Structure and reactions of N=7 isotones: the role of core degrees of freedom		
	F. Barranco	
	Sevilla University	
	R.A. Broglia	
	The Niels Bohr Institute, Copenhagen	
	A. Idini	
	Lund University	
	G. Potel	
	Michigan State University	
	E. Vigezzi	
	INFN Milano	

Parity inversion in N=7 isotones

Mean-field results favour ½--(Sagawa,Brown,Esbensen PLB 309(93)1)

A possible explanation of parity inversion: dynamical coupling between the core and the loosely bound neutron

VOLUME 70, NUMBER 10

PHYSICAL REVIEW LETTERS

8 MARCH 1993

Structure of Exotic Neutron-Rich Nuclei

Takaharu Otsuka, Nobuhisa Fukunishi, and Hiroyuki Sagawa

Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113, Japan (Received 13 November 1992)

A new framework, the variational shell model, is proposed to describe the structure of neutron-rich unstable nuclei. An application to ¹¹Be is presented. Contrary to the failure of the spherical Hartree-Fock model, the anomalous $\frac{1}{2}^+$ ground state and its neutron halo are reproduced with the Skyrme (SIII) interaction. This state is bound due to dynamical coupling between the core and the loosely bound neutron, which oscillates between the $2s_{1/2}$ and the $1d_{5/2}$ orbits.

N. Vinh Mau, Nucl. Phys. A 592 (1995) 43
G.F. Esbensen and H. Sagawa, Phys. Rev C 51 (1995)1274
F.M. Nunes and I. Thompson, Nucl. Phys. A 703 (2002) 593
G. Blanchon et al., Phys Rev. C 82 (2010) 034313
Myo et al, PRC 86 (2012) 024318

Admixture of d_{5/2} x 2⁺ configuration in the 1/2⁺ g.s. of ¹¹Be is about 20%

PVC: Vibrational Core (even-even) + One particle (neutron)

$$H = H_{coll} + H_{sp} + H_{PVC}$$

$$H_{coll} = \sum_{\lambda\mu\nu} \hbar \omega_{\lambda,\nu} [\Gamma_{\lambda\mu,\nu}^{+} \Gamma_{\lambda\mu,\nu} + 1/2]$$

$$H_{sp} = -\hbar^2/2\mu d^2/d \vec{r}^2 + V(r) + V_{ls}(r)$$

$$H_{PVC} = \sum_{\lambda\mu\nu} \delta V_{\lambda\nu}(r) Y_{\lambda\mu}(\hat{r}) [\Gamma_{\lambda\mu,\nu}^{+} + (-1)^{\mu} \Gamma_{\lambda\mu,\nu}]$$

$$\delta V_{\lambda\nu}(r) \approx -r dV/dr \beta_{\lambda,\nu}$$

$$H\Psi_{a} = \tilde{E}\Psi_{a}$$

$$\Psi_{a} = \left[\Psi_{a}^{x} + \left[\Psi_{b}^{C} \cdot \Gamma_{\lambda}^{+}\right]_{j_{a}} + \dots\right] \Phi^{A}$$

$$\Psi_{a}^{x} = (R_{a}^{x}(r)/r)\Theta_{j_{a}m_{a}}$$

$$\left[\Psi_{b}^{C} \cdot \Gamma_{\lambda}^{+}\right]_{j_{a}} = \left(R_{b}^{C}(r)/r\right) \left[\Theta_{j_{b}} \cdot \Gamma_{\lambda}^{+}\right]_{j_{a}}$$

Standard Coupled Channel Equation

$$\begin{bmatrix} \left[-\hbar^{2}/2\mu d^{2}/dr^{2} + V_{a}(r)\right] & \Xi_{a,b\lambda}(-\beta_{\lambda} r dV/dr) \\ \Xi_{a,b\lambda}(-\beta_{\lambda} r dV/dr) & \left[-\hbar^{2}/2\mu d^{2}/dr^{2} + V_{b}(r) + \hbar\omega\right] \end{bmatrix} \begin{bmatrix} R_{a}^{x}(r) \\ R_{b}^{C}(r) \end{bmatrix} = \tilde{E} \begin{bmatrix} R_{a}^{x}(r) \\ R_{b}^{C}(r) \end{bmatrix}$$

with $\Xi_{a,b\lambda} = \langle \Theta_{j_{a}m_{a}} \sum_{\mu} Y_{\lambda\mu} \begin{bmatrix} \Gamma_{\lambda\mu}^{+} + (-1)^{\mu} \Gamma_{\lambda\mu} \end{bmatrix} \begin{bmatrix} \Theta_{j_{b}} \cdot \Phi_{\lambda} \end{bmatrix}_{j_{a}m_{a}} \rangle \sim \langle j_{b}, 1/2; \lambda 0 \mid j_{a}, 1/2 \rangle$

Projecting
onto the single-particle basis
$$\begin{bmatrix} e_{al} + \Sigma_{11}(\tilde{E}) & \Sigma_{12}(\tilde{E}) & e_{a2} + \Sigma_{22}(\tilde{E}) & ... \end{bmatrix} \begin{pmatrix} x_{al} \\ x_{a2} \\ x_{$$

SINGLE-PARTICLE HAMILTONIAN MATRIX (energy dependent), where

$$\Sigma_{ij}(\tilde{E}) = \sum_{bk} \frac{h_{ai,bk,\lambda} h_{aj,bk,\lambda}}{\tilde{E} - (E_{bk} + \hbar \omega_{\lambda})}$$

$$h_{ai,bk\lambda} = \Xi_{a,b\lambda} \beta_{\lambda} \int R_{ai}^{WS}(r) (-rdV/dr) R_{bk}^{WS}(r) dr$$

The simplest way to take care of the Pauli principle: expand on a basis excluding <u>occupied</u> single-particle states

$$\begin{bmatrix} \left[-\hbar^{2}/2\mu d^{2}/dr^{2}+V_{a}(r)\right] & \Xi_{a,b\lambda}(-\beta_{\lambda} r dV/dr) \\ \Xi_{a,b\lambda}(-\beta_{\lambda} r dV/dr) & \left[-\hbar^{2}/2\mu d^{2}/dr^{2}+V_{b}(r)+\hbar\omega\right] \end{bmatrix} \begin{bmatrix} R_{a}^{x}(r) \\ R_{b}^{C}(r) \end{bmatrix} = \tilde{E} \begin{bmatrix} R_{a}^{x}(r) \\ R_{b}^{C}(r) \end{bmatrix}$$
with $\Xi_{a,b\lambda} = \langle \Theta_{j_{a}m_{a}} \sum_{\mu} Y_{\lambda\mu} [\Gamma_{\lambda\mu}^{+.} + (-1)^{\mu}\Gamma_{\lambda\mu}] [\Theta_{j_{b}} \cdot \Phi_{\lambda}]_{j_{a}m_{a}} \rangle \sim \langle j_{b}, 1/2; \lambda 0 \mid j_{a}, 1/2 \rangle$

$$N$$

$$R_a^x(r) = \sum_{i=1}^{N} x_{ai} R_{ai}^{WS}(r) \qquad i \in non - occ \qquad R_b^C(r) = \sum_{i=1}^{N} C_{bi} R_{bi}^{WS}(r) \qquad i \in non - occ$$

Matrix elements due to GSC Pauli rearrangement

The contribution of a given p-h configuration to the GS Correlation Energy is (*B&MII*)

nk,lb,jb

$$\delta E = \frac{\left(-h_{ai,bk,\lambda}\sqrt{(2j_a+1)}\right)^2}{0 - \left(E_{ai} + E_{bk} + \hbar\omega_{\lambda}\right)} < 0$$

The presence of a new neutron (scattering- or bound-like) inhibits some of these correlations, producing an energy modification of the core state...

$$-\frac{\delta E}{2j_a+1}>0$$

This is the meaning/value of the NFT self energy diagram (B&MII, eq.6.225)

$$\begin{array}{c} \text{Ni,la,ja,ma} \\ \text{ni,la,ja,ma} \\ \text{nk,lb,jb} \\ \end{array} \begin{array}{c} \text{Ni,la,ja,ma} \\ \text{ni,la,ja,ma} \end{array} \begin{array}{c} (-1) \frac{\left(-h_{ai,\,bk,\,\lambda} \sqrt{2 j_a + 1}\right)^2 \langle \left(\left(j_{a1},\,j_{a2}\right) J = 0,\,j_{a3}\,;\,j_a | \left(j_{a1},\,j_{a3}\right) J = 0,\,j_{a2}\,;\,j_a\right) \rangle \\ \\ E_{ai} - \left(2 \,E_{ai} + E_{bk} + \hbar \,\omega_{\lambda}\right) \\ \\ = \frac{\left(h_{ai,\,bk,\,\lambda}\right)^2}{\left(E_{ai} + E_{bk} + \hbar \,\omega_{\lambda}\right)} \end{array}$$

Include the effect of ground state correlations

$$\Psi_a = \left[\Psi_a^x + \left[\Psi_b^C \cdot \Gamma_\lambda^{+.} \right]_a \right] \Phi_{GS}$$

We add new terms, to take into account ground state correlations

$$\Psi_a = \left[\Psi_a^x + \left[\Psi_b^C \cdot \Gamma_\lambda^+ \right]_{j_a} - \Psi_a^y - \left[\Psi_c^D \cdot \Gamma_\lambda \right]_{j_a} + \dots \right] \Phi_{GS}$$

$$u_{a}^{x}(r) = \sum_{i} x_{ai} R_{ai}^{WS}(r); e_{ai} > e_{F}$$
$$u_{b}^{C}(r) = \sum_{i} C_{bi} R_{bi}^{WS}(r); e_{bi} > e_{F}$$

$$v_{a}^{y}(r) = \sum_{i} y_{ai} R_{ai}^{WS}(r); e_{ai} < e_{F}$$
$$v_{c}^{D}(r) = \sum_{i} D_{ci} R_{ci}^{WS}(r); e_{ci} < e_{F}$$

$$\begin{pmatrix} H_p - e_F & \Xi_{a,b\lambda}f(r) & 0 & \Xi_{a,c\lambda}f(r) \\ \Xi_{a,b\lambda}f(r) & H_p - e_F + \hbar\omega & \Xi_{a,b\lambda}f(r) & 0 \\ 0 & \Xi_{a,b\lambda}f(r) & (H_p - e_F) & -\Xi_{a,c\lambda}f(r) \\ \Xi_{a,c\lambda}f(r) & 0 & -\Xi_{a,c\lambda}f(r) & (H_p - e_F) - \hbar\omega \end{pmatrix} \begin{pmatrix} u_a^x \\ u_b^C \\ -v_a^y \\ -v_c^D \end{pmatrix} = \tilde{E} \begin{pmatrix} u_a^x \\ u_b^C \\ -v_a^y \\ -v_c^D \end{pmatrix}$$

Ingredients of our calculation for ¹¹Be

F. Barranco et al, PRL 119 (2017) 082501

Fermionic degrees of freedom: • $s_{1/2}$, $p_{1/2}$, $p_{3/2}$, $d_{5/2}$ Wood-Saxon levels in a box Bosonic degrees of freedom: • 2+ (3-, pair vib.) QRPA solutions tuned to (Saxon - Woods + spin - orbit) reproduce available exp. data: • 🗶 : •B(E2) = 10.4 \pm 1.2 e² fm⁴ 150 150 keV MeV **●**β em $\beta_n \approx 0.8$ **=** 1.12 40 fm

Parameter optimization

We perform the many-body calculation starting from a Woods-Saxon potential,

with a spatially dependent effective mass, with

 $m_k(r=0) = 0.7 \text{ m}, m_k(r >> R) = \mu = 0.91 \text{ m}$

The following parameters are fitted to obtain the best agreement of the renormalized energies with the experimental $1/2^+$, $1/2^-$ and $5/2^+$ states in ¹¹Be and $3/2^-$ in ⁹Be:

- Depth, diffuseness, radius, strength of spin-orbit coupling

F. Barranco et al., PRL 119 (2017) 082501 ¹¹Be

¹²B

The description of the experimental results from complementary approaches is of great interest

Can *Ab Initio* Theory Explain the Phenomenon of Parity Inversion in ¹¹Be?

A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

Wavefunctions of renormalized states

$$\begin{split} \widetilde{|1/2^+} &= \sqrt{0.82} |s_{1/2}\rangle + \sqrt{0.17} |(d_{5/2} \otimes 2^+)_{1/2^+}\rangle \\ \widetilde{|1/2^-} &= \sqrt{0.84} |p_{1/2}\rangle + \sqrt{0.14} |((p_{1/2}, p_{3/2}^{-1})_{2^+} \otimes 2^+)_{0^+}, p_{1/2}\rangle \\ \widetilde{|5/2^+} &= \sqrt{0.56} |d_{5/2}\rangle + \sqrt{0.21} |(s_{1/2} \otimes 2^+)_{5/2^+}\rangle + \sqrt{0.22} |(d_{5/2} \otimes 2^+)_{5/2^+}\rangle \end{split}$$

The renormalized 5/2+ phase shift is very different from the d5/2 phase shift In the bare potential. Test of the single-particle component of the many-body wavefunction

 $^{10}Be(d,p)^{11}Be$ at $E_d = 21.4 \text{ MeV}$

K.T. Schmitt et al., PRC88 (2012) 064612

30

50

The lineshape of ${}^{10}Be(d,p){}^{11}Be(5/2^+)$ spectrum is well reproduced by theory

¹¹Be(1/2⁺)(p,d)¹⁰Be(2⁺)

Test of the collective component of the many-body wavefunction

$$|\widetilde{1/2^+}\rangle = \sqrt{0.82}|s_{1/2}\rangle + \sqrt{0.17}|(d_{5/2}\otimes 2^+)_{1/2^+}\rangle$$

J.S. Winfield et al., Nucl.Phys. **A683** (2001) 48

Strength of the dipole transition between $\frac{1}{2}$ and $\frac{1}{2}$ states

B(E1) (th.) = $0.11 e^2 fm^2$ B(E1) (exp.) = $0.102 \pm 0.002 e^2 fm^2$

This result is sensitive to the details of the mean field potential

Isotopic shift of the charge radius

$$(< r^2 >_{10Be})^{1/2} = 2.361 \pm 0.017 \text{ fm}$$

$$(\langle r^2 \rangle_{11Be})^{1/2} = 2.466 \pm 0.015 \text{ fm}$$

Single-particle picture: S=1 Many-body picture: S=0.83 $(< r^{2} >) \frac{1}{1} s_{1/2} = 7.1 \text{ fm}$ $(< r^{2} >) \frac{1}{2} d_{5/2,coll} = 3.0 \text{ fm}$

$$\langle r^{2} \rangle_{11\text{Be}} = \left(\langle r^{2} \rangle_{10\text{Be}} + \left(\frac{\langle r^{2} \rangle_{1s1/2}^{1/2}}{11} \right)^{2} \right) \times S^{2} + (1 - S^{2}) \times \left(\langle r^{2} \rangle_{10\text{Be}} \left(1 + \frac{2}{4\pi} \beta_{\pi}^{2} \right) + \left(\frac{\langle r^{2} \rangle_{d5/2\,coll}^{1/2}}{11} \right)^{2} \right) = .$$

$$\langle r^{2} \rangle_{10\text{Be}} + \left(\frac{\langle r^{2} \rangle_{1s1/2}^{1/2}}{11} \right)^{2} \times S^{2} + (1 - S^{2}) \times \left(\left(\frac{\langle r^{2} \rangle_{d5/2\,coll}^{1/2}}{11} \right)^{2} + \langle r^{2} \rangle_{10\text{Be}} \frac{2}{4\pi} \beta_{\pi}^{2} \right)$$

 $\Delta < r^2 > \frac{1}{2}_{11Be}$ (th.) = 0.12 fm / 0.27 fm

 $\Delta < r^2 > \frac{1}{2}_{11Be}$ (exp.)= 0.11 fm

Taking properly into account the empirical coupling between single-particle and collective degrees of freedom leads to a quantitative description of various structure properties and of reactions of ¹¹Be The initial $2s_{1/2}$ state is not bound. After the first diagonalization, the ½+ state becomes bound, $1/2 + 0.95 s_{1/2} + 0.3 d_{5/2} \times 2^+$ while the 5/2+ state contains an admixture of the $2s_{1/2} \times 2^+$ configuration.

By iterating, in the calculation of the dressed $5/2^+$ state we take into account the 2-phonon contribution and the fact that the $1/2^+$ state is localized.

Aim of the talk:

To present the variety of **many body effects** at the basis of the structure of 11Be **states of quasi-particle character**, by using the framework of **Nuclear Field Theory**.

It will be shown that in order to **Simultaneously explaining**:

O spectra,

O one neutron transfer absolute $d\sigma/dEd\Omega$ cross sections in 10Be(d,p)11Be and in

....11Be(p,d)10Be reactions,

O dipole transitions and

O isotopic rms charge radius change

up to **3p-2h** configurations are unavoidable, and that antisymmetrization (**Pauli principle**) between neutron and core, and of the 2p-2h core configurations, play a crucial role, as well as the coupling to the **single-particle continuum**.

By incorporing coupling to the single-particle continuum, a **common framework for the study of structure and reactions**, based on the Nuclear Field Theory emerges. A formulation in terms of **Generalized Coupled Channels allows for the proper inclusion of Pauli principle.**

Stripping reaction to unbound state: A(d, p)B

■ The transition matrix of the **post-form** representation for the (*d*, *p*) reaction within the distorted-wave Born approximation (DWBA):

The prior form

$$T_{\text{DWBA}}^{(\text{prior})} = \left\langle \chi_{\beta}^{(-)}\psi_{n} \middle| V_{nA} + V_{pA} - U_{\alpha} \middle| \psi_{d}\chi_{\alpha}^{(+)} \right\rangle$$

$$= \left\langle \chi_{\beta}^{(-)}\psi_{n} \middle| V_{nA} \middle| \psi_{d}\chi_{\alpha}^{(+)} \right\rangle \quad \leftarrow \text{ If the remnant term } V_{pA} - U_{\alpha} = 0$$

$$= \int d\mathbf{r}_{d} \int d\mathbf{r}_{n}\chi_{\beta}^{*(-)}(\mathbf{r}_{d},\mathbf{r}_{n})\psi_{n}^{*}(\mathbf{r}_{n})V_{nA}(\mathbf{r}_{n})\psi_{d}(\mathbf{r}_{d})\chi_{\alpha}^{(+)}(\mathbf{r}_{d},\mathbf{r}_{n}).$$
oscillate attenuate attenuate
$$\int \mathbf{r}_{d} \quad \mathbf{r}_{\beta} \quad \mathbf{r}_{p}$$

$$\int \mathbf{r}_{\alpha} \quad \mathbf{r}_{n}$$

$$B \quad A \quad \text{The integration does converge.}$$

٢

Parity inversion in N=7 isotones is not reproduced by spherical non relativistic mean field calculations, although the mean field includes most of the effect of the neutron-proton interaction

Structure and reactions of N=7 isotones: the role of core degrees of freedom

R.A. Broglia
The Niels Bohr Institute
G. Potel
MSU,USA
E. Vigezzi
INFN Milano
F. Barranco
Sevilla University

Parity inversion in N=7 isotones

Experimental systematics

Mean-field results

(Sagawa, Brown, Esbensen PLB 309(93)1)

The usually quoted value of width of the 5/2+ resonance (100 keV) is derived from ${}^{9}Be(t,p)^{11}Be$ spectra

Pullen et al., Nucl. Phys. 36 (1962)1

The width from ¹⁰Be(d,p)¹¹Be(5/2⁺) spectra is much larger and is well reproduced by theory

