<u>原始中性子星における星震学</u>

Hajime SOTANI (NAOJ) T. Kuroda, T. Takiwaki, & K. Kotake

Dawn of GW astronomy era

• First detection of GWs from BH-BH merger (GW150914)

- $36M_{\odot}$ -29 M_{\odot} binary BH merger (410Mpc)

- GW151226 (Abbott et al. 16) : $14M_{\odot}$ -7.5 M_{\odot} BBH (440Mpc)
- GW170104 (Abbott et al. 17): $31M_{\odot}$ -19 M_{\odot} BBH (880Mpc)

Dawn of GW astronomy era

• First detection of GWs from NS-NS merger (GW170817)

– BH-BH, BH-NS, and NS-NS mergers

ApJL 848 L13 (2017)

- supernovae

٠

GW from SN?

- Numerical simulations tell us the GW spectra.
- difficult
 - to extract physics of PNS and/or SN mechanism
 - to make a long-term numerical calculations
 - We adopt the perturbation approach to determine the freq. from PNS.

Asteroseismology on Cold NSs

• via the observations of GW frequencies, one might be able to see the properties of NSs

Protoneutron stars (PNSs)

- Unlike cold neutron stars, to construct the PNS models, one has to prepare the profiles of $Y_{\rm e}$ and s.
 - for example, with LS220 and $s = 1.5 \ (k_{\rm B}/{\rm baryon})$, but $Y_{\rm e} = 0.01$, 0.1, 0.2, and 0.3

PNS models

- we adopt the results of 3D-GR simulations of core-collapse supernovae (Kuroda et al. 2016)
 - progenitor mass = $15M_{\odot}$
 - EOS: SFHx $(2.13M_{\odot})$ & TM1 $(2.21M_{\odot})$

- R_{PNS} is defined with $\rho_s = 10^{10} \text{ g/cm}^3$
- using the radial profiles as a background PNS model, the eigenfrequencies are determined.

Mass & Radius

- \mathcal{M}_{PNS} is increasing by mass accretion
- R_{PNS} is decreasing due to the cooling

M/R & M-R relation

中性子星の観測と理論@NAOJ

evolution of w_1 -modes

- frequencies depend on the EOS.
 - increasing with time
 - can be characterized well by M/R
- as for cold NS, we can get the fitting formula, almost independent from EOS

evolution of f-mode

- frequencies can be expressed well by the average density independent of the EOS (and progenitor mass)
- we derive the fitting formula as a function of $M/R^{\rm 3}$

determination of EOS

- with f- & w_1 -modes GW observations, one can get two independent properties at each time after core bounce, which are combination of $M_{\rm PNS}$ & $R_{\rm PNS}$
- one can determine (M_{PNS}, R_{PNS}) at each time after core bounce \rightarrow determination of the EOS
- unlike cold NS cases, in principle one can determine the EOS even with ONE GW event ! 1.50

detectability of w_1 -modes

• effective amplitude of w_1 -modes

conclusion

- We examine the frequencies of gravitational waves radiating from PNS after bounce.
 - we derive the empirical formula of w_1 & f-modes independent of the EOS
 - via the GW observation from PNS, one would see $\rm M_{PNS}$ & $\rm R_{PNS}$ evolution
- in principle, even with ONE GW event from supernova, one could determine the EOS for high density region.