# NICER Mission on the ISS and Initial Results of Magnetars

T. Enoto (Kyoto University) Z. Arzoumanian, K. Gendreau, and NICER Science Team

中性子星の観測と理論:研究活性化ワークショップ2017 2017年11月25日@国立天文台



June 3, 2017 SpaceX CRS-11 Cargo Mission Launch Photo Credit: (NASA/Bill Ingalls)

## advertisement Neutron star Physics

"Photonuclear reactions triggered by lightning discharge" Nature Letter, 2017 Nov. 23



0

50

Time (sec)

150

100



## NICER at home on ISS





# NICER/SEXTANT — Overview

- PI: Keith Gendreau, NASA GSFC
- **Science:** Neutron star structure, dynamics, & energetics through soft X-ray timing spectroscopy
- *Launched*: June 3, 2017, SpaceX-11 resupply
- Platform: ISS external attached payload with active pointing
- Duration: 18 months baseline science mission; likely GO extension
- Instrument: 0.2–12 keV "concentrator" optics, silicon-drift detectors, GPS absolute time tagging and position
- Enhancements:
  - Demonstration of pulsar-based navigation
  - PI discretionary & ToO time
- Status:
  - Installed on ISS June 13, 2017
  - Commissioning complete, Phase E under





## Modeling surface emission to infer M-R

### Gravitational light-bending saves the day!



#### Inferring neutron star radii through lightcurve modeling — geometry



ALCER + SEXTAN

### NICER X-ray Observatory





## X-ray Concentrator optics

Single reflection, grazing-incidence nested gold-coated AI foils





## **Detector plate**

Radiation shielding

Au/Ag "traffic cone



Pb disk



## X-ray Timing Instrument (XTI) capabilities

#### A novel combination of sensitivity, timing, and energy resolution

- Spectral band: 0.2–12 keV
- Timing resolution: < 100 nsec RMS absolute
- Energy resolution: 140 eV @ 6 keV
- Non-imaging FOV: 6 arcmin diameter
- Background: < 0.5 cps
- Sensitivity, 5σ: 1 x 10<sup>-13</sup> erg/s/cm<sup>2</sup>
  - 0.5–10 keV, 10 ksec (Crab-like)
  - ~3x better than XMM-Newton's timing capability (PN clocked)
- Max countrate: ~38,000 cps (3.5 Crab)
  - Deadtime accounted for in telemetry



Gendreau et al., SPIE (2012), Arzoumanian et al., (2014)

# Launch! 2017 June 3

THEFT

14











# Launch! 2017 June 3

SpaceX CRS-11 Cargo Mission Launch June 3, 2017 Photo Credit: (NASA/Bill Ingalls)







## Transport and installation (cont.)

#### Dragon and NICER proceed to ISS transfer orbit





## Transport and installation (cont.)

#### Extraction from Dragon was delicate...





## Installation and Deployment

... but not nearly as complicated as robotic installation!

| Courtosy: Condroau & Arzoumanian |  |  |  |  |  |  |  |
|----------------------------------|--|--|--|--|--|--|--|

# Range of motion test



NICER · SEXTAN

ULSU ASTRIS SCU

SATGe



## Watch NICER collect your photons!

#### Occasional / on-demand live ISS video







## The NICER Payload

# NICER

#### Neutron Star Interior Composition Explorer





## Live ISS telemetry ~80% of the time

#### Cen X-3 pulsations in real time



Courtesy: Gendreau & Arzoumanian

# Coordination across wavelengths and facilities

Two targets, two ground-based telescopes, three successive ISS orbits GRS 1915+105





## Crab Pulse Profile Observed with NICER



ALCER + SEXTAN

ULSU ASTRIS

Start Time 17974 17:11:43:384 Stop Time 17974 23:16:07:218

# 

## Detection Significance of the Crab Pulsar







## **Exposure required to the Crab Pulse**





- Diversity: magnetars, high-B pulsars, rotation-powered pulsars, X-ray isolated neutron stars
- Baseline science in the NICER proposal...
  - "Characterise spin variations and outbursts during glitches"
  - "NICER shall spectrally distinguish between thermal and nonthermal X-ray pulse spectra and measure their absolute phases to ±100 us(1σ)"
  - "Phase resolved spectroscopy with NICER will probe line origins by localising absorption sites relative to the magnetic axis and any non thermal emission"
- Monitoring of timing behaviours of fainter magnetars and high-B pulsars, and their spectral comparison
- Phase-resolved spectroscopy of rotation-powered and isolated NSs: absorption feature, thermal/non-thermal

# NICER - SEXTANT

## Magnetar & Magnetosphere (M&M) Group



- Diversity: magnetars, high-B pulsars, rotation-powered pulsars, X-ray isolated neutron stars
- Baseline science in the NICER proposal..
  - "Characterise spin variations and outbursts during glitches"
  - "NICER shall spectrally distinguish between thermal and nonthermal X-ray pulse spectra and measure their absolute phases to ±100 us(1σ)"
  - "Phase resolved spectroscopy with NICER will probe line origins by localising absorption sites relative to the magnetic axis and any non thermal emission"
- Monitoring of timing behaviours of fainter magnetars and high-B pulsars, and their spectral comparison
- Phase-resolved spectroscopy of rotation-powered and isolated NSs: absorption feature, thermal/non-thermal





- Diversity: magnetars, high-B pulsars, rotation-powered pulsars, X-ray isolated neutron stars
- Baseline science in the NICER proposal...
  - "Characterise spin variations and outbursts during glitches"
  - \* "NICER shall spectrally distinguish between thermal and non-



# NICER - SEXTANT

## Magnetar & Magnetosphere (M&M) Group



- Diversity: magnetars, high-B pulsars, rotation-powered pulsars, X-ray isolated neutron stars
- Baseline science in the NICER proposal...
  - · "Characterise spin variations and outbursts during glitches"
  - "NICER shall spectrally distinguish between thermal and nonthermal X-ray pulse spectra and measure their absolute phases to ±100 us(1o)"
  - "Phase resolved spectroscopy with NICER will probe line origins by localising absorption sites relative to the magnetic axis and any non thermal emission"
- Monitoring of timing behaviours of fainter magnetars and high-B pulsars, and their spectral comparison
- Phase-resolved spectroscopy of rotation-powered and isolated NSs: absorption feature, thermal/non-thermal





- Total 1.5 Ms exposure
  - Targets: Priority A (12 sources), B (7 sources)
  - · (Reserved) ToO for transient sources (>200 ks)
- Magnetar
  - CXOU J164710.2-455216 low-field magnetar? Outburst in 2006, precise measurement of P<sub>dot</sub> (<4x10<sup>-13</sup>, An+2013) with NICER
- High-B pulsars
  - PSR J1119-6127 radio pulsar to exhibit a magnetar-like outburst in 2016 July. Now in declining state.
- Rotation powered
  - PSR B0656+14 —flux and timing variability analysis; non-thermal Xray pulse to constrain the location of the high-energy emission
- Absorption feature of isolated NSs
  - 1E 1207.4-5209 absorption features at 0.7 & 1.4 keV seen by XMM and Chandra. Other lines at higher energies, 2.1 and 2.8 keV?





- Total 1.5 Ms exposure
  - Targets: Priority A (12 sources), B (7 sources)
  - (Reserved) ToO for transient sources (>200 ks)
- Magnetar
  - CXOU J164710.2-455216 low-field magnetar? Outburst in 2006, precise measurement of  $P_{dot}$  (<4x10<sup>-13</sup>, An+2013) with NICER
- High-B pulsars
  - PSR J1119-6127 radio pulsar to exhibit a magnetar-like outburst in 2016 July. Now in declining state.
- Rotation powered
  - PSR B0656+14 —flux and timing variability analysis; non-thermal Xray pulse to constrain the location of the high-energy emission
- · Absorption feature of isolated NSs
  - 1E 1207.4-5209 absorption features at 0.7 & 1.4 keV seen by XMM and Chandra. Other lines at higher energies, 2.1 and 2.8 keV?





- Total 1.5 Ms exposure
  - Targets: Priority A (12 sources), B (7 sources)
  - (Reserved) ToO for transient sources (>200 ks)
- Magnetar
  - CXOU J164710.2-455216 low-field magnetar? Outburst in 2006, precise measurement of P<sub>dot</sub> (<4x10<sup>-13</sup>, An+2013) with NICER
- High-B pulsars
  - PSR J1119-6127 radio pulsar to exhibit a magnetar-like outburst in 2016 July. Now in declining state.
- Rotation powered
  - PSR B0656+14 —flux and timing variability analysis; non-thermal Xray pulse to constrain the location of the high-energy emission
- Absorption feature of isolated NSs
  - 1E 1207.4-5209 absorption features at 0.7 & 1.4 keV seen by XMM and Chandra. Other lines at higher energies, 2.1 and 2.8 keV?





- Total 1.5 Ms exposure
  - Targets: Priority A (12 sources), B (7 sources)
  - (Reserved) ToO for transient sources (>200 ks)
- Magnetar
  - CXOU J164710.2-455216 low-field magnetar? Outburst in 2006, precise measurement of P<sub>dot</sub> (<4x10<sup>-13</sup>, An+2013) with NICER
- High-B pulsars
  - PSR J1119-6127 radio pulsar to exhibit a magnetar-like outburst in 2016 July. Now in declining state.
- Rotation powered
  - PSR B0656+14 —flux and timing variability analysis; non-thermal Xray pulse to constrain the location of the high-energy emission
- Absorption feature of isolated NSs
  - 1E 1207.4-5209 absorption features at 0.7 & 1.4 keV seen by XMM and Chandra. Other lines at higher energies, 2.1 and 2.8 keV?



## NICER Example: PSR B1509-58





- A 150-ms young rotation-powered pulsar for calibrations.
- Pulse profile and pulse-on-off (background free) spectrum are consistent with previous results.



## NICER Example: PSR B1509-58





- 4U 0142+61 8.9 s prototypical bright magnetar previously observed with most of past X-ray observatories
- Fermi GBM detected a SGR-like short burst at 23:54 UT on 13 July during the NICER's commissioning phase (<u>GCN 21342</u>).
- NICER follow-up ToO observations, ~0.88, 1.0, 2.0, 3.0, 4.0 days after the burst, from July 14 to 18 (total ~75 ks)
- Signature of a glitch around the outburst from Swift monitoring (<u>Atel 10576</u>)
- · NICER observation was around the glitch?
- Additional coordinated observations with NuSTAR on August 11 to search for the hard X-ray enhancement (magnetosphere).







- 4U 0142+61 8.9 s prototypical bright magnetar previously observed with most of past X-ray observatories
- Fermi GBM detected a SGR-like short burst at 23:54 UT on 13 July during the NICER's commissioning phase (<u>GCN 21342</u>).
- Signature of a glitch around the outburst from Swift monitoring (<u>Atel 10576</u>)
- NICER follow-up ToO observations, ~0.88, 1.0, 2.0, 3.0, 4.0 days after the burst, from July 14 to 18 (total ~75 ks)
- · NICER observation was around the glitch?
- Additional coordinated observations with NuSTAR on August 11 to search for the hard X-ray enhancement (magnetosphere).





- 4U 0142+61 8.9 s prototypical bright magnetar previously observed with most of past X-ray observatories
- Fermi GBM detected a SGR-like short burst at 23:54 UT on 13 July during the NICER's commissioning phase (<u>GCN 21342</u>).
- Signature of a glitch around the outburst from Swift monitoring (<u>Atel 10576</u>)
- NICER follow-up ToO observations, ~0.88, 1.0, 2.0, 3.0, 4.0 days after the burst, from July 14 to 18 (total ~75 ks)
- · NICER observation was around the glitch?
- Additional coordinated observations with NuSTAR on August 11 to search for the hard X-ray enhancement (magnetosphere).







- · Pulse period is consistent with the Swift result.
- Pulse profile shows four-five peaks (two peaks at quiescent state). Additional hot spots on a stellar surface.
- Phase-average spectrum is approximated with 2BB model of kT ~ 0.34 and 0.75 keV.
- Analysis of the data is underway.

## PSR J1622-4950 — Radio-loud magnetar



- Most of magnetars are radio quiet.
- PSR J1622-4960 is one of rare radioloud magnetars (~5 known), discovered in 2009 at the Parkes radio observatory.
- Previous X-ray and radio observations in 2007-2011. Radio ceased in 2014 and remained undetectable during 2015-2016.
- Radio re-brightening in 2017 (Atel 10346). X-ray flux at 5x10<sup>-12</sup> erg/s/cm2 (1-10 keV) from Swift on 27 April.

Ref: Levin+2010, Anderson+2012, Scholz +2017

# NICLE - SEXTANT

## PSR J1622-4950 — Radio-loud magnetar



- Most of magnetars are radio quiet.
- PSR J1622-4960 is one of rare radioloud magnetars (~5 known), discovered in 2009 at the Parkes radio observatory.
- Previous X-ray and radio observations in 2007-2011. Radio ceased in 2014 and remained undetectable during 2015-2016.
- Radio re-brightening in 2017 (Atel 10346). X-ray flux at 5x10<sup>-12</sup> erg/s/cm2 (1-10 keV) from Swift on 27 April.

Ref: Levin+2010, Anderson+2012, Scholz +2017



## PSR J1622-4950 — Radio-loud magnetar



X-ray / radio coordinated observations with NICER

- Radio observations with Deep Space Network (DSN) 70-m diameter
  - at 2.3 and 8.4 GHz in Australia on 23 May 2015 (<u>Atel 10581</u>). Period is 4.327 sec.
- NICER observations from July 8 to 18 with a total 7.5 ks exposure.
  - NICER X-ray flux  $\sim 5 \times 10^{-12}$  erg/s/cm2 (2-6 keV).
  - Obtained spectra are consistent with Swift follow-up observations in April-June 2017.
- No pulsation detected with NICER. Pulsed fraction upper-limit at 20% (3σ, 2-6 keV).
  - 70% upper-limit in the 0.3-4.0 keV (3σ) from the previous XMM EPIC-PN observations (Levin +2010).



## Vela Pulsar — Simultaneous with Radio



- · Vela Pulsar (PSR B0833-45)
  - Rotation-powered, *P* = 89.3 sec
  - Variability in radio pulse peak intensity stronger pulses arriving earlier than that of the average profile
  - X-ray/radio correlation flux of the main Xray pulse is higher during the more intense radio pulses arriving earlier (Lommen+2007)
  - Non-thermal X-ray and radio emission are physically linked (Harding+2008)
- Simultaneous radio observations at 26-m at Mt. Pleasant observatory in Tasmania.
- NICER observations on July 7-21, NICER covers thermal and non-thermal emission

Radio observation at Mt. Pleasant / University of Tasmania (J. Dickey, J. Palfreyman et al.)



## Vela Pulsar — Simultaneous with Radio



- Vela Pulsar (PSR B0833-45)
  - Rotation-powered, P = 89.3 sec
  - Variability in radio pulse peak intensity stronger pulses arriving earlier than that of the average profile
  - X-ray/radio correlation flux of the main Xray pulse is higher during the more intense radio pulses arriving earlier (Lommen+2007)
  - Non-thermal X-ray and radio emission are physically linked (Harding+2008)
- Simultaneous radio observations at 26-m at Mt. Pleasant observatory in Tasmania.
- NICER observations on July 7-21, NICER covers thermal and non-thermal emission

Radio observation at Mt. Pleasant / University of Tasmania (J. Dickey, J. Palfreyman et al.)



## Vela Pulsar — Simultaneous with Radio



- · Vela Pulsar (PSR B0833-45)
  - Rotation-powered, P = 89.3 sec
  - Variability in radio pulse peak intensity stronger pulses arriving earlier than that of the average profile
  - X-ray/radio correlation flux of the main Xray pulse is higher during the more intense radio pulses arriving earlier (Lommen+2007)
  - Non-thermal X-ray and radio emission are physically linked (Harding+2008)
- Simultaneous radio observations at 26-m at Mt. Pleasant observatory in Tasmania.
- NICER observations on July 7-21, NICER covers thermal and non-thermal emission

Radio observation at Mt. Pleasant / University of Tasmania (J. Dickey, J. Palfreyman et al.)



## **Giant Radio Pulses of Crab Pulsar**



- · Giant Radio Pulses (GRPs)
  - sporadic & bright (~MJy) radio pulse emission
  - flux is  $10^{2-3}$  times stronger than regular pulses
  - $\cdot$  detected from ~12 pulsars
  - randomly occur at either the main or inter pulses
  - power-law energy distribution (connection to FRBs?)
- Multi-wavelength GRP studies
  - optical enhancement has been discovered at GRPs
    - 3% brightness increase @ Crab main pulse
  - Upper-limits in the higher energy (X-ray, gamma-ray)

Radio coherent emission is somehow linked to incoherent radiation in optical-to-Xray? = search for X-ray enhancement! (a few percent level enhancement?)



## **Giant Radio Pulses of Crab Pulsar**



#### · Giant Radio Pulses (GRPs)

- sporadic & bright (~MJy) radio pulse emission
- flux is  $10^{2-3}$  times stronger than regular pulses
- · detected from ~12 pulsars
- randomly occur at either the main or inter pulse
- power-law energy distribution (connection to FRBs?)

#### Multi-wavelength GRP studies

- optical enhancement has been discovered at GRPs
  - 3% brightness increase @ Crab main pulse
- Upper-limits in the higher energy (X-ray, gamma-ray)

Radio coherent emission is somehow linked to incoherent radiation in optical-to-Xray? = search for X-ray enhancement! (a few percent level enhancement?)

Shearer+2003, Bilous+2008, Majid+2011, Strader+2013, Lewandowska+2015

## **Radio Campaign Simultaneous with NICER**



Identifying GRPs at radio ➡ X-ray studies with NICER Additional Crab campaign in September? Campaign in optical / other observatories?

Mikami+2016, (Radio contribution from T. Terasawa, H. Takeuchi, Y. Murata, Y. Yonekura, H. Misawa, F. Tsuchiya, M. Sekido, K. Takefuji, T. Aoki, et al.,)

### Usuda S-band (2194-2322 MHz) on 9 Aug 2017



(C) Terasawa, Murata, Takeuchi et al. (only data from the Usuda radio observatory)

# Summary

- 1. NICER Magnetar & Magnetosphere (M&M) working group covers highly magnetised young neutron stars.
- Example scheduled targets are CXO J164710.2-455216 (low-B magnetar), PSR J1119-6127 (high-B pulsar), 1E 1207.4-5209 (absorption feature), PSR B0656+14 (rotation powered)
- 3. A prototypical magnetar 4U 0142+61 was observed with NICER during the outburst just after a SGR short burst. A pulsar glitch is suggested before or around the NICER observation.
- 4. We performed coordinated X-ray/radio observations for a radio-loud magnetar PSR J1622-4950 and Vela pulsar.
- 5. Simultaneous radio observations were performed with NICER for Crab pulsar in October to search for X-ray enhancement associated with giant radio pulses.