Structure and reactions of $\mathbf{N}=7$ isotones: the role of core degrees of freedom

F. Barranco
Sevilla University

R.A. Broglia

The Niels Bohr Institute, Copenhagen

A. Idini
Lund University

G. Potel
Michigan State University

E. Vigezzi

INFN Milano

Parity inversion in $\mathrm{N}=7$ isotones

Experimental systematics

Mean-field results favour $1 / 2^{--}$
(Sagawa,Brown,Esbensen PLB 309(93)1)

A possible explanation of parity inversion: dynamical coupling between the core and the loosely bound neutron

Structure of Exotic Neutron-Rich Nuclei

Takaharu Otsuka, Nobuhisa Fukunishi, and Hiroyuki Sagawa
Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113, Japan

(Received 13 November 1992)
A new framework, the variational shell model, is proposed to describe the structure of neutron-rich unstable nuclei. An application to ${ }^{11} \mathrm{Be}$ is presented. Contrary to the failure of the spherical HartreeFock model, the anomalous $\frac{1}{2}^{+}$ground state and its neutron halo are reproduced with the Skyrme (SIII) interaction. This state is bound due to dynamical coupling between the core and the loosely bound neutron, which oscillates between the $2 s_{1 / 2}$ and the $1 d_{5 / 2}$ orbits.
N. Vinh Mau, Nucl. Phys. A 592 (1995) 43
G.F. Esbensen and H. Sagawa, Phys. Rev C 51 (1995)1274
F.M. Nunes and I. Thompson, Nucl. Phys. A 703 (2002) 593
G. Blanchon et al., Phys Rev. C 82 (2010) 034313

Myo et al, PRC 86 (2012) 024318

Admixture of $d_{5 / 2} \times 2^{+}$configuration in the $1 / 2^{+}$g.s. of ${ }^{11} \mathrm{Be}$ is about 20%

$p(11 \mathrm{Be}, 10 \mathrm{Be}) \mathrm{d}$

Calculated ground state
$\|1 / 2+\rangle=\sqrt{0.87}\left\|s_{1 / 2}\right\rangle+\sqrt{0.13}\left\|d_{5 / 2} \otimes 2+\right\rangle$

Exp.:

J.S. Winfield et al., Nucl.Phys. A683 (2001) 48
$|1 / 2+\rangle=\sqrt{0.84}\left|s_{1 / 2}\right\rangle+\sqrt{0.16}\left|d_{5 / 2} \otimes 2+\right\rangle$
${ }^{11} \mathrm{Be}(\mathrm{p}, \mathrm{d})^{10} \mathrm{Be}$ in inverse kinematic detecting both the ground state and the $2+$ excited state of ${ }^{10} \mathrm{Be}$.


```
S. Fortier et al. Phys. Lett.B461(1999)22
```


PVC: Vibrational Core (even-even) + One particle (neutron)

$$
\begin{gathered}
H=H_{c o l l}+H_{s p}+H_{P V C} \\
H_{c o l l}=\sum_{\lambda \mu \nu} \hbar \omega_{\lambda, \nu}\left[\Gamma_{\lambda \mu, v}^{+} \Gamma_{\lambda \mu, v}+1 / 2\right] \\
H_{s p}=-\hbar^{2} / 2 \mu d^{2} / d \vec{r}^{2}+V(r)+V_{l s}(r) \\
H_{P V C}=\sum_{\lambda \mu \nu} \delta V_{\lambda \nu}(r) Y_{\lambda \mu}(\hat{r})\left[\Gamma_{\lambda \mu, \nu}^{+.}+(-1)^{\mu} \Gamma_{\lambda \mu, \nu}\right] \\
\delta V_{\lambda \nu}(r) \approx-r d V / d r \beta_{\lambda, v}
\end{gathered}
$$

Standard Coupled Channel Equation

$$
\begin{aligned}
& {\left[\begin{array}{cc}
{\left[-\hbar^{2} / 2 \mu d^{2} / d r^{2}+V_{a}(r)\right]} & \Xi_{a, b \lambda}\left(-\beta_{\lambda} r d V / d r\right) \\
\Xi_{a, b \lambda}\left(-\beta_{\lambda} r d V / d r\right) & {\left[-\hbar^{2} / 2 \mu d^{2} / d r^{2}+V_{b}(r)+\hbar \omega\right]}
\end{array}\right]\left[\begin{array}{l}
R_{a}^{x}(r) \\
R_{b}^{C}(r)
\end{array}\right]=\tilde{E}\left[\begin{array}{l}
R_{a}^{x}(r) \\
R_{b}^{C}(r)
\end{array}\right]} \\
& \text { with } \Xi_{a, b \lambda}=\left\langle\Theta_{j_{a} m_{a}} \sum_{\mu} Y_{\lambda \mu}\left[\Gamma_{\lambda \mu}^{+.}+(-1)^{\mu} \Gamma_{\lambda \mu}\right]\left[\Theta_{j_{b}} \cdot \Phi_{\lambda}\right]_{j_{a} m_{a}}\right\rangle \sim\left\langle j_{b}, 1 / 2 ; \lambda 0 \mid j_{a}, 1 / 2\right\rangle
\end{aligned}
$$

Energy dependent Self-energy

$$
\begin{array}{ll}
R_{a}^{x}(r)=\sum_{i} x_{a i} R_{a i}(r) & i \in \text { non-occ. } \\
R_{b}^{C}(r)=\sum_{i} C_{b i} R_{b i}^{W S}(r) & i \in \text { non-occ } .
\end{array}
$$

onto the
single-particle basis

$$
\left(\begin{array}{cc}
e_{a l}+\Sigma_{11}(\tilde{E}) & \Sigma_{12}(\tilde{E}) \ldots \\
\Sigma_{21}(\tilde{E}) & e_{a 2}+\Sigma_{22}(\tilde{E}) \ldots
\end{array}\right)\binom{x_{a l}}{x_{a 2} \ldots}=\tilde{E}\binom{x_{a l}}{x_{a 2} \ldots}
$$

SINGLE-PARTICLE HAMILTONIAN MATRIX (energy dependent), where

$$
\Sigma_{i j}(\tilde{E})=\sum_{b k} \frac{h_{a i, b k, \lambda} h_{a j, b k, \lambda}}{\tilde{E}-\left(E_{b k}+\hbar \omega_{\lambda}\right)}
$$

$$
h_{a i, b k \lambda}=\Xi_{a, b \lambda} \beta_{\lambda} \int R_{a i}^{W S}(r)(-r d V / d r) R_{b k}^{W S}(r) d r
$$

The simplest way to take care of the Pauli principle: expand on a basis excluding occupied single-particle states

$$
\left[\begin{array}{cc}
{\left[-\hbar^{2} / 2 \mu d^{2} / d r^{2}+V_{a}(r)\right]} & \Xi_{a, b \lambda}\left(-\beta_{\lambda} r d V / d r\right) \\
\Xi_{a, b \lambda}\left(-\beta_{\lambda} r d V / d r\right) & {\left[-\hbar^{2} / 2 \mu d^{2} / d r^{2}+V_{b}(r)+\hbar \omega\right]}
\end{array}\right]\left[\begin{array}{l}
R_{a}^{x}(r) \\
R_{b}^{C}(r)
\end{array}\right]=\tilde{E}\left[\begin{array}{l}
R_{a}^{x}(r) \\
R_{b}^{C}(r)
\end{array}\right]
$$

$$
\text { with } \Xi_{a, b \lambda}=\left\langle\Theta_{j_{a} m_{a}} \sum_{\mu} Y_{\lambda \mu}\left[\Gamma_{\lambda \mu}^{+.}+(-1)^{\mu} \Gamma_{\lambda \mu}\right]\left[\Theta_{j_{b}} \cdot \Phi_{\lambda}\right]_{j_{a} m_{a}}\right\rangle \sim\left\langle j_{b}, 1 / 2 ; \lambda 0 \mid j_{a}, 1 / 2\right\rangle
$$

$$
R_{a}^{x}(r)=\sum_{i=1}^{N} x_{a i} R_{a i}^{W S}(r) \quad i \in n o n-o c c \quad R_{b}^{C}(r)=\sum_{i=1}^{N} C_{b i} R_{b i}^{W S}(r) \quad i \in n o n-o c c
$$

Matrix elements due to GSC Pauli rearrangement

The contribution of a given p-h configuration to the GS Correlation Energy is (B\&MII)
$n \mathrm{nk}, \mathrm{lb}, \mathrm{jb}\})^{\mathrm{ni}, \mathrm{la}, \mathrm{ja}} \delta E=\frac{\left(-h_{a i, b k, \lambda} \sqrt{\left(2 \mathrm{j}_{a}+1\right)}\right)^{2}}{0-\left(E_{a i}+E_{b k}+\hbar \omega_{\lambda}\right)}<0$
The presence of a new neutron (scattering- or bound-like) inhibits some of these correlations, producing an energy modification of the core state...

$$
-\frac{\delta E}{2 \mathrm{j}_{a}+1}>0
$$

This is the meaning/value of the NFT self energy diagram (B\&MII, eq.6.225)

Include the effect of ground state correlations

$$
\Psi_{a}=\left[\psi_{a}^{x}+\left[\psi_{b}^{c} \cdot \Gamma_{\lambda}^{+} \cdot\right]_{a}\right] \Phi_{G S}
$$

We add new terms, to take into account ground state correlations

$$
\Psi_{a}=\left[\psi_{a}^{x}+\left[\psi_{b}^{C} \cdot \Gamma_{\lambda}^{+} \cdot\right]_{j_{a}}-\psi_{a}^{y}-\left[\psi_{c}^{D} \cdot \Gamma_{\lambda}\right]_{j_{a}}+. .\right] \Phi_{G S}
$$

$$
\begin{aligned}
& u_{a}^{x}(r)=\sum_{i} x_{a i} R_{a i}^{W S}(r) ; e_{a i}>e_{F} \\
& u_{b}^{C}(r)=\sum_{i} C_{b i} R_{b i}^{W S}(r) ; e_{b i}>e_{F}
\end{aligned}
$$

$$
\begin{aligned}
& v_{a}^{y}(r)=\sum_{i} y_{a i} R_{a i}^{W S}(r) ; e_{a i}<e_{F} \\
& v_{c}^{D}(r)=\sum_{i} D_{c i} R_{c i}^{W S}(r) ; e_{c i}<e_{F}
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
H_{p}-e_{F} & \Xi_{a, b \lambda} f(r) & 0 & \Xi_{a, c \lambda} f(r) \\
\Xi_{a, b \lambda} f(r) & H_{p}-e_{F}+\hbar \omega & \Xi_{a, b \lambda} f(r) & 0 \\
0 & \Xi_{a, b \lambda} f(r) & \left(H_{p}-e_{F}\right) & -\Xi_{a, c \lambda} f(r) \\
\Xi_{a, c \lambda} f(r) & 0 & -\Xi_{a, c \lambda} f(r) & \left(H_{p}-e_{F}\right)-\hbar \omega
\end{array}\right)\left(\begin{array}{c}
u_{a}^{x} \\
u_{b}^{C} \\
-v_{a}^{y} \\
-v_{c}^{D}
\end{array}\right)=\tilde{E}\left(\begin{array}{c}
u_{a}^{x} \\
u_{b}^{C} \\
-v_{a}^{y} \\
-v_{c}^{D}
\end{array}\right)
$$

Ingredients of our calculation for ${ }^{11} \mathrm{Be}$

F. Barranco et al, PRL 119 (2017) 082501

Fermionic degrees of freedom:

- $\mathrm{s}_{1 / 2}, \mathrm{p}_{1 / 2}, \mathrm{p}_{3 / 2}, \mathrm{~d}_{5 / 2}$ Wood-Saxon levels in a box
-Bosonic degrees of freedom:
- 2+ (3-, pair vib.) QRPA solutions tuned to reproduce available exp. data:
- $B(E 2)=10.4 \pm 1.2 \mathrm{e}^{2} \mathrm{fm}^{4}$
${ }^{\boldsymbol{\bullet}} \boldsymbol{\beta}_{\mathrm{em}}=1.12 \quad \boldsymbol{\beta}_{\mathrm{n}} \approx 0.8$

Parameter optimization

We perform the many-body calculation starting from a Woods-Saxon potential,
with a spatially dependent effective mass, with

$$
m_{k}(r=0)=0.7 \mathrm{~m}, m_{-} k(r \gg R)=\mu=0.91 \mathrm{~m}
$$

The following parameters are fitted to obtain the best agreement of the renormalized energies with the experimental $1 / 2^{+}, 1 / 2^{-}$and $5 / 2^{+}$states in ${ }^{11} \mathrm{Be}$ and $3 / 2^{-}$in ${ }^{9} \mathrm{Be}$:

- Depth, diffuseness,radius, strength of spin-orbit coupling

F. Barranco et al., PRL 119 (2017) 082501
${ }^{11} \mathrm{Be}$

${ }^{12} \mathrm{~B}$

${ }^{13} \mathrm{C}$ | 0 |
| :---: |
| Theory |

The description of the experimental results from complementary approaches is of great interest

Can $A b$ Initio Theory Explain the Phenomenon of Parity Inversion in ${ }^{11} \mathrm{Be}$?

$$
\begin{aligned}
& \widetilde{\left|1 / 2^{+}\right\rangle}=\sqrt{0.82}\left|s_{1 / 2}\right\rangle+\sqrt{0.17}\left|\left(d_{5 / 2} \otimes 2^{+}\right)_{1 / 2^{+}}\right\rangle \\
& \widetilde{\left|1 / 2^{-}\right\rangle}=\sqrt{0.84}\left|p_{1 / 2}\right\rangle+\sqrt{0.14}\left|\left(\left(p_{1 / 2}, p_{3 / 2}^{-1}\right)_{2^{+}} \otimes 2^{+}\right)_{0+}, p_{1 / 2}\right\rangle \\
& \left.\left|\widetilde{\left.5 / 2^{+}\right\rangle}=\sqrt{0.56}\right| d_{5 / 2}\right\rangle+\sqrt{0.21}\left|\left(s_{1 / 2} \otimes 2^{+}\right)_{5 / 2^{+}}\right\rangle+\quad \sqrt{0.22}\left|\left(d_{5 / 2} \otimes 2^{+}\right)_{5 / 2^{+}}\right\rangle
\end{aligned}
$$

5/2+: a 'Fano resonance' (Orrigo et al. PLB 633 (2006)469)

The renormalized $5 / 2+$ phase shift is very different from the $\mathrm{d} 5 / 2$ phase shift In the bare potential.

Test of the single-particle component

 of the many-body wavefunction${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{p}){ }^{11} \mathrm{Be}$ at $\mathrm{E}_{\mathrm{d}}=21.4 \mathrm{MeV}$
K.T. Schmitt et al., PRC88 (2012) 064612

Form factors

Cross sections

The lineshape of ${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{p})^{11} \mathrm{Be}\left(5 / 2^{+}\right)$spectrum is well reproduced by theory

${ }^{11} \mathrm{Be}\left(1 / 2^{+}\right)(\mathrm{p}, \mathrm{d})^{10} \mathrm{Be}\left(2^{+}\right)$

Test of the collective component of the many-body wavefunction

$$
\left|\widetilde{1 / 2^{+}}\right\rangle=\sqrt{0.82}\left|s_{1 / 2}\right\rangle+\sqrt{0.17}\left|\left(d_{5 / 2} \otimes 2^{+}\right)_{1 / 2^{+}}\right\rangle
$$

J.S. Winfield et al., Nucl.Phys. A683
(2001) 48

Strength of the dipole transition between $1 / 2^{+}$and $1 / 2^{-}$states

This result is sensitive to the details of the mean field potential

Isotopic shift of the charge radius

$$
\left(\left\langle r^{2}\right\rangle_{\text {108e }}\right)^{1 / 2}=2.361 \pm 0.017 \mathrm{fm}
$$

$$
\left(\left\langle r^{2}\right\rangle_{11 \mathrm{Be}}\right)^{1 / 2}=2.466 \pm 0.015 \mathrm{fm}
$$

Single-particle picture: S=1
Many-body picture: S=0.83

$$
\begin{aligned}
& \left(\left\langle r^{2}\right\rangle\right)^{1 / 2} 1 s 1 / 2=7.1 \mathrm{fm} \\
& \left(\left\langle r^{2}\right\rangle\right)^{1 / 2} d 5 / 2, \text { coll }=3.0 \mathrm{fm}
\end{aligned}
$$

$$
\begin{aligned}
\left\langle r^{2}\right\rangle_{11 \mathrm{Be}}= & \left(\left\langle r^{2}\right\rangle_{10 \mathrm{Be}}+\left(\frac{\left\langle r^{2}\right\rangle_{1 \mathrm{~s} 1 / 2}^{1 / 2}}{11}\right)^{2}\right) \times S^{2}+\left(1-S^{2}\right) \times\left(\left\langle r^{2}\right\rangle_{10 \mathrm{Be}}\left(1+\frac{2}{4 \pi} \beta_{\pi}^{2}\right)+\left(\frac{\left\langle r^{2}\right\rangle_{d 5 / 2 \text { coll }}^{1 / 2}}{11}\right)^{2}\right)=. \\
& \left\langle r^{2}\right\rangle_{10 \mathrm{Be}}+\left(\frac{\left\langle r^{2}\right\rangle_{1 \mathrm{sl} / 2}^{1 / 2}}{11}\right)^{2} \times S^{2}+\left(1-S^{2}\right) \times\left(\left(\frac{\left\langle r^{2}\right\rangle_{d 5 / 2 \text { coll }}^{1 / 2}}{11}\right)^{2}+\left\langle r^{2}\right\rangle_{10 \mathrm{Be}} \frac{2}{4 \pi} \beta_{\pi}^{2}\right)
\end{aligned}
$$

$\Delta\left\langle r^{2}\right\rangle^{1 / 2}{ }_{11 \mathrm{Be}}$ (th.) $=0.12 \mathrm{fm} / 0.27 \mathrm{fm}$
$\Delta\left\langle r^{2}\right\rangle^{1 / 2}{ }_{11 \mathrm{Be}}$ (exp.) $=0.11 \mathrm{fm}$

Taking properly into account the empirical coupling between single-particle and collective degrees of freedom leads to a quantitative description of various structure properties and of reactions of ${ }^{11} \mathrm{Be}$

The initial $2 s_{1 / 2}$ state is not bound. After the first diagonalization, the $1 / 2+$ state becomes bound, $1 / 2^{+}=0.95 \mathrm{~s}_{1 / 2}+0.3 \mathrm{~d}_{5 / 2} \times 2^{+}$while the $5 / 2+$ state contains an admixture of the $2 s_{1 / 2} \times 2+$ configuration.
By iterating, in the calculation of the dressed $5 / 2^{+}$state we take into account the 2 -phonon contribution and the fact that the $1 / 2^{+}$state is localized.

$$
\begin{aligned}
& \mathrm{V}_{0}=70 \mathrm{MeV} \\
& \mathrm{a}=0.81 \mathrm{fm} \\
& \mathrm{R}=2.1 \mathrm{fm}
\end{aligned}
$$

Two Phonon Anharmonicities

Butterfly Diagrams

Aim of the talk:

To present the variety of many body effects at the basis of the structure of 11 Be states of quasi-particle character, by using the framework of Nuclear Field Theory.

It will be shown that in order to
Simultaneously explaining:
O spectra,
O one neutron transfer absolute d $\sigma / d E d \Omega$ cross sections in $10 \mathrm{Be}(\mathrm{d}, \mathrm{p}) 11 \mathrm{Be}$ and in
..11Be(p,d)10Be reactions,
O dipole transitions and
O isotopic rms charge radius change
up to $3 p-2 h$ configurations are unavoidable, and that antisymmetrization (Pauli principle)
between neutron and core, and of the $2 p-2 h$ core configurations, play a crucial role, as well as the coupling to the single-particle continuum.

By incorporing coupling to the single-particle continuum, a common framework for the study of structure and reactions, based on the Nuclear Field Theory emerges. A formulation in terms of Generalized Coupled Channels allows for the proper inclusion of Pauli principle.

(C) Stripping reaction to unbound state: $\boldsymbol{A}(\boldsymbol{d}, \mathrm{p}) \boldsymbol{B}$

- The transition matrix of the post-form representation for the (d, p) reaction within the distorted-wave Born approximation (DWBA):

$$
\begin{array}{rlr}
T_{\mathrm{DWBA}}^{(\mathrm{post})} & =\left\langle\chi_{\beta}^{(-)} \psi_{n}\right| V_{p n}+V_{p A}-U_{\beta}\left|\psi_{d} \chi_{\alpha}^{(+)}\right\rangle & \\
& \sim\left\langle\chi_{\beta}^{(-)} \psi_{n}\right| V_{p n}\left|\psi_{d} \chi_{\alpha}^{(+)}\right\rangle & \text {The remnant term } \\
& =\int d \boldsymbol{r}_{d} \int d \boldsymbol{r}_{n} \chi_{\beta}^{*(-)}\left(\boldsymbol{r}_{d}, \boldsymbol{r}_{n}\right) \psi_{n}^{*}\left(\boldsymbol{r}_{n}\right) V_{p A}-U_{\beta}=V_{p A}-U_{p B}\left(\boldsymbol{r}_{d}\right) \psi_{d}\left(\boldsymbol{r}_{d}\right) \chi_{\alpha}^{(+)}\left(\boldsymbol{r}_{d}, \boldsymbol{r}_{n}\right)
\end{array}
$$

T. Fukui

- The prior form

Calculated phase shifts, ${ }^{11} \mathrm{Be}$

$\mathrm{d} 5 / 2$ phase shift in the bare potential

Parity inversion in $\mathrm{N}=7$ isotones is not reproduced by spherical non relativistic mean field calculations, although the mean field includes most of the effect of the neutron-proton interaction

Typical spherical mean-field results with Skyrme forces (Sagawa,Brown,Esbensen PLB 309(93)1)

Structure and reactions of $\mathbf{N}=7$ isotones: the role of core degrees of freedom

R.A. Broglia
The Niels Bohr Institute
:---:
MSU,USA
E. Vigezzi
INFN Milano
F. Barranco
Sevilla University

Parity inversion in $\mathrm{N}=7$ isotones

Experimental systematics

Mean-field results

(Sagawa,Brown,Esbensen PLB 309(93)1)

The usually quoted value of width of the $5 / 2+$ resonance (100 keV) is derived from ${ }^{9} \mathrm{Be}(\mathrm{t}, \mathrm{p})^{11} \mathrm{Be}$ spectra

The width from ${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{p})^{11} \mathrm{Be}\left(5 / 2^{+}\right)$spectra is much larger and is well reproduced by theory

