

Corrections to the eikonal description of elastic scattering and breakup of halo nuclei

Chloë Hebborn and Pierre Capel

Université libre de Bruxelles

June the 5th 2018

• Halo nuclei exhibit a very large matter radius Compact core + one or two loosely-bound neutrons $Ex : {}^{11}Be \equiv {}^{10}Be + n, {}^{15}C \equiv {}^{14}C + n$

Short-lived : studied through reactions processes (elastic scattering, breakup,...)

⇒ Need an accurate reaction model to infer reliable information

• Halo nuclei exhibit a very large matter radius Compact core + one or two loosely-bound neutrons $Ex : {}^{11}Be \equiv {}^{10}Be + n, {}^{15}C \equiv {}^{14}C + n$

Short-lived : studied through reactions processes (elastic scattering, breakup,...)

⇒ Need an accurate reaction model to infer reliable information

• The eikonal approximation :

 \oplus reduced computational time

- \oplus simple interpretation of the reaction
- Some experimental facilities will provide RIBs at ~ 10A MeV (e.g. HIE-ISOLDE @ CERN and ReA12 @ MSU)

 \Rightarrow Is it valid at these energies?

• Coulomb dominated reactions :

[T. Fukui, K. Ogata and P. Capel. PRC 90, 034617 (2014)]

• Coulomb dominated reactions : Coulomb correction : $b \rightarrow b' = \frac{\eta + \sqrt{\eta^2 + b^2 k^2}}{k} \Rightarrow$ valid at low energies

[T. Fukui, K. Ogata and P. Capel. PRC 90, 034617 (2014)]

→ Eikonal overestimates elastic and underestimates breakup
 → Eikonal dampens the oscillations

(ULB)

 σ/σ_R

June the 5th 2018 3 / 12

→ Eikonal overestimates elastic and underestimates breakup
 → Eikonal dampens the oscillations

\Rightarrow Can a nuclear correction fix these issues?

Chloë Hebborn (ULB)

DREB 2018

Outline

- 2 Semi-classical correction
- Exact continued S-matrix correction

515 DQC

Eikonal model

v

 \boldsymbol{r}

Assumptions :

- Spinless and structureless particles
- Central potentials

Schrödinger equation :
$$\left[-\frac{\hbar^2}{2\mu}\Delta_{\mathbf{r}} + V(\mathbf{r})\right]\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

 1_{z}

T

Eikonal model

Assumptions :

- Spinless and structureless particles
- Central potentials

Schrödinger equation : $\left[-\frac{\hbar^2}{2\mu}\Delta_{\mathbf{r}} + V(\mathbf{r})\right]\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$

Eikonal approximation : [R. J. Glauber, *High energy collision theory*, (1959)] • At high energy, $\Psi \approx$ plane wave Eactorization : $\Psi(\mathbf{r}) = e^{ikz} \widehat{\Psi}(\mathbf{r})$ with $|\Delta \mathbf{r} \widehat{\Psi}| \ll k \left| \frac{\partial}{\partial z} \widehat{\Psi} \right|$

actorization :
$$\Psi(\mathbf{r}) = e^{ikz} \Psi(\mathbf{r})$$
 with $|\Delta \mathbf{r} \Psi| \ll k \left| \frac{\partial}{\partial z} \Psi \right|$

$$\Rightarrow$$
Solutions : $\Psi(b, z) = e^{ikz}e^{i\chi_0(b, z)}$

with $\chi_0(b,z) = -\frac{1}{\hbar v} \int_{-\infty}^z V(b,z') dz'$

 $\overline{}$

- Easy interpretation : P follows a straight-line
- Fast computations
- Limited to high energies

\Rightarrow Need to better account for the deflection.

Chloë Hebborn (ULB)

Semi-classical correction

Idea : $\chi_0(b) \rightarrow \chi_0(b'')$, with b'' the **complex** distances of closest approach [Analysis of two-body collisions in A. Vitturi *et al.*, PRC **56**, 1511, (1997).] (1) Real part of the distances b': trajectories at b_1 is nuclear dominated at b_2 is Coulomb dominated $\rightarrow b'$ computed exactly $p = \int_{a_1}^{b_2} \int_{b_1}^{b_2} \int_{b_1}^{b_2} \int_{T}^{b_2} \int_{$

[CH, P. Capel, Proc. of the 55th International Winter Meeting on Nuclear Physics, (2017).]

Semi-classical correction

Idea : $\chi_0(b) \rightarrow \chi_0(b'')$, with b'' the complex distances of closest approach [Analysis of two-body collisions in A. Vitturi *et al.*, PRC 56, 1511, (1997).] (1) Real part of the distances b': trajectories at b_1 is nuclear dominated at b_2 is Coulomb dominated $\rightarrow b'$ computed exactly [CH, P. Capel, Proc. of the 55th International Winter Meeting on Nuclear Physics, (2017).]

- ② Complex distances b'':
- \rightarrow *b*^{''} approximated by a **perturbation formula**

$$b'' = b' - i \frac{\operatorname{Im}\{V(b')\}}{2 E_0 \frac{b^2}{b'^3} - \left[\frac{\partial}{\partial r} (\operatorname{Re}\{V)\right]_{r=b'}}$$

[D. M. Brink, Semi-classical methods in nucleus-nucleus scattering, (1985).]

Elastic scattering ¹¹Be+¹²C 10A MeV

[CH, P. Capel, PRC 96, 054607, (2017).]

- ⊖ Overcorrection of the oscillations at large angles
- ⊕ More absorption at large angles
 - \rightarrow Very accurate

What about breakup observables?

Chloë Hebborn (ULB)

DREB 2018

⊕ Shape of the distribution improved
 ⊖ Underestimation of the magnitude

 \Rightarrow No significant accuracy gain

Shape of the distribution improved
 Underestimation of the magnitude

 \Rightarrow No significant accuracy gain

Use of another correction?

Chloë Hebborn (ULB)

DREB 2018

Developed for elastic scattering of 1-body projectile

[S. J. Wallace, PRD 8, 1846, (1973).]

Partial-wave expansion : $F(\theta) = \frac{1}{2iK} \sum_{l=0}^{+\infty} (2l+1)P_l(\cos\theta)[S_l-1]$

Developed for elastic scattering of 1-body projectile

[S. J. Wallace, PRD 8, 1846, (1973).]

Partial-wave expansion : $F(\theta) = \frac{1}{2iK} \sum_{l=0}^{+\infty} (2l+1)P_l(\cos\theta)[S_l-1]$

① Continuation : l(b) = Kb - 1/2 ② Expansion : $P_l(\cos\theta) \rightarrow J_0(qb)$

$$f(\theta) = \frac{K}{i} \int_0^\infty db \, b J_0(qb) [\mathbf{S}_0^{FB}(b) - 1]$$

with
$$\mathbf{S}_0^{FB}(b) = \frac{1}{b} \sum_{k=0}^{\infty} \frac{1}{(2k)!} b_k \left(-\frac{b}{2} \frac{\mathrm{d}}{\mathrm{d}b}\right) \left(\frac{1}{K} \frac{\mathrm{d}}{\mathrm{d}b}\right)^{2k} b e^{2i\delta(b)}$$

Developed for elastic scattering of 1-body projectile

[S. J. Wallace, PRD 8, 1846, (1973).]

Partial-wave expansion : $F(\theta) = \frac{1}{2iK} \sum_{l=0}^{+\infty} (2l+1)P_l(\cos\theta)[S_l-1]$

① Continuation : l(b) = Kb - 1/2 ② Expansion : $P_l(\cos\theta) \rightarrow J_0(qb)$

$$f(\theta) = \frac{K}{i} \int_0^\infty db \, b J_0(qb) [\mathbf{S}_0^{FB}(b) - 1]$$

with
$$\mathbf{S}_0^{FB}(b) = \frac{1}{b} \sum_{k=0}^{\infty} \frac{1}{(2k)!} b_k \left(-\frac{b}{2} \frac{\mathrm{d}}{\mathrm{d}b}\right) \left(\frac{1}{K} \frac{\mathrm{d}}{\mathrm{d}b}\right)^{2k} b e^{2i\delta(b)}$$

Exact continued S-matrix correction : only the zeroth order

$$\overline{f}(\theta) = -ik \int_0^{+\infty} b J_0(qb) [S_{l(b)} - 1] db \text{ with } S_l(b) = e^{2i\delta_{l(b)}}$$

Developed for elastic scattering of 1-body projectile

[S. J. Wallace, PRD 8, 1846, (1973).]

Partial-wave expansion : $F(\theta) = \frac{1}{2iK} \sum_{l=0}^{+\infty} (2l+1)P_l(\cos\theta)[S_l-1]$

① Continuation : l(b) = Kb - 1/2 ② Expansion : $P_l(\cos\theta) \rightarrow J_0(qb)$

$$f(\theta) = \frac{K}{i} \int_0^\infty db \, b J_0(qb) [\mathbf{S}_0^{FB}(b) - 1]$$

with
$$\mathbf{S}_0^{FB}(b) = \frac{1}{b} \sum_{k=0}^{\infty} \frac{1}{(2k)!} b_k \left(-\frac{b}{2} \frac{\mathrm{d}}{\mathrm{d}b}\right) \left(\frac{1}{K} \frac{\mathrm{d}}{\mathrm{d}b}\right)^{2k} b e^{2i\delta(b)}$$

Exact continued S-matrix correction : only the zeroth order

$$\overline{f}(\theta) = -ik \int_0^{+\infty} b J_0(qb) [S_{l(b)} - 1] db \text{ with } S_l(b) = e^{2i\delta_{l(b)}}$$

Extension to 3-body collisions [J. M. Brooke et al., PRC 59, 1560, (1999).]

$$\chi_{cT}(b_{cT}) \rightarrow 2\delta_{l_{cT}(b_{cT})}$$
 and $\chi_{fT}(b_{fT}) \rightarrow 2\delta_{l_{fT}(b_{fT})}$

Elastic scattering ¹¹Be+¹²C @ 10A MeV

⊖ Slight shift to larger angles⊕ Very accurate

Elastic scattering ${}^{11}\text{Be} + {}^{12}\text{C}$ @ 10A MeV

Slight shift to larger angles
 Very accurate

What about breakup observables?

Chloë Hebborn (ULB)

DREB 2018

June the 5th 2018 10 / 12

No analytical expression, $\chi_{cT}(b_{cT}) \rightarrow 2\delta_{l_{cT}(b_{cT})}$ and $\chi_{fT}(b_{fT}) \rightarrow 2\delta_{l_{fT}(b_{fT})}$

No analytical expression, $\chi_{cT}(b_{cT}) \rightarrow 2\delta_{l_{cT}(b_{cT})}$ and $\chi_{fT}(b_{fT}) \rightarrow 2\delta_{l_{fT}(b_{fT})}$

- ⊕ Shape of the distribution improved
 ⊖ Underestimation of the magnitude
 - \rightarrow No significant accuracy gain

No analytical expression, $\chi_{cT}(b_{cT}) \rightarrow 2\delta_{l_{cT}(b_{cT})}$ and $\chi_{fT}(b_{fT}) \rightarrow 2\delta_{l_{fT}(b_{fT})}$

- Shape of the distribution improved \oplus
- Underestimation of the magnitude θ
 - \rightarrow No significant accuracy gain

 \Rightarrow Improve the L-couplings within eikonal model? In one June the 5th 2018 **DREB 2018** 11 / 12

Chloë Hebborn (ULB)

Eikonal model : fast, easy but valid only at high energies

- Coulomb dominated reactions : use of b' shift
- Nuclear dominated reactions → Can it be corrected?

Eikonal model : fast, easy but valid only at high energies

- Coulomb dominated reactions : use of b' shift
- Nuclear dominated reactions → Can it be corrected?
- ① Semi-classical correction :

Use of $b'' \in \mathbb{C}$ computed with the **whole optical potential**

- Reproduces well the elastic scattering
- ⊖ Fails to reproduce breakup observables

Eikonal model : fast, easy but valid only at high energies

- Coulomb dominated reactions : use of b' shift
- Nuclear dominated reactions → Can it be corrected ?
- ① Semi-classical correction :

Use of $b'' \in \mathbb{C}$ computed with the **whole optical potential**

- Reproduces well the elastic scattering
- ⊖ Fails to reproduce breakup observables
- **2 Exact continued** *S*-matrix :

Use of each fragment's exact phase shifts

- Reproduces well the elastic scattering
- ⊖ Fails to reproduce breakup observables

Eikonal model : fast, easy but valid only at high energies

- Coulomb dominated reactions : use of b' shift
- Nuclear dominated reactions → Can it be corrected?
- ① Semi-classical correction :

Use of $b'' \in \mathbb{C}$ computed with the **whole optical potential**

- Reproduces well the elastic scattering
- ⊖ Fails to reproduce breakup observables
- **2** Exact continued *S*-matrix :

Use of each fragment's exact phase shifts

- Reproduces well the elastic scattering
- ⊖ Fails to reproduce breakup observables

⇒ Need to improve the couplings between the « trajectories » within the eikonal model

Generalisation to the DEA : elastic scattering

Chloë Hebborn (ULB)

Generalisation to the DEA : breakup cross sections

