Multinucleon transfer and double charge-exchange reactions

 $^1\mathrm{Dpto.}$ de FAMN, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla, Spain $^2\mathrm{LNS-INFN},$ Catania

Matsue, $4^{\rm th}$ June 2018

J.A. Lay et al. (U. Seville)

Transfer & DCE

4/6/2018 1 / 22

= = 900

Double Charge Exchange

- Competing channels
 - N^{th} order transfer
 - Ingredients
 - Preliminary results
 - Single Charge Exchange
 - Double Charge Exchange

Conclusions

= = 900

Motivation

Heavy Ion Double Charge Exchange

NUMEN @ LNS-INFN

• Input for Nuclear Matrix Elements $0\nu 2\beta$ decay

HIDCX @ RCNP / RIKEN

- Light targets \Rightarrow Drip line nuclei (4n, ⁹He, ¹²Be)
- Double GT Resonance
- GT Sum Rule

The problem

40 6 (780)	41	Са	42	Ca
³⁹ K	20	K	41	K
³⁸ Ar	39 1	Ar	40 ⇒	Ar

40 Ca	41	42
Cd	Cd	Ca
³⁹ K	⁴⁰ K	⁴¹ K
³⁸ Ar	³⁹ Ar	40 Ar

40	Са	⁴¹ Ca	⁴² Ca
39,	K	⁴⁰ K	⁴¹ K
38	Ar	³⁹ Ar	⁴⁰ →Ar

Single Charge Exchange vs. Transfer

- \Rightarrow H. Lenske et al., PRL62 (1989) 1457
 - E/A \rightarrow 100 MeV/A (Osaka, Riken)
 - **x** Risky for states at Q_{opt}

Double CE vs. Transfer

- × Not much known
- ✓ An opportunity to exctract further information on the Wavefunction

Heavy Ions Double Charge Exchange

(¹⁸O,¹⁸Ne); (²⁰Ne,²⁰O); ... @15, 20 MeV/u LNS-INFN Catania, Italy

J.A. Lay et al. (U. Seville)

Transfer & DCE

4/6/2018 6 / 22

Double Charge Exchange

Heavy Ion reactions

2^{nd} order DWBA $\sigma \propto \left| \langle \chi_{\beta}^{-} \Psi(Z \mp 2, N \pm 2) \phi(z \pm 2, n \mp 2) | VGV | \Psi(Z, N) \phi(z, n) \chi_{\alpha}^{+} \rangle \right|^{2}$

$$V = V_{ST} (\sigma_a \cdot \sigma_A)^S (\tau_a \cdot \tau_A)^T + V_T S_{12} (\tau_a \cdot \tau_A)^T$$

$$G = \sum |\Psi(Z \mp 1, N \pm 1)\phi(z \pm 1, n \mp 1)\rangle G(E) \langle \Psi(Z \mp 1, N \pm 1)\phi(z \pm 1, n \mp 1)|$$

<=> <=> <=> <=> <=> <<</> <</

Double Charge Exchange

Intermediate states

J.A. Lay et al. (U. Seville)

 \Rightarrow Work in progress by H. Lenske

Competing Channels

∃ → < ∃</p>

Nth order DWBA transfer

$2nd \; \mathrm{order}$

- ✓ Control over non-orthogonalities (NO)
- ✓ Prior-post avoids any NO (sim+seq)

4th order

 \mathbf{X} NO to be fully implemented

 $\checkmark \ \ \mathsf{prior-post-post} \Rightarrow \mathsf{no} \\ \mathsf{problem} \ \ \mathsf{if} \ \mathsf{complete} \ \mathsf{basis}$

= = nar

Ingredients

- Optical potentials $\Rightarrow t_{\rho\rho}$ folding potentials
- $\bullet \ \ \, {\rm Overlaps} \ \, \langle {}^{40}Ca|{}^{41}Ca\rangle, \langle {}^{41}Ca|{}^{42}Ca\rangle, \langle {}^{40}Ca|{}^{38}Ar\rangle, \langle {}^{38}Ar|{}^{40}Ar\rangle, \ldots \ \, \\ \\ \left. \right. \ \, \left. \left. \right. \ \, \left. \left. \right. \ \, \left. \right. \ \, \left. \left. \right. \ \, \left. \left. \right. \ \, \left. \right. \ \, \left. \right. \ \, \left. \left. \right. \ \, \left. \right. \ \, \left. \right. \ \, \left. \right. \ \left. \right. \ \, \left. \left. \right. \ \, \left. \right. \ \, \left. \right. \ \, \left. \left. \right. \ \, \left. \right. \ \, \left. \right. \ \, \left. \left. \right.$
- X Sorry I am using SF \rightarrow Overlap \approx SF \cdot s.p. Wavefunction
- $\Rightarrow\,$ Careful with the interference between CE and transfer

For Single Charge Exchange

- QRPA calculations (HIDEX, H. Lenske)
- Love & Franey NN interaction

In a not so far future

• Calculate transfer from overlaps within the same calculation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Preliminary Results

Single Charge Exchange

 \Rightarrow SF from HF+BCS input of the QRPA

Single Charge Exchange

Single Charge Exchange

 \Rightarrow Dominance of Charge Exchange

Preliminary Results

Double CE

 \Rightarrow Only ground states in 2n/2p transfers

= 200

- $\Rightarrow~$ 1n1p transfer + SCE seems to be the principal competitor
- $\checkmark\,$ NO here can be under control:

 \approx (2)

$$\mathcal{T}_{\text{prior,prior,SCE}}^{(3)} \approx \qquad \mathcal{T}_{\text{SCE,post,post}}^{(3)} \\ (\mathcal{T}_{\text{seq,prior,prior}}^{(2)} + \mathcal{T}_{\text{NO,prior,prior}}^{(2)}) \\ \mathcal{T}_{\text{SCE}} \qquad \mathcal{T}_{SCE} (\mathcal{T}_{\text{seq,post,post}}^{(2)} + \mathcal{T}_{\text{SCE}}) \\ \mathcal{T}_{\text{SCE}} (\mathcal{T}_{\text{SCE}}) \\ \mathcal{T}_{$$

$$\sigma = |\sum \mathcal{T}|^2$$

J.A. Lay et al. (U. Seville)

= = nar

Preliminary results

Double Charge Exchange

<ロト <同ト < 国ト < 国

E DQC

- Lot of work to be done
- Transfer is a small "contaminant"
 - Optimum Q-value
 - Larger order
- $\checkmark\,$ Experimentally also 2n/2p transfer channels can provide further information
- $\checkmark\,$ NO for the main contribution (1n1p transfer) are under control
 - \Rightarrow Careful with sign conventions
- ?? Other contributions: deformation

= = nac

Also thanks to the whole NUMEN Collaboration

FIS2014-53448-C2-1-P

< 口 > < 同

J.A. Lay et al. (U. Seville)

Transfer & DCE

4/6/2018 23 / 22

→ Ξ → < Ξ</p>

= = 900

E. Aciksoz, L. Acosta, C. Agodi, X. Aslanouglou,

N. Auerbach, J. I. Bellone, R. Bijker, S. Bianco, D. Bonanno, D. Bongiovanni, T. Borello, I. Boztosun, V. Branchina, S. Burrello, M.P. Bussa, L. Busso, S. Calabrese, L. Calabretta, A. Calanna, D. Calvo, F. Cappuzzello, D. Carbone, M. Cavallaro, E.R. Chávez Lomelí, M. Colonna, G. D'Agostino, N. Deshmuk, P.N. de Faria, C. Ferraresi, J.L. Ferreira, P. Finocchiaro, A. Foti, G. Gallo, U. Garcia, G. Giraudo, V. Greco, A. Hacisalihoglu, J. Kotila, F. Iazzi, R. Introzzi, G. Lanzalone, A. Lavagno, F. La Via, J.A. Lay, H. Lenske, R. Linares, G. Litrico, F. Longhitano, D. Lo Presti, J. Lubian, N. Medina, D. R. Mendes, A. Muoio, J. R. B. Oliveira, A. Pakou, L. Pandola, H. Petrascu, F. Pinna, F. Pirri, S. Reito, D. Rifuggiato, M.R.D. Rodrigues, A. Russo, G. Russo, G. Santagati, E. Santopinto, O. Sgouros, S.O. Solakcı, G. Souliotis, V. Soukeras, S. Tudisco, R.I.M. Vsevolodovna, R. Wheadon, V. Zagatto = = 900

J.A. Lay et al. (U. Seville)

4/6/2018 24 / 22