2018 DREB Symposium

The structure of ${ }^{19} \mathrm{Ne}$ with a radioactive ${ }^{15} \mathrm{O}$ beam

Ewha Womans University
Dahee Kim

Motivation

- ${ }^{18} \mathrm{~F}$ nucleosynthesis in the classical nova

Previous study

- Interference effect
- Several resonances near the proton threshold ($\mathrm{E}_{\mathrm{x}}=6.411$ MeV) mainly affect the ${ }^{18} \mathrm{~F}(\mathrm{p}, \alpha)^{15} \mathrm{O}$ reaction rate in $\mathrm{T}_{9}=$ 0.04 ~ 0.4. These states were well investigated by many studies.
- However, the 3/2+
subthreshold states and above the proton threshold states were interference each others, and it affect the reaction rate between $\mathrm{T}_{9}=0.04 \sim 0.4$.

$E_{r}(\mathrm{keV})$	J^{π}	$\Gamma_{p}(\mathrm{keV})$	$\Gamma_{\alpha}(\mathrm{keV})$	Ref.
8	$3 / 2^{+}$	2.2×10^{-37}	0.5	$[10]$
26	$1 / 2^{-}$	1.1×10^{-20}	220.0	$[10]$
38	$3 / 2^{+}$	4.0×10^{-15}	4.0	$[10]$
287	$5 / 2^{+}$	1.2×10^{-5}	1.2	$[10]$
330	$3 / 2^{-}$	2.22×10^{-3}	2.7	$[11]$
450	$7 / 2^{-}$	1.6×10^{-5}	3.1	$[12]$
664.7	$3 / 2^{+}$	15.2	24.0	$[8]$
827	$3 / 2^{+}$	0.35	6.0	$[12]$
842	$1 / 2^{+}$	0.2	23.0	$[12]$
1009	$7 / 2^{+}$	27.0	71.0	$[12]$
1089	$5 / 2^{+}$	1.25	0.24	$[12]$
1122	$5 / 2^{-}$	10.0	21.0	$[12]$

Previous study
 - Missing state

C.D. Nesaraja et al.
${ }^{19} \mathrm{Ne}$ and ${ }^{19} \mathrm{~F}$ mirror states

- Due to the insufficient of experimental results in ${ }^{19} \mathrm{Ne}$, important resonance parameters in ${ }^{19} \mathrm{Ne}$ were extracted from the mirror nuclei ${ }^{19} \mathrm{~F}$.
- The $\mathrm{E}_{\mathrm{x}}=7.054 \mathrm{MeV}$ state is assumed that it may affect the ${ }^{18} \mathrm{~F}(\mathrm{p}, \alpha)^{15} \mathrm{O}$ reaction rate. However, it has not been measured yet.

Previous study

- Alpha cluster states

Otani et al. (2016)
Theorical calculation on excitation energy of ${ }^{19} \mathrm{Ne}$

D. Torresi et al. (2017)
${ }^{15} \mathrm{O}+$ alpha Excitation function fitting resul $\mathrm{t}\left(\theta_{\text {c.m. }}=180^{\circ}\right)$ Fitting result used R-matri x code (SAMMY)

Purpose

- To study the ${ }^{18} \mathrm{~F}(\mathrm{p}, \alpha)^{15} \mathrm{O}$ reaction rate - Affects the abundance calculation model of ${ }^{18} \mathrm{~F}$ in the classical nova

$$
{ }^{15} \mathrm{O}+\alpha \rightarrow{ }^{19} \mathrm{Ne}^{*}
$$

- Find accurate resonance parameters of ${ }^{19} \mathrm{Ne}$ near the proton threshold

- To investigate the structure of ${ }^{19} \mathrm{Ne} \&{ }^{19} \mathrm{~F}$ in a wide energy range

Experimental set-up

Reaction reconstruction

- Reaction reconstruction

$$
\cos \theta=\vec{V}_{b e a m} \cdot \vec{V}_{\alpha}
$$

\rightarrow The reaction point depends on the detected α particle energy, α position, the beam direction, and energy loss in the target.

Reaction reproduction

- Differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{Y M\left({ }^{4} H e\right)}{N_{\text {beam }} N_{A} T_{e f f} \Delta \Omega}
$$

$$
\begin{aligned}
& \mathrm{Y}: \text { yield (\#/s) } \\
& \mathrm{M}\left({ }^{4} \mathrm{He}\right): 4.003 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Nbeam : number of ${ }^{15} \mathrm{O}$ beam particles
N_{A} : Avogardro number(6.02*1023\#)
Teff : Effective thickness ($\mathrm{g} / \mathrm{cm}^{2}$)
$\Delta \Omega$: solid angle (sr)

Data analysis

- Background reduction

${ }^{15} \mathrm{O}+\alpha$ elastic scattering

${ }^{15} \mathrm{O}+$ argon run

Result

- Cross section

The excitation function for ${ }^{19} \mathrm{Ne}$

The excitation function for ${ }^{19} \mathrm{~F}$

Result

- Cross section

The excitation function for ${ }^{19} \mathrm{Ne}$

The excitation function for ${ }^{19} \mathrm{~F}$

Result

- The obtained ${ }^{19} \mathrm{~F}$ resonance parameters

Table 3.2. Summary of ${ }^{19} \mathrm{~F}$ resonance parameters compared with previous studies.

[^0]
Discussion $\left({ }^{19} \mathrm{~F}\right)$

- We successfully reproduce the previous result of ${ }^{19} \mathrm{~F}$.
- The Ex = 7.114 MeV state J ${ }^{\pi}$ could be assigned with 7/2+ and $5 / 2+$. We obtained the best fit with $5 / 2+$, and the $J^{\pi}=3 / 2+$ was ruled out.
- The Ex $=7.353 \mathrm{MeV}$ state spin assignment was changed from 7/2+ to 5/2+.
- The Ex $=7.56$ and 7.58 MeV states were newly determined the alpha width.
- The Ex $=7.64 \mathrm{MeV}$ state can be a newly found state in ${ }^{19} \mathrm{~F}$ because we could not find the corresponded $J \Pi$ and Γ_{α} in the previous results.

Result

- The obtained ${ }^{19} \mathrm{Ne}$ resonance parameters

Table 3.3. Summary of ${ }^{19} \mathrm{Ne}$ resonance parameters compared with previous studies.

Previous study					This work		
$\mathrm{E}_{x}{ }^{a}(\mathrm{MeV} \pm \mathrm{keV})$	$\mathrm{E}_{\gamma}{ }^{\text {a }}$ (keV)	$\Gamma_{\alpha}(\mathrm{keV})$	J^{π}	Ref.	$\mathrm{E}_{x}(\mathrm{MeV})$	$\Gamma_{\alpha}(\mathrm{keV})$	J^{π}
6.437	26 ± 9	216 ± 19	$\frac{1}{2}^{-}$	[26, 49]			
6.939	528 ± 309	99 ± 69	$\frac{1}{2}{ }^{-}$	[51]	6.94	138	$\frac{1}{2}^{-}$
(7.054)	643 ± 30	29 ± 25	$\left(\frac{5}{2}^{+}, \frac{7}{2}^{+}\right)$	[15, 51]	7.03	20	$\frac{2}{2}$
7.076	664.7 ± 16	23.8 ± 1.2	$\frac{3}{2}^{+}$	$[4,10,14,15,18,19,21,22,23]$	7.11	38	$\frac{3}{2}{ }^{\text {t }}$
7.326	915 ± 11	46 ± 40	$\frac{1}{2}{ }^{+}$	[14, 42, 49]	7.24	38	$\left(\frac{5}{2}^{+}\right)$
7.420	1009 ± 14	71 ± 11	$\left(\frac{7}{2}^{+}\right)$	[15, 23]	7.35	72	$\frac{7}{2}+$
7.531	1120 ± 11	21 ± 11	$\frac{5}{2}^{-}$	[4, 23, 49]	7.35	25	$\frac{5}{2}^{-}$
7.608	1197 ± 11	43 ± 15	$\frac{3}{2}^{+}$	$[4,51]$	- 7.49	46	$\left(3^{-}{ }^{-}\right.$
7.644	1233 ± 12	16 ± 6	$\left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right)$	[4, 22, 51]	- 7.49	46	(2)
7.758	1347 ± 5	5 ± 2	$\frac{3}{2}^{+}$	[22]	7.78	308	$\left(\frac{5}{2}^{-}\right)$

[^1]
Discussion $\left({ }^{19} \mathrm{Ne}\right)$

- The 7.076 MeV state was identified and assigned the J^{π} with $3 / 2+$.
- The strong peak was found at $\mathrm{E}_{\mathrm{x}} \sim 7.3 \mathrm{MeV}$ which may consists with four resonances , Ex = 7.326, 7.420, 7.531, and 7.644 MeV .
- The 7.420 MeV state was ruled out for the ${ }^{18} \mathrm{~F}(p, \alpha)^{19} \mathrm{Ne}$ reaction rate calculation due to the weak evidence. However, we found with a large alpha width so we suggest the 7.420 MeV state should be considered to the calculation.

Result

- Mirror states

This diagram shows the presumed mirror states using our analysis results.

- The mirror state of 7.076 MeV state in ${ }^{19} \mathrm{Ne}$ is still missing.
- The missing state at $\mathrm{Ex}=7.054 \mathrm{MeV}$ was measured in the present experiment. This state can be connected to $\mathrm{Ex}=7.114 \mathrm{MeV}$ state in ${ }^{19} \mathrm{~F}$.
- The mirror state of $E_{x}=7.56 \mathrm{MeV}$ in ${ }^{19} \mathrm{~F}$ was found at $\mathrm{E}_{\mathrm{x}}=7.420 \mathrm{MeV}$ in ${ }^{19} \mathrm{Ne}$.
- For the $E_{x}=7.608 \mathrm{MeV}$ state, which may be a new state in ${ }^{19} \mathrm{Ne}$, we found the candidate of a mirror state at $\mathrm{E}_{\mathrm{x}}=7.64 \mathrm{MeV}$.

Result :
 ${ }^{18} \mathrm{~F}(\mathrm{p}, \mathrm{\alpha})^{15} \mathrm{O}$ reaction rate

- The ${ }^{18} F(p, \alpha){ }^{15} \mathrm{O}$ reaction rate was calculated using our results.
- The $E_{x}=7.076 \mathrm{MeV}$ state is still dominant in the reaction rate.
- We found newly determined E_{x} $=7.420$ and 7.326 MeV states are also affect the ${ }^{18} \mathrm{~F}(\mathrm{p}, \alpha)^{15} \mathrm{O}$ reaction rate

Conclusions

- Experimental data for ${ }^{19} \mathrm{~F}$, which is the mirror nuclei of ${ }^{19} \mathrm{Ne}$, were also taken for the analysis of ${ }^{19} \mathrm{Ne}$ data
- More than 8 peaks in ${ }^{19} \mathrm{Ne}$ were shown in silicon telescopes with good energy resolution ($\mathrm{E}_{\mathrm{c} . \mathrm{m} .}=40$ keV).
- The ${ }^{18} \mathrm{~F}(p, \alpha)^{15} \mathrm{O}$ reaction rate was calculated using our data, and we found newly observed states affect to the reaction rate.
- Alpha cluster structures were shown in ${ }^{19} \mathrm{Ne}$ and ${ }^{19} \mathrm{~F}$. Further study is going on.

Thank you for your attention

Motivation

- ${ }^{18}$ F nucleosynthesis in classical novae

Motivation

- Properties of ${ }^{18} \mathrm{~F}$

Table 1.1. List of γ-ray emission types for CO and ONe nova [7].

Nova type	Isotope	Mean lifetime	Main emission type
CO \& ONe	${ }^{13} \mathrm{~N}$	9.965 min	511 keV line \& continuum
CO \& ONe	${ }^{18} \mathrm{~F}$	109.77 min	511 keV line \& continuum
CO	${ }^{7} \mathrm{Be}$	77 days	478 keV line
ONe	${ }^{22} \mathrm{Na}$	2.6018 yr	1275 keV line
ONe	${ }^{26} \mathrm{Al}$	$10^{6} \mathrm{yr}$	1809 keV line

Contents

I. Introduction

1. Motivation
2. Purpose
3. Theoretical overview
II. The ${ }^{15} \mathrm{O}+\alpha$ experiment
4. Experimental setup
5. Production of RI beam
6. The target system

III. Data analysis

1. Particle Identification
2. Reconstruction of the reaction
3. Background reduction
4. Differential cross-section
5. Error propagation
IV. Results
6. ${ }^{15} \mathrm{~N}+\alpha$ scattering experiment
7. ${ }^{15} \mathrm{O}+\alpha$ scattering experiment

V. Conclusions

Experiment

- Thick target method in inverse kinematics (TTIK)

Uncertainty

- Error propagation

$$
\delta\left(\frac{d \sigma}{d \Omega}\right)=\frac{d \sigma}{d \Omega} \times \sqrt{\left(\frac{\delta Y}{Y}\right)^{2}+\left(\frac{\delta \Delta \Omega}{\Delta \Omega}\right)^{2}}
$$

Table 2.4. Uncertainties for the ${ }^{15} \mathrm{O}+\alpha$ elastic scattering run.

	Factor	Uncertainty	Reference
	Beam broadening	$\sim 55 \mathrm{keV}$	Section II.E.3
$\mathrm{E}_{\text {c.m. }}$ uncertainty	Detector resolution	$30-40 \mathrm{keV}$	Table 2.3
	SRIM calculation	$3-40 \mathrm{keV}$	Section II.E.2
	Total	$\sim 135 \mathrm{keV}$	
Cross-section uncertainty	Yield estimation	$\sim<1 \%$	Section II.E.3
	Solid angle calculation	$\sim 10 \%$	Section II.E.5

Theoretical overview

- Reaction rate \& Gamow peak

For the narrow resonance, the stellar reaction rate per particle pair

$$
<\sigma v>=\left(\frac{8}{\pi \mu}\right)^{1 / 2} \frac{1}{(k T)^{3 / 2}} S\left(E_{0}\right) \int_{0}^{\infty} \exp \left(-\frac{E}{k T}-\frac{b}{E^{1 / 2}}\right) d E .
$$

Gamow peak (E_{0})
$E_{0}=\left(\frac{b k T}{2}\right)^{2 / 3}=0.1220\left(Z_{1}{ }^{2} Z_{2}{ }^{2} \mu T_{9}{ }^{2}\right)^{1 / 3} \mathrm{MeV}$
Effective range of Gamow peak (E_{0})
$\Delta E_{0}=\frac{4}{3^{1 / 2}}\left(E_{0} k T\right)^{1 / 2}=0.2368\left(Z_{1}{ }^{2} Z_{2}{ }^{2} \mu T_{9}{ }^{5}\right)^{1 / 6} \mathrm{MeV}$
\rightarrow The energy range of the reaction rate depends on the stellar temperature.

Theoretical overview

- Reaction rate \& Gamow peak

For the ${ }^{18} \mathrm{~F}(p, \alpha)^{15} \mathrm{O}$ reaction, the Gamow window is

Theoretical overview

- Narrow resonance

For the total width (Γ) is smaller than the resonance energy $\left(E_{R}\right)$, the cross section can be changed for an isolated and single narrow resonance (Breit-Wigner formula).

The reaction rate can be expressed as

$$
<\sigma v>=\left(\frac{8}{\pi \mu}\right)^{1 / 2} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} E \sigma_{B W}(E) \exp \left(-\frac{E}{k T}\right) d E .
$$

For $E \sim E_{R}$,

$$
<\sigma v>=\left(\frac{2 \pi}{\mu k T}\right)^{3 / 2} \hbar^{2}(\omega \gamma)_{R} \exp \left(-\frac{E}{k T}\right)
$$

where,

$$
(\omega \gamma)_{R}=\frac{2 J+1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \frac{\Gamma_{a} \Gamma_{b}}{\Gamma} .
$$

\rightarrow For this reason, the resonance parameters $J \pi, \Gamma_{\alpha}$, and Γ_{p} are important to estimate the reaction rate

Experiment
 - Error propagation

Beam broadening ~300 keV

Table 2.3. Energy resolution of Telescopes

$\mathrm{E}_{\alpha}(\mathrm{MeV})$	Telescope \#1 (keV)	Telescope \#2 (keV)
3.148	35	42
5.462	34	33
5.771	34	35
10	90	84
15	74	79
20	116	95

Silicon telescopes resolution

人 Calibration using run \#148

Channel vs PSD2 telescope

$\operatorname{strp} 11$

strp 13

Strp 15

α Calibration with run \#147

Solid angle concept

For θ c.m. $=165.5^{\circ} \sim 173.5^{\circ}$

Theoretical overview

- Stellar reaction rate

Average of stellar reaction rate per particle pair
$\begin{aligned}<\sigma v> & =\int_{0}^{\infty} \phi(v) \sigma(v) v d v \\ & =\left(\frac{8}{\pi \mu}\right)^{1 / 2} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} E \sigma(E) \exp \left(-\frac{E}{k T}\right) d E\end{aligned}$
$\phi(v)=$ gas velocity which follows Maxwell-Boltzmann distribution
Solving a shorodinger equation for Coulomb potential :
$\sigma(E)=\frac{1}{E} \exp (-2 \pi \eta) S(E)$
$S(E)$: Astrophysical factor , η : Sommerfeld parameter
Final stellar reaction rate at given temperature T:
$<\sigma v>=\left(\frac{8}{\pi \mu}\right)^{1 / 2} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} S(E) \exp \left(-\frac{E}{k T}-\frac{b}{E^{1 / 2}}\right) d E$

HR diagram

 Supernova observed just after explosion

13th February 2017 by Maarten Rikken

The observation was early enough to determine for the first time what happens in the early stages of a

SN2013fs

Type-II Supernova

Palomar Transient Factory

Motivation

|hotivation

			$\begin{gathered} 18 \mathrm{Na} \\ 1.3 \mathrm{E}-21 \mathrm{~S} \\ \mathrm{P}: 100.00 \% \text { 8 } \end{gathered}$	$\begin{gathered} 19 \mathrm{Na} \\ 640 \mathrm{NS} \\ \mathrm{P} \end{gathered}$	$\begin{gathered} 20 \mathrm{Na} \\ 447.9 \mathrm{Ms} \\ \varepsilon: 100.000 \\ \varepsilon a: 20.10 \% \end{gathered}$	$\begin{aligned} & 21 \mathrm{Na} \\ & 22.49 \mathrm{~S} \\ & \varepsilon: 100.00 \mathrm{~Kb} \end{aligned}$	$\begin{gathered} 22 \mathrm{Na} \\ 2.6018 \mathrm{Y} \\ \text { ع: } 100.000 \mathrm{~B} \end{gathered}$	$\begin{gathered} 23 \mathrm{Na} \\ \text { STABLE } \\ 100 \% \end{gathered}$	$\begin{gathered} 24 \mathrm{Na} \\ 14.997 \mathrm{H} \end{gathered}$ $\beta-: 100.00 \%$
z 10		$\begin{aligned} & \text { 16Ne } \\ & 9 \mathrm{E}-21 \mathrm{~S} \\ & \text { 2P: } 100.00 \% \end{aligned}$	$\begin{gathered} 17 \mathrm{Ne} \\ 109.2 \mathrm{MS} \\ \mathrm{Ep:}^{1} 100.000 \mathrm{z} \\ \mathrm{E}: 100.007 \mathrm{~m} \end{gathered}$	$\begin{aligned} & 18 \mathrm{Ne} \\ & 1.6670 \mathrm{~S} \\ & \text { ع: } 100.00 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 19 \mathrm{Ne} \\ & 17.22 \mathrm{~S} \\ & \text { ع: } 100.00 \mathrm{~Kb} \end{aligned}$	$\begin{gathered} \text { 20Ne } \\ \text { STABLE } \\ 90.48 \% \mathrm{~b} \end{gathered}$	$\begin{gathered} \text { 21Ne } \\ \text { STABLE } \\ 0.27 \% \end{gathered}$	$\begin{gathered} \text { 22Ne } \\ \text { STABLE } \\ 9.25 \% \end{gathered}$	$\begin{gathered} 23 \mathrm{Ne} \\ 37.24 \mathrm{~S} \end{gathered}$ $\beta-: 100.0080$
9	$\begin{gathered} 14 \mathrm{~F} \\ 910 \mathrm{KeV} \\ \mathrm{P} \end{gathered}$	$\begin{gathered} 15 \mathrm{~F} \\ 660 \mathrm{KeV} \\ \mathrm{P}: 100.00 \% \end{gathered}$	$\begin{gathered} 16 \mathrm{~F} \\ 40 \mathrm{KeV} \\ \mathrm{P}: 100.00 \% \end{gathered}$	$\begin{gathered} 17 \mathrm{~F} \\ 64.49 \mathrm{~S} \\ \mathrm{\varepsilon}: 100.00 \% \end{gathered}$	$\begin{gathered} 18 \mathrm{~F} \\ 109.77 \mathrm{M} \\ \mathrm{\varepsilon}: 100.008 \end{gathered}$	$\begin{gathered} 19 \mathrm{~F} \\ \text { STABLE } \\ 100 \% \end{gathered}$	$\begin{gathered} 20 \mathrm{~F} \\ 11.07 \mathrm{~S} \\ \beta-: 100.00 \mathrm{Z} \mathrm{~B} \end{gathered}$	$\begin{gathered} \hline 21 \mathrm{~F} \\ 4.158 \mathrm{~S} \\ \beta-: 100.0080 \end{gathered}$	$\begin{gathered} 22 \mathrm{~F} \\ 4230 \mathrm{MS} \\ \beta-100.00 \mathrm{~B} \\ \beta-\Omega<11.08 \mathrm{~b} \end{gathered}$
8	$\begin{gathered} 130 \\ 8.58 \mathrm{MS} \\ \varepsilon: 100.00 \mathrm{z} \\ \varepsilon \mathrm{~g}: 11.30 \mathrm{~m} \end{gathered}$	$\begin{gathered} 140 \\ 70.620 \mathrm{~s} \\ \mathrm{\varepsilon}: 100.00 \% \end{gathered}$	$\begin{gathered} 150 \\ 122.24 \mathrm{~S} \\ \mathrm{E}: 100.00 \mathrm{~m} \end{gathered}$	$\begin{gathered} 160 \\ \text { STABLE } \\ 99.757 \% 6 \end{gathered}$	$\begin{gathered} 170 \\ \text { STABLE } \\ 0.038 \% \end{gathered}$	$\begin{gathered} 180 \\ \text { STABLE } \\ 0.206 \% \end{gathered}$	$\begin{gathered} 190 \\ 26.88 \mathrm{~S} \\ \beta-: 100.008 \mathrm{~B} \end{gathered}$	$\begin{gathered} 200 \\ 13.51 \mathrm{~S} \\ \beta-: 100.00 \% \end{gathered}$	$\begin{gathered} 210 \\ 3.42 \mathrm{~S} \end{gathered}$ $\beta-: 100.00 \mathrm{z}$
7	$\begin{gathered} 12 \mathrm{~N} \\ 11.000 \mathrm{MS} \\ \varepsilon: 100.00 \% \end{gathered}$	$\begin{gathered} 13 \mathrm{~N} \\ 9.965 \mathrm{M} \\ \varepsilon: 100.00 \mathrm{~F} \end{gathered}$	$\begin{gathered} 14 \mathrm{~N} \\ \text { STABLE } \\ 99.63 \end{gathered}$	$\begin{gathered} \text { 15N } \\ \text { STABLE } \\ 0.364 \% \end{gathered}$	$\begin{gathered} 16 \mathrm{~N} \\ 7.13 \mathrm{~S} \\ \beta \cdot 100.00 \% \\ \beta \cdot \alpha: 1.2 \mathrm{E} \cdot 3 \% \end{gathered}$	$\begin{gathered} 17 \mathrm{~N} \\ 4171 \mathrm{MS} \\ \beta-100.00 \% \\ \beta-n: 95.10 \% \end{gathered}$	$\begin{gathered} 18 \mathrm{~N} \\ 619 \mathrm{MS} \\ \beta-100.00 \mathrm{z} \\ \beta \cdot \alpha: 12.20 \mathrm{~m} \end{gathered}$	$\begin{gathered} 19 \mathrm{~N} \\ 336 \mathrm{MS} \\ \beta-: 100.00 \% \\ \beta-n: 41.80 \% \end{gathered}$	$\begin{gathered} 20 \mathrm{~N} \\ 136 \mathrm{MS} \\ \beta-100.00 \% \\ \beta-n: 42.90 \% \end{gathered}$
	5	6	7	8	9	10	11	12	N

|hotivation

Analysis - psd1 mapping

\section*{Experiment
 TOF $=T(P P A C b)-T(P P A C a)$

Analysis

Alpha particle sorting

TOF $=T($ PPACb $)-T(P S D 1 b)$

1. Separate ${ }^{15} \mathrm{O}$ beam from produced particles
2. Identify alpha particle from dE-E graph
3. Sort alpha particle from E-TDC graph

α Calibration using run \#148 \& \#149

Experiment

nalysis

300 mm

$\cos \theta_{l a b}$
$=U b x \times U a x+U_{b y} \times U a y+U b z+U a z$
$E_{\alpha}=\frac{E_{\text {beam }} \times m_{\text {target }} \times m_{\text {beam }_{\times}} 4 \cos ^{2} \theta_{\text {lab }}}{\left(m_{\text {target }}+\text { mbeam }\right)^{2}}$
$E_{\alpha f}-E \exp <10 \mathrm{keV}$

R-Matrix(scattering theory)

Cross section :

$$
W=P^{1 / 2}(I-R L)^{-1}\left(I-R L^{*}\right) P^{-1 / 2}
$$

$L=(S-B)+i P$

- \quad : shift factor
- B : arbitrary boundary constant
- P\&S : function of energy (depend orbital angular momentum I and channel radius
a_{c})

$$
R_{c c^{\prime}}=\sum_{i} \frac{\gamma_{\lambda_{c}} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E} \delta_{J J}
$$

General R-matrix term

Modified with Reich Moore approximation in SAMMY

$$
R_{c c^{\prime}}=\left[\sum_{i} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E-i \bar{\Gamma}_{\lambda y} / 2}+R_{c}^{e x t} \delta_{c c^{\prime}}\right] \delta_{J J}
$$

R-Matrix(SAMMY code)

```
#prepare parfile
@levels=(
# Ex E_width spingroup #Ex=Ecm+thresholdE
    "7.250 113 2", #select
    "7.449 15 7", #select
    "7.505 64 6", #select
    "7.585 13 14", #select
    "8.244 4 12", #select
```

print INP
"Oxygen15-alpha resonance scattering
150 15.0031 5976500. 30000000.
KEY-WORD PARTICLE-PAir definitions
PRINT ALL INPUT PARAMETERS
chi squared is wanted
differential data are in ascii file
do not suppress any intermediate results
generate odf file automatically
do not solve bayes equations
print debug information
print theoretical values
broadening is not wanted
twenty

Name $=150+a 0$$\mathrm{~Pb}=150$	$\mathrm{Pa}=\mathrm{alpha}$		$\mathrm{Sb}=-0.5$
	$\mathrm{Zb}=8$	$8 \mathrm{Mb}=15.00306$	
Name $=18 \mathrm{~F}+\mathrm{p} 0$	$\mathrm{Pa}=$ proton		
$\mathrm{Pb}=18 \mathrm{~F}$	$\mathrm{Zb}=$	$9 \mathrm{Mb}=18.00090$	$\mathrm{Sb}=1.0$
5.6750 DIFFERENTIAL 1	0.010000		
	ELASTIC	SCATTERING	
	180.0		
	1.0		
11	$0-0.5$	1.0	
$1150+a 0$	0	-0.5	
21	$0 \quad 0.5$	1.0	
$1150+a 8$	1	-0.5	
31	01.5	1.0	
$1150+a 0$	1	-0.5	
41	$0-1.5$	1.0	
$1150+a 0$	2	-0.5	

[^0]: ${ }^{a}$ from Ref. [25]
 ${ }^{b}$ from Ref. [42]
 ${ }^{c}$ from Ref. [24]

[^1]: ${ }^{a}$ from Ref. [51]

