beam Factory, RIKEN Nishina centre, Japan. Secondary beam of 70,72,74 Ni and 72 Co isotopes at energy of 260 MeV/µ bombarded liquid hydrogen target (MINOS) to produce 69,71,73 Co nuclei via (p, 2p) and (p, pn) reactions. DALI2 NaI(Tl) detector array was used to measure γ -rays. Energy levels were studied using γ - γ coincidence technique. Systematics of excited states of cobalt isotopes was compared with Lenzi-Nowacki-Poves-Sieja (LNPS) model [5] of nuclear interaction using fpgd model space. Experimental results of 69,71 Co spectrums show that isotopes share shape coexistence, as spherical structure coexists with deformed band. In case of 73 Co nucleus, due to the lack of statistics only spherical band is confirmed.

In this talk the evolution of shell structure in ^{69,71,73}Co isotopes will be discussed together with physics behind the shape coexistence in neutron-rich Co nuclei.

References.

- 1. R. Broda, B. Fornal, W. Krolas, and T. Pawkat, Phys. Rev. Lett. 74, 868 (1995);
- 2. S. Lunardi, S. M. Lenzi, F. Della Vedova, Phys. Rev. C, 76, 034303 (2007);
- 3. F. Recchia et al., Phys. Rev. C 85, 064305 (2012);
- 4. D. Pauwels et al., Phys. Rev. C 78, 041307(R) 2008;
- 5. S. M. Lenzi, et. al., Phys. Rev. C 82, 054301 (2010).

Primary authors: Dr LEE, Jenny (The University of Hong Kong); Mr LOKOTKO, Taras (The University of Hong Kong)

Co-authors: Dr OBERTELLI, Alexandre (TU Darmstadt); Dr POVES, Alfredo (Departmento de Fiica Teorica and IFT-UAM/CSIC, Universidad Aut'onoma de Madrid); Dr NOWACKI, Frédéric (Institut de Recherches Subatomiques (IN2P3-ULP) F 67037 Strasbourg Cedex 2, France); Dr DOORNENBAL, Pieter (RIKEN); Dr LEBLOND, Sylvain (Laboratoire de Physique Corpusculaire de Caen (LPC Caen))

Presenter: Mr LOKOTKO, Taras (The University of Hong Kong)

Session Classification: Session 2