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@ Direct Reactions with Exotic Beams
© Exact solution of few-body problem

© Ab-initio methods take over

@ Approximate direct reaction methods
© Toward consistent structure information

© A Blast from the Past
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Direct Reactions with Exotic Beams

Direct Reactions ...
— Nuclei make ‘glancing contact’ and separate immediately
— Only few degrees of freedom modified in the process, retain recollection
of initial state
— Dominance of single-particle properties over dynamical effects

... with exotic nuclei
— Weakly bound, short-lived, unstable nuclei (inverse kinematics)
— Halo structures

e.g.: collision of a halo @ —___——"
nucleus with atarget SO _ _---"7

From Sofia Quaglioni, keynote talk at DREB2016
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Challenges found in the study of reactions with exotic beams

Experimentally:

@ Exotic nuclei are short-lived and difficult to produce. Beam intensities are
typically small.

Theoretically:

@ Exotic nuclei are easily broken up in nuclear collisions = coupling to the
unbound states (continuum) plays an important role.

o Effective NN interactions, level schemes, etc are different from stable nuclei.

@ Many exotic nuclei exhibit complicated cluster (few-body) structure.

A.M. Moro, DREB2018, June 4th, 2018 p. 2



Nuclear Reaction Theory around the world

thhuanla

/Warsaw

® Transfer (eg. DWBA)
® Coupled-channels methods
® Faddeev )

Semiclassical & Glauber methods
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© Exact solution of few-body problem
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Recent progresses in Faddeev calculations

Exact solution of few-body scattering problem = Faddeev (4 Yakubovsky) equations:
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Deltuva, FBS58(2017) Deltuva, PRC95, 024003 (2017) Lazauskas, PRC97,044002(2018) body?
2H(p, p) @ 135 MeV 3H(d,p)®H, 2H(d,n)>He n+%He
T AVAS ! Eq=9.0MeV T INOvoa, 120 . Py,
—— AVig + UIX 2 €0 8o 90 s " -

10 CD Bonn g1 Tany s .
5 -- CDBonn + 4 z o 60 ° « X a .
2 K B s0{ ‘5
£ e Eq4=10.0 MeV g aatc P
3 1 - z S olas 2 4 N3LOWaho
g 1 _ Eg=13.0MeV Eqg=13.8 MeV w x AV18
\b 3 30 *ey, = INOY
N Ew / 60 e

3 ’s s
g M 90 ”
0 60 120 180 © 4 8
O, (deg) o w @ o w @ o E.m. (MeV)
Ocm, (deg) Oc.m. (deg)
; X 3N forces still to be in-

v Coulomb approximate. v Effective 3N and 4N forces cluded.
v/ Non-local potentials, nu-

cleon excitation...
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Recent progresses in Faddeev calculations

do/dQ (mblsr)

Exact solution of few-body scattering problem = Faddeev (4 Yakubovsky) equations:
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cluded.

= Poor scaling with particle number (limited nowadays to A = 5.)

= Heavy systems difficult.

an equal footing but ...

N-
body?

6)

A.M. Moro, DREB2018, June 4th, 2018

p.



© Ab-initio methods take over
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Ab-initio methods

Goal: Seek for accurate (but approximate) solution of many-body problem
starting from a realistic NN interaction

Common inputs ...
= realistic NN interactions (e.g. QCD-based chiral EFT),
= 3N forces (and beyond)

...but many “flavours”:

@ No-Core Shell Model (NCSM) and extensions:

e NCSM with Continuum (NCSMC)
e NCSM with Resonating-Group Method (NCSM/RGM)

@ Green's Function Monte Carlo Method (GFMC) (A< 12)

Self-Consistent Green's Function (SCGF)

@ Hyperspherical Adiabatic (HA) expansion method

Coupled-Custer Method (CCM)
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Benchmarking NCSM with FY and data

Excellent agreement with FY results ... ..and with data when 3N forces included
n+4He
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Testing the nuclear force with NCSM-NCSMC

1= Ab-initio methods applied to direct nuclear reactions have revealed excellent
tools to probe different NN (and 3N) forces:

T
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Kumar et al, PRL 118, 262502 (2017)
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Testing the nuclear force with NCSM-NCSMC

1= Ab-initio methods applied to direct nuclear reactions have revealed excellent
tools to probe different NN (and 3N) forces:

T
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Microscopic DOM optical potentials from

> SCGF — irreducible self-energy, X(E): in-medium potential experienced by a nu-

cleon.
> 3(E) links bound state properties (structure) with continuum (reaction):

e For E > 0, X(E) corresponds to ab-initio microscopic, non-local, dispersive
optical model (DOM) potentials

e For E < 0 target structure (occupation numbers, single-particle fragmenta-
tion,....)

Eg.: 49Ca(n,n) at 13.6 MeV with ab-initio SCGF potential

Idini et al, IOP Conf.Series:JoP 981, 012005 (2018)

= Accuracy limited by numerical complexity

120 160

0 40 80
0 (deg)

> Y(E) can be also parametrized phenomenologically to yield well founded, dispersive

optical model (DOM) potentials
wSee talk by Willem Dickhoff on Tuesday
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o Approximate direct reaction methods
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Alternative few-body models

> Faddeev and many-body ab-initio methods restricted so far to light systems.
> Heavier systems require simpler (more approximate) methods:

e Continuum-Discretized Coupled Channels (CDCC): elastic, breakup
@ Distorted Wave Born Approximation (DWBA): inelastic, transfer

@ Coupled-Reaction-Channels (CRC): inelastic, transfer

Adiabatic Distorted Wave Approximation (ADWA): transfer

Semiclassical, Glauber and eikonal methods: elastic, breakup
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Modelspace trunction in approximate models

Some selection of relevant degrees of freedom is inherent to approximate
methods
E.g.: Breakup of a one-neutron halo nucleus.

[ Original many-body problem ]

Oge*
&2 1Be 4@ = Start from (effective) NN interaction.
77777777 5_‘"\"’ é” nO => Complicated many-body scattering problem
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Modelspace trunction in approximate models

Some selection of relevant degrees of freedom is inherent to approximate
methods
E.g.: Breakup of a one-neutron halo nucleus.

[ Original many-body problem ]

Oge*
&2 1Be 4@ = Start from (effective) NN interaction.
77777777 5_‘"\"’ é” nO => Complicated many-body scattering problem

=> Inert target approximation

=> Projectile described with few-body model

=> Phenomenological NA interactions
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Benchmarking approximate with exact methods

> Traditional direct reaction methods were developed well before ab-initio methods,
so could be only validated against data.

> Nowdays, a comparison between approximate and ab-initio feasible, at least for
“simple” systems.
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Benchmarking approximate with exact m

> Traditional direct reaction methods were developed well before ab-initio methods,
so could be only validated against data.

> Nowdays, a comparison between approximate and ab-initio feasible, at least for
“simple” systems.

Eg.: CDCC vs Faddeev/AGS

= Benchmarks of CDCC with Faddeev/AGS fur-
nished a more solid foundation to CDCC.
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> Traditional direct reaction methods were developed well before ab-initio methods,
so could be only validated against data.

> Nowdays, a comparison between approximate and ab-initio feasible, at least for
“simple” systems.

Eg.: CDCC vs Faddeev/AGS

= Benchmarks of CDCC with Faddeev/AGS fur- ..and have evidenced some limitations in previ-
nished a more solid foundation to CDCC. ous CDCC calculations (eg. the omission of closed
channels at low energies)
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model

nd the inert-cl

Deviations from the inert-cluster model are expected to show up when cluster d.o.f. are
strongly excited during the reaction.

Microscopic models

10

11 f Be* v/ Fragments described microscopically §
Be 3
777777 @_»_J»,_,_»—"“Oj v Realistic NN interactions (Pauli properly accounted for) E_
O\ @ n ® Numerically demanding / not simple interpretation. §-
-

o

H
o
Inert cluster models 2

<

% Ignores cluster excitations (only few-body d.o.f).

® Phenomenological inter-cluster interactions (aprox. Pauli).

v Exactly solvable (in some cases).

v Achieved for A < 5 (eg. coupled-channels, Faddeev).
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nd the inert-cl model

Deviations from the inert-cluster model are expected to show up when cluster d.o.f. are
strongly excited during the reaction.

Microscopic models

10
1 f Be* v/ Fragments described microscopically =
Be i
777777 @_»_J»,_,_»—"“Oj v Realistic NN interactions (Pauli properly accounted for) E_
O\ @ n ® Numerically demanding / not simple interpretation. §-
[ Non-inert-core few-body models ]
f 10gex
. v/ Few-body + some relevant collective d.o.f.
) v/ Motivated extensions of Faddeev and CDCC (XCDCC)
-
o
H
o
Inert cluster models 2
<

% Ignores cluster excitations (only few-body d.o.f).
® Phenomenological inter-cluster interactions (aprox. Pauli).

N ! n
\!/\O v Exactly solvable (in some cases).

v Achieved for A < 5 (eg. coupled-channels, Faddeev).
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Evidence of core exitations in elastic scatteri

’ + microscopic

CDCC with inert core CDCC with deformed core Microscopic CDCC
R.Johnson et al, V.Pesudo et al,
P.Descouvemont,
PRL79,2771(1997). PRL118,152502(2017) PRL111,082701(2013)
In °r "Be+'"Au @ E, = 32 MeV ] 105

.. No c?nlimlu

£,,=27 MeV

gx %‘ 095 jmax=3/2 —_
tinuum = jmax=5/2
2 - EBCC e core 090
~= XCDCC (aetormed core @)
ge £C @49 MeviA 085
107 0 60 120 18¢
[ 5 10 15 20
0.., (degrees) 0 (deg.)
& R a
v/ Includes halo degre of freeom v Simple structure input (PVM,
PRM, etc)
% Clusters dynamics onl, . L ; : ot
Y X Y X Only collective excitations v/ Microscopic description of clus-
through effective potentials ters.
X So far, only 2-body projetiles, o B .
coud be needed for 43—b0dy v/ Core excitations “automatic
P 111 : :
projectiles (eg. = "Li,”“Be) v Collective + non-collective ex-
citations

A.M. Moro, DREB2018, June 4t




Effect of core excitations on breakup

Core excitations may enhance dramatically the breakup cross sections in reactions of
deformed halo nuclei with light targets
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Core excitations in transfer

= In a one-step transfer process (eg. DWBA), ot = Sposp

= If higher order are important, this is not true and deviations can be quantified as:
(i)
1 dSY /) e
a2 no def

E.g.: 19Be(d,p)!!Be including deuteron breakup and °Be excitation.

T
]

1+ u 5 g E E E
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04 g

@ CDCCBA : full
02| |® CDCC-BA: excluding path IV
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10Be(0t)  10Be(2+) p+''Be(gs.) 0 3 10 % %0
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M.Gomez-Ramos,A.M.M., PRC95, 044612 (2017)

= Word of caution when extracting S from ADWA or DWBA calculations! J
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© Toward consistent structure information ’ %:%II%L ﬂ .

dB(E1)/dE, (¢*m*/MeV)
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How robust is the structure information extracted from reactions?

Ideally:

= Structure properties extracted from different probes and types of reactions
should be consistent.

= Reactions dynamics and cross sections vary with incident energy, but ex-
tracted structure information should not!

But, is this so in practice ..?
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How robust is the structure information extracted from reactions?

Ideally:

= Structure properties extracted from different probes and types of reactions
should be consistent.

= Reactions dynamics and cross sections vary with incident energy, but ex-
tracted structure information should not!

But, is this so in practice ..?

Two popular examples:
@ Occupation numbers/spectroscopic factors

@ Electric transition probabilities from Coulex.
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Are SFs obtained from different probes consistent among them?

knockout, transfer and proton knockout SFs
@ Agreement theory vs experiment quantified in reduction factor:

Otheor

R, =

Texp

@ R, < 1 = correlations (long-range, short-range, tensor,..) not included in otheor?
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Are SFs obtained fi different probes consistent among them?

knockout, transfer and proton knockout SFs
@ Agreement theory vs experiment quantified in reduction factor:

Otheor

R, =

Oexp

@ R, < 1 = correlations (long-range, short-range, tensor,..) not included in otheor?

HI knockout (~100 MeV /u) Low-energy transfer (p, pN) @ 200-250 MeV /u
Tostevin, PRC90,057602(2014) Flavigny, PRL110, 122503(2013) Wakase, PTEP 021D01 (2018)

at the two Fermi surfaces
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- Rs ~ constant. al, PRL120, 052501 (2018).

I See also talk by M. Gémez-Ramos
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Are SFs obtained fi different probes consistent among them?

knockout, transfer and proton knockout SFs
@ Agreement theory vs experiment quantified in reduction factor:

Otheor

R, =

Oexp

@ R, < 1 = correlations (long-range, short-range, tensor,..) not included in otheor?

HI knockout (~100 MeV /u) Low-energy transfer (p, pN) @ 200-250 MeV /u
Tostevin, PRC90,057602(2014) Flavigny, PRL110, 122503(2013) Wakase, PTEP 021D01 (2018)

at the two Fermi surfaces
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T ]
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30 20 10 0 10 20 -10 o 0 20 e
Fermi surface asymmetry AS (MeV) AS=¢(S;-S,) (MeV)
- Reaction model: DWIA
- Reaction model: eikonal + adiabatic - Reaction model: ADWA, - Ry ~ constant.
- s strongly dependent on 5 — Sp. DWBA, CRC w= Similar resuts from GSl:Atar et
- Rs ~ constant. al, PRL120, 052501 (2018).

IF See also talk by M. Gémez-Ramos

R, from knockout disagree with those from transfer and (p, pN)

= description of reaction mechanism?
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Electric transition probability str

)
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An example: Coulomb dissociation of '*Be on heavy targets

EPM vs. CDCC analyses of breakup cross sections

Coulomb-barrier
Pesudo, PRL118,152502(2017)

Intermediate (non-rel.)

Fukuda et al, PRC70,054606(2004)

Relativistic
Palit, PRC8,034318('03)
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o TRIUMF data (Pesudo ef al.)
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1 step mechanism
Relativistic effects

Nuclear contributions
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Electric transition probability str

11
Be
T T T T
= From GSI data (Palit et al. ) with eikonal
1| @ Analysis of RIKEN data (Fukuda er al.) with EPM | _|
% —— PRM model used in XCDCC
=
= 08
E
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< 06
w
2
= 04
w
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@ Inconsistencies in extracted B(E1).

@ Needs better understanding of connection
between reaction observables (o) and struc-
ture (B(E1)).

@ Calls for better understanding of relation
among theories.

hs from Coulomb dissociation
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ulomb dissociatio

11y .
g Li
€ EPM analysis of RIKEN dafa @ 69 MeV/u T
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@ Even larger discrepancies for 'Li.
@ Inconsistencies in extracted B(E1). [ Core correlations/excitations? |
. . 11 ; . . .
@ Needs better understanding of connection @ More on “"Li during this week:

Ej::/?(;\(gla)c;ion observables (o) and struc- & J. Casal: llLi(p,pn) (theory)
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among theories. Ory)
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A Blast from the Past ..

“Old” theories are being reexamined and adapted to reactions with
exotic/weakly-bound nuclei and inverse kinematics:

2N transfer Inclusive breakup: (p.2p)
TH(*'Li,°Li)H at 3 MeV/u 209Bi(°Li,a)X 60(p,2p)*°N inv. kin.
Potel et al, PRL105,172502(2010) J.Lei, A.M., PRC92,044616(2015). Atar et al, PRL120, 052501 (2018).
“r — theary 1, wv,,
E g N theory*R /A‘ \ E
; fo { i + +\
W By s
Ichimura, Austern, Vincent Eikonal version of DWIA
model
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A Blast from the Past ..

“Old” theories are being reexamined and adapted to reactions with
exotic/weakly-bound nuclei and inverse kinematics:

2N transfer Inclusive breakup: (p.2p)
TH(*'Li,°Li)H at 3 MeV/u 209Bi(°Li,a)X 60(p,2p)*°N inv. kin.
Potel et al, PRL105,172502(2010) J.Lei, A. M PRC92 044616(2015) Atar et al, PRL120, 052501 (2018).
o CDCC’ — theary p, wv,,
3 Y /‘ +\ E
g ;gsu E ‘wF +\
% TP .
Ichimura, Austern, Vincent Eikonal version of DWIA

model

The '70s Are Back in Fashion!

N. Austern, Ichimura, Yahiro, M. Hussein (breakup theories), R.C. Jonhson (adiabatic models),
Jacob & Maris (DWIA), Baymann (2N transfer), G. Baur (Trojan Horse, inclusive breakup), and
many others who deserve our gratitude and recognition.
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Exact solution of reaction problem (Faddeev and FY)

@ Feasible for light targets (Deltuva, Lazauskas et al. ) ®
@ Ongoing initiatives to develop Faddeev codes (eg. TORUS at USA) ®
@ Limited so far to light targets (Coulomb) ®

Ab-initio methods

@ Increasing activity on many variants (NCSM, SCGF, CCM ...)
@ Accuracy comparable to Faddeev... ®

@ ...but limited to light systems (so far!) ®

v

Approximate methods

@ Recent benchmarks show good performance against more exact methods. ®

@ Intense activity toward the incorporation of more realistic structure models and
dynamics (eg. core excitations).

@ “Old” theories reexamined and updated (2N transfer, (p,pN), inclusive breakup...)

V.
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And many more exciting developments and applications which | could not
cover:

@ Charge—exchange and double charge exchange and its connection with the
neutrino double-beta decay matrix elements
Talk by J.A. Lay on Monday

@ Revival of (p,pn) and (p,2p) theories, and possible extensions to more

complicated processes: (p, pd), (p, pa), (p, ppn),..
Talk by Mengjiao Lyu on Wednesday

o Fully quantum-mechanical theory for CF and ICF reactions.
Talk by Kaitlin Cook and Ed Simpson on Wednesday

@ Progress towards understanding of many-body correlations and 3-body clus-
ter dynamics (eg. SHe).

@ Proper error quantification in theory (Nunes et al).
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