2018 DREB Symposium

The structure of ¹⁹Ne with a radioactive ¹⁵O beam

Ewha Womans University Dahee Kim

Motivation

• ¹⁸F nucleosynthesis in the classical nova

Previous study

K. Y. Chae et al. Astrophysical S- factor of the ¹⁸F(p,a)¹⁵O reaction

Interference effect

- Several resonances near the proton threshold (E_x = 6.411 MeV) mainly affect the ¹⁸F(p,α)¹⁵O reaction rate in T₉ = 0.04 ~ 0.4. These states were well investigated by many studies.
- However, the 3/2+subthreshold states and above the proton threshold states were interference each others, and it affect the reaction rate between T₉ = 0.04 ~ 0.4.

E_r (keV)	J^{π}	Γ_p (keV)	Γ_{α} (keV)	Ref.
8	3/2+	2.2×10^{-37}	0.5	[10]
26	1/2-	1.1×10^{-20}	220.0	[10]
38	3/2+	4.0×10^{-15}	4.0	[10]
287	5/2+	1.2×10^{-5}	1.2	[10]
330	3/2-	2.22×10^{-3}	2.7	[11]
450	7/2-	1.6×10^{-5}	3.1	[12]
664.7	3/2+	15.2	24.0	[8]
827	3/2+	0.35	6.0	[12]
842	$1/2^+$	0.2	23.0	[12]
1009	7/2+	27.0	71.0	[12]
1089	5/2+	1.25	0.24	[12]
1122	5/2-	10.0	21.0	[12]

Previous study

Missing state

C.D. Nesaraja et al. ¹⁹Ne and ¹⁹F mirror states

- Due to the insufficient of experimental results in ¹⁹Ne, important resonance parameters in ¹⁹Ne were extracted from the mirror nuclei ¹⁹F.
- The E_x = 7.054 MeV state is assumed that it may affect the ¹⁸F(p,α)¹⁵O reaction rate. However, it has not been measured yet.

Previous study

• Alpha cluster states

Otani et al. (2016) Theorical calculation on excitation energy of ¹⁹Ne D. Torresi et al. (2017) ¹⁵O+alpha Excitation function fitting resul t ($\theta_{c.m.} = 180^\circ$) Fitting result used R-matri x code (SAMMY)

Purpose

Missing state

To study the ¹⁸F(p,α)¹⁵O reaction rate
 Affects the abundance calculation model of ¹⁸F in the classical nova

$^{15}O+\alpha \rightarrow ^{19}Ne^*$

 Find accurate resonance parameters of ¹⁹Ne near the proton threshold

6.419 MeV, 6.449 MeV ^{Spin,} (7.054 MeV), 7.0757 MeV, 7.420 MeV

Existence ??

To investigate the structure of ¹⁹Ne & ¹⁹F in a wide energy range

Experimental set-up

Thick target method

Reaction reconstruction

Reaction reconstruction

$$\cos\theta = \overrightarrow{V}_{beam} \cdot \overrightarrow{V}_{\alpha}$$

 \rightarrow The reaction point depends on the detected α particle energy, α position, the beam direction, and energy loss in the target.

Reaction reproduction

Differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{YM(^4He)}{N_{beam}N_A T_{eff}\Delta\Omega}$$

Y:yield (#/s)

M(⁴He) : 4.003 g/mol

N_{beam} : number of ¹⁵O beam particles

N_A: Avogardro number(6.02*10²³#)

T_{eff} : Effective thickness (g/cm²)

 $\Delta\Omega$: solid angle (sr)

Data analysis

Background reduction

Cross section

Cross section

• The obtained ¹⁹F resonance parameters

Table 3.2. Summary of ¹⁹F resonance parameters compared with previous studies.

Previous study						This work	
$E_x (MeV \pm keV)$	$\Gamma_{\alpha} \ (\text{keV})$	$\Gamma ~({\rm keV})$	J^{π}	Ref.	$\mid \mathrm{E}_x \; (\mathrm{MeV})$	$\Gamma_{\alpha} \; (\mathrm{keV})$	J^{π}
6.536 ± 5^{a}	245 ± 6	-	$\frac{1}{2}^{-}$	[24, 25, 46]			
6.838 ± 0.9^b	1.2	-	$\frac{\overline{5}}{2}^+$	[24,25]	6.74	0.9 ± 0.4	$\frac{5}{2}$ +
6.989 ± 3^b	96 ± 6	-	$\frac{1}{2}^{-}$	[24,25]	6.94	99 ± 26	$\frac{1}{2}^{-}$
7.114 ± 6^{b}	25 ± 4	-	$\frac{5}{2}^{+}$	[15, 24, 25, 43, 45, 46]	7.05	30 ± 4	$(\frac{5}{2}^+, \frac{7}{2}^+)$
7.353^{a}	65	-	$\frac{7}{2}^{+}$	[24,25]	7.26	68 ± 6	$(rac{5}{2}^+, rac{7}{2}^+)$
7.56 ± 10^{b}	-	< 90	$\frac{7}{2}^{+}$	[24]	7.49	80 ± 6	$\frac{7}{2}^+$
7.587	$\Gamma_{lab} < 50$	-	$(\frac{5}{2}^{-})$	[42]	7.52	41 ± 9	$\frac{5}{2}$ –
7.702 ± 5	-	< 30	$\frac{1}{2}^{-}$	[42]	7.64	57 ± 15	$\left(\frac{3}{2}^{-}\right)$
7.88^{c}	-	< 260	-	[24]			

^afrom Ref. [25]

^bfrom Ref. [42]

^cfrom Ref. [24]

Discussion (19F)

- We successfully reproduce the previous result of ¹⁹F.
- The Ex = 7.114 MeV state J^{π} could be assigned with 7/2+ and 5/2+. We obtained the best fit with 5/2+, and the J^{π} =3/2+ was ruled out.
- The Ex = 7.353 MeV state spin assignment was changed from 7/2+ to 5/2+.
- The Ex = 7.56 and 7.58 MeV states were newly determined the alpha width.
- The Ex = 7.64 MeV state can be a newly found state in 19 F because we could not find the corresponded J^{π} and Γ_{α} in the previous results.

• The obtained ¹⁹Ne resonance parameters

		Previou	us study			nis work	
$E_x^a (MeV \pm keV)$	${ m E}_{\gamma}{}^a~({ m keV})$	$\Gamma_{\alpha} (\text{keV})$	J^{π}	Ref.	$\mid \mathbf{E}_x \ (\mathrm{MeV})$	$\Gamma_{\alpha} \ (\text{keV})$	J^{π}
6.437	26 ± 9	216 ± 19	$\frac{1}{2}^{-}$	[26, 49]			
6.939	528 ± 309	99 ± 69	$\frac{\overline{1}}{2}$	[51]	6.94	138	$\frac{1}{2}^{-}$
(7.054)	643 ± 30	29 ± 25	$(\frac{5}{2}^{+},\frac{7}{2}^{+})$	[15, 51]	7.03	20	$\frac{5}{2}$ +
7.076	664.7 ± 16	23.8 ± 1.2	$\frac{3}{2}$	[4, 10, 14, 15, 18, 19, 21, 22, 23]	7.11	38	$\frac{3}{2}^{+}$
7.326	915 ± 11	46 ± 40	$\frac{\overline{1}}{2}^+$	[14, 42, 49]	7.24	- 38	$(\frac{5}{2}^+)$
7.420	1009 ± 14	71 ± 11	$(\frac{7}{2}^+)$	[15, 23]	7.35	72	$\frac{7}{2}^{+}$
7.531	1120 ± 11	21 ± 11	$\frac{5}{2}$	[4, 23, 49]	7.35	25	$\frac{5}{2}^{-}$
7.608	1197 ± 11	43 ± 15	$\frac{\bar{3}}{2}^+$	[4, 51]	7.40	46	(3-)
7.644	1233 ± 12	16 ± 6	$(\frac{1}{2}, \frac{3}{2})$	[4, 22, 51]	• 1.49	40	$\left(\frac{1}{2}\right)$
7.758	1347 ± 5	5 ± 2	$\frac{3}{2}$	[22]	7.78	308	$\left(\frac{5}{2}^{-}\right)$

Table 3.3. Summary of ¹⁹Ne resonance parameters compared with previous studies.

^afrom Ref. [51]

Discussion (¹⁹Ne)

- The 7.076 MeV state was identified and assigned the Jⁿ with 3/2+.
- The strong peak was found at $E_x \sim 7.3$ MeV which may consists with four resonances , Ex = 7.326, 7.420, 7.531, and 7.644 MeV.
- The 7.420 MeV state was ruled out for the ¹⁸F(p,α)¹⁹Ne reaction rate calculation due to the weak evidence. However, we found with a large alpha width so we suggest the 7.420 MeV state should be considered to the calculation.

• Mirror states

This diagram shows the presumed mirror states using our analysis results.

- The mirror state of 7.076 MeV state in ¹⁹Ne is still missing.
- The missing state at Ex = 7.054 MeV was measured in the present experiment. This state can be connected to Ex = 7.114 MeV state in ¹⁹F.
- The mirror state of $E_x = 7.56$ MeV in ¹⁹F was found at $E_x = 7.420$ MeV in ¹⁹Ne.
- For the $E_x = 7.608$ MeV state, which may be a new state in ¹⁹Ne, we found the candidate of a mirror state at $E_x = 7.64$ MeV.

Result : ${}^{18}F(p,\alpha){}^{15}O$ reaction rate

- The ¹⁸F(p,α)¹⁵O reaction rate was calculated using our results.
- The $E_x = 7.076$ MeV state is still dominant in the reaction rate.
- We found newly determined E_x = 7.420 and 7.326 MeV states are also affect the ¹⁸F(p, α)¹⁵O reaction rate

Conclusions

- Experimental data for ¹⁹F, which is the mirror nuclei of ¹⁹Ne, were also taken for the analysis of ¹⁹Ne data
- More than 8 peaks in ¹⁹Ne were shown in silicon telescopes with good energy resolution (E_{c.m.} = 40 keV).
- The ¹⁸F(p,α)¹⁵O reaction rate was calculated using our data, and we found newly observed states affect to the reaction rate.
- Alpha cluster structures were shown in ¹⁹Ne and ¹⁹F.
 Further study is going on.

Thank you for your attention

Motivation

• ¹⁸F nucleosynthesis in classical novae

& ONe CO ONe	${ m ^{18}F} m ^{7}Be}{{ m ^{22}Na}}$	109.77 min 77 days 2.6018 vr	511 keV line & continuun 478 keV line 1275 keV line
ONe	²⁶ Al	$10^6 { m yr}$	1809 keV line

Contents

I. Introduction

- 1. Motivation
- 2. Purpose
- 3. Theoretical overview

II. The ¹⁵O+ α experiment

- 1. Experimental setup
- 2. Production of RI beam
- 3. The target system

III. Data analysis

- 1. Particle Identification
- 2. Reconstruction of the reaction
- 3. Background reduction
- 4. Differential cross-section
- 5. Error propagation

IV. Results

- 1. $^{15}N+\alpha$ scattering experiment
- 2. 15 O+ α scattering experiment

V. Conclusions

Experiment

• Thick target method in inverse kinematics (TTIK)

Uncertainty

• Error propagation

$$\delta(\frac{d\sigma}{d\Omega}) = \frac{d\sigma}{d\Omega} \times \sqrt{\left(\frac{\delta Y}{Y}\right)^2 + \left(\frac{\delta \Delta \Omega}{\Delta \Omega}\right)^2}$$

Table 2.4. Uncertainties for the ${}^{15}O+\alpha$ elastic scattering run.

	Factor	Uncertainty	Reference
$E_{c.m.}$ uncertainty	Beam broadening Detector resolution SRIM calculation Total	$\sim 55 \ { m keV}$ 30 - 40 keV 3 - 40 keV $\sim 135 \ { m keV}$	Section II.E.3 Table 2.3 Section II.E.2
Cross-section uncertainty	Yield estimation Solid angle calculation	$\begin{array}{l} \sim < 1\% \\ \sim 10\% \end{array}$	Section II.E.3 Section II.E.5

Reaction rate & Gamow peak

For the narrow resonance, the stellar reaction rate per particle pair

$$<\sigma v> = \left(\frac{8}{\pi\mu}\right)^{1/2} \frac{1}{(kT)^{3/2}} S(E_0) \int_0^\infty \exp\left(-\frac{E}{kT} - \frac{b}{E^{1/2}}\right) dE.$$

Gamow peak (E₀) $E_0 = \left(\frac{bkT}{2}\right)^{2/3} = 0.1220(Z_1^2 Z_2^2 \mu T_9^2)^{1/3} \text{MeV}$ Effective range of Gamow peak (E₀) $\Delta E_0 = \frac{4}{3^{1/2}} (E_0 kT)^{1/2} = 0.2368(Z_1^2 Z_2^2 \mu T_9^5)^{1/6} \text{MeV}$

 \rightarrow The energy range of the reaction rate depends on the stellar temperature.

Reaction rate & Gamow peak

For the ¹⁸F(p, α)¹⁵O reaction, the Gamow window is

Narrow resonance

For the total width (Γ) is smaller than the resonance energy (E_R), the cross section can be changed for an isolated and single narrow resonance (Breit-Wigner formula).

The reaction rate can be expressed as

$$\langle \sigma v \rangle = \left(\frac{8}{\pi\mu}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E\sigma_{BW}(E) \exp\left(-\frac{E}{kT}\right) dE.$$

For $E \sim E_{R.}$

$$\langle \sigma v \rangle = \left(\frac{2\pi}{\mu kT}\right)^{3/2} \hbar^2 (\omega \gamma)_R exp\left(-\frac{E}{kT}\right),$$

where,

$$(\omega\gamma)_R = \frac{2J+1}{(2J_a+1)(2J_b+1)} \frac{\Gamma_a \Gamma_b}{\Gamma}.$$

→ For this reason, the resonance parameters J^{π} , Γ_{α} , and Γ_{p} are important to estimate the reaction rate

Experiment

• Error propagation

Beam broadening ~300 keV

 Table 2.3. Energy resolution of Telescopes

Iterescope $#1$ (kev)	Telescope $#2$ (keV)
35	42
34	33
34	35
90	84
74	79
116	95
	35 34 34 90 74 116

Silicon telescopes resolution

α Calibration using run #148

α Calibration with run #147

Solid angle concept

• Stellar reaction rate

Average of stellar reaction rate per particle pair

$$\langle \sigma v \rangle = \int_0^\infty \phi(v) \sigma(v) v dv$$
$$= \left(\frac{8}{\pi\mu}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E\sigma(E) \exp\left(-\frac{E}{kT}\right) dE$$

 $\phi(v)$ = gas velocity which follows Maxwell-Boltzmann distribution

Solving a shorodinger equation for Coulomb potential :

$$\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$$

S(E) : Astrophysical factor , η : Sommerfeld parameter

Final stellar reaction rate at given temperature T :

$$<\sigma v> = \left(\frac{8}{\pi\mu}
ight)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty S(E) \exp\left(-\frac{E}{kT} - \frac{b}{E^{1/2}}
ight) dE$$

HR diagram

Supernova observed just after explosion

13th February 2017 by Maarten Rikken

The observation was early enough to determine for the first time what happens in the early stages of a supernova.

36

z			18Na 1.3E-21 S P: 100.00%	19Na <40 NS P	20Na 447.9 MS 8: 100.00% 80: 20.10%	21 Na 22.49 S 8: 100.00%	22Na 2.6018 Y 8: 100.00%	23Na STABLE 100%	24Na 14.997 H β-: 100.00%
10		16Ne 9E-21 S 2P: 100.00%	171Ne 109.2 MS 8p: 100.00% 8: 100.00%	18 Ne 1.6670 S 8: 100.00 %	19Ne 17.22 S 8: 100.00%	20Nc STABLE 90.48%	21 Ne STABLE 0.27%	22Ne STABLE 9.25%	23 Νε 37.24 S β-: 100.00%
9	14F 910 KeV P	15P 660 KeV P: 100.00%	16P 40 KeV P: 100.00%	17P 64.49 S 8: 100.00%	18P 109.77 M 8: 100.00%	19F STABLE 100%	20F 11.07 S β-: 100.00%	21F 4.158 S β-: 100.00%	22F 4230 MS β-: 100.00% β-π < 11.0%
8	130 8.58 MS 8: 100.00% 8p: 11.30%	140 70.620 S 8: 100.00%	150 122.24 S 8: 100.00%	160 STABLE 99.757%	170 STABLE 0.038%	180 STABLE 0.205%	19Ο 26.88 S β-: 100.00%	20Ο 13.51 S β-: 100.00%	21Ο 3.42 S β-: 100.00%
7	12N 11.000 MS 8: 100.00%	13N 9.965 M 8: 100.00%	14N STABLE 99.63	15N STABLE 0.364%	16N 7.13 S β-: 100.00% β-α: 1.2E-3%	17N 4171 MS β-: 100.00% β-π: 95.10%	18N 619 MS β-: 100.00% β-α: 12.20%	19Ν 336 MS β-: 100.00% β-π: 41.80%	20N 1 36 MS β-: 100.00% β-π: 42.90%
	5	6	7	8	9	10	11	12	N

Analysis – psd1 mapping

Analysis

Alpha particle sorting

TOF = T(PPACb)-T(PSD1b)

- 1. Separate ¹⁵O beam from produced particles
- 2. Identify alpha particle from dE-E graph
- 3. Sort alpha particle from E-TDC graph

α Calibration using run #148 & #149

Experiment

 $^{15}O + \alpha \rightarrow ^{15}O + \alpha$

Analysis $V_{(Y_1, X_1, Z_1)}$ $V_{(Y_2, X_2, Z_2)}$ $V_{(Y_2, X_2, Z_2)}$

300mm

$$\begin{aligned} \cos\theta_{lab} &= Ubx \times Uax_{+} U_{by} \times Uay + Ubz + Uaz \\ E_{\alpha} &= \frac{E_{beam} \times m_{target} \times m_{beam} \times 4cos^{2}\theta_{lab}}{(m_{target} + mbeam)^{2}} \\ E_{\alpha f} &- Eexp < 10 keV \end{aligned}$$

R-Matrix(scattering theory)

Cross section :

$$W = P^{1/2} (I - RL)^{-1} (I - RL^*) P^{-1/2}$$

L = (S - B) + iP

S : shift factor

B : arbitrary boundary constant

 P&S : function of energy (depend orbital angular momentum I and channel radius a_c)

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E} \delta_{JJ'}$$

General R-matrix term

Modified with Reich Moore approximation in SAMMY

$$R_{cc'} = \left[\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E - i\overline{\Gamma}_{\lambda \gamma}/2} + R_{c}^{ext} \delta_{cc'}\right] \delta_{JJ'}$$

R-Matrix(SAMMY code)

#pr @le	epare pa vels=(rfil	e	
#	Ex E_w	idth	spingroup	#Ex=Ecm+thresholdE
	"7.250	113	2", #select	
	"7.449	15	7", #select	
	"7.505	64	6", #select	
	"7.585	13	14", #select	t
	"8.244	4	12", #select	t

Orbital momentum	Incidence channel spin	Total angular momentum
0	-1/2	1/2 ⁻
1	-1/2	1/2+
	-1/2	3/2+

print INP
"Oxygen15-alpha resonance scattering
150 15.0031 5976500. 30000000.
KEY-WORD PARTICLE-PAir definitions
PRINT ALL INPUT PARAMETERS
chi squared is wanted
differential data are in ascii file
do not suppress any intermediate results
generate odf file automatically
do not solve bayes equations
print debug information
print theoretical values
broadening is not wanted
twenty

Name=150+a0	Pa=alpha	
Pb=150	Zb= 8 Mb= 15.00306	Sb= -0.5
Name=18F+p0	Pa=proton	
Pb=18F	Zb= 9 Mb= 18.00090	Sb= 1.0

5.67	'50	0.	01000	30
DIFFERE	NTIAL	EL/	STIC	SCATTERING
1		1	180.0	
			1.0	
1	1	0	-0.5	1.0
1	150+a0)	0	-0.5
2	1	0	0.5	1.0
1	150+a0)	1	-0.5
3	1	0	1.5	1.0
1	150+a0)	1	-0.5
4	1	0	-1.5	1.0
1	150+a0		2	-0.5