

X線バーストによる元素合成の現場は 捉えることができるか?

<u>~NICERでどんな面白いことが狙えるか?~</u>

理研 岩切渉 ~中性子星の観測と理論~ 研究活性化ワークショップ2017 2017/11/24

本研究会では、中性子星の観測や理論の(特に若手の)研究者の間で議論や交流を 活発化し、互いのニーズとシーズを整理していくことで、新たな観測データからサイエ ンスを出して行く下地作りを目的とする。今年はパルサー発見から50周年の節目にあ たり、米国のNICER(Neutron star Interior Composition ExploreR)は無事打ち上 げられ、2020年代前半にはX線偏光観測衛星等が打ちあがる可能性が大きくなってき た。特に本研究会では、結果まで至っていない内容でも交流を進め、議論を重視した 勉強会にしたいと考えている。また、参加者は理論屋、観測屋が半々の割合となる予

本研究会では、中性子星の観測や理論の(特に若手の)研究者の間で議論や交流を 活発化し、互いのニーズとシーズを整理していくことで、新たな観測データからサイエ ンスを出して行く下地作りを目的とする。今年はパルサー発見から50周年の節目にあ たり、米国のNICER(Neutron star Interior Composition ExploreR)は無事打ち上 げられ、2020年代前半にはX線偏光観測衛星等が打ちあがる可能性が大きくなってき た。特に本研究会では、結果まで至っていない内容でも交流を進め、議論を重視した 勉強会にしたいと考えている。また、参加者は理論屋、観測屋が半々の割合となる予

X線偏光観測衛星の将来計画

これまでに中性子星関連のX線偏光の有意な検出は Crab nebulaのみ(軟X線では1976年以来無しWeisskopf+76)

<u>打ち上げ決定</u>

ASTRO-H (SGD検出器: 50 keV以上)
 2016年2月12日 種子島より打ち上げ予定

ミッション審査中

- 2020年打ち上げ予定

- PRAXyS(2 10 keV, 撮像を捨てて高感度)
 V.S
- IXPE(2 8 keV, 感度を捨てて撮像)

NASAの小型衛星計画の第1次審査で選ばれた3基中2基 がX線偏光。来年度に1基に絞られる。

- 2025年打ち上げ予定
- Xipe(2-8 keV, 撮像)

ESAの中型衛星計画の1次審査で、3基のうち1基に残る。

他にも、中国のミッションが上がるかも。

今後10年で、X線 偏光観測のデータ が出てくる可能性 が大きい

X線偏光観測衛星の将来計画

これまでに中性子星関連のX線偏光の有意な検出は Crab nebulaのみ(軟X線では1976年以来無しweisskopf+76)

はPoGOLiteと

マグネターの予測

は昨日の矢田部

講演

<u>打ち上げ決定</u> • ASTRO-H (SGD検出器: **50 keV以** 2016年2月12日 種子島より打ち.

<u>ミッション審査中</u>

- 2020年打ち上げ予定

PRAXyS(2-10 keV, 撮像を捨てて高感度)

IXPE(2-8 keV, 感度を捨てて撮像)

NASAの小型衛星計画の第1次審査で選ばれた3基中2基

がX線偏光。来年度に1基に絞ら

- 2025年打ち上げ予定
- **Xipe**(2-8 keV*,* 撮像) ESAの中型衛星計画の1次審査⁻

他にも、中国のミッションが上がるかも。

後10年で、X線

光観測のデータ

出てくる可能性

大きい

本研究会では、中性子星の観測や理論の(特に若手の)研究者の間で議論や交流を 活発化し、互いのニーズとシーズを整理していくことで、新たな観測データからサイエ ンスを出して行く下地作りを目的とする。今年はパルサー発見から50周年の節目にあ たり、米国のNICER(Neutron star Interior Composition ExploreR)は無事打ち上 げられ、2020年代前半にはX線偏光観測衛星等が打ちあがる可能性が大きくなってき た。特に本研究会では、結果まで至っていない内容でも交流を進め、議論を重視した 勉強会にしたいと考えている。また、参加者は理論屋、観測屋が半々の割合となる予

本研究会では、中性子星の観測や理論の(特に若手の)研究者の間で議論や交流を 活発化し、互いのニーズとシーズを整理していくことで、新たな観測データからサイエ ンスを出して行く下地作りを目的とする。今年はパルサー発見から50周年の節目にあ たり、米国のNICER (Neutron star Interior Composition ExploreR)は無事打ち上 げられ、2020年代前半にはX線偏光観測衛星等が打ちあがる可能性が大きくなってき た。特に本研究会では、結果まで至っていない内容でも交流を進め、議論を重視した 勉強会にしたいと考えている。また、参加者は理論屋、観測屋が半々の割合となる予

NICER

NICER(Neutron star Interior Composition ExploER)

- 56台のX線集光鏡と、高カウントレートの 処理に強いシリコンドリフト検出器
- 単独パルサーのパルス波形の高精度観 測から、中性子星の質量と半径を決める ことを主目的とした、視野の狭いポイン ティング観測機器
- 2017年6月にISSに設置、現在問題無く運 用中

2000 NICER 有效面積 1500 500 500 500 Swift XRT (Windowed Timing) 0.1 1 1 10 Energy (keV)

NICERの強み:

- 1. 有効面積が大きい(短時間のスペクトル 変動を追える)
- 2. 時刻精度が < 300 nsec(absolute)→kHzの 変動が追える
- 3. ISSに搭載されいてるため、人工衛星に比 ベてコマンドを送るタイミングが多い→突 発天体の緊急観測(ToO)に向いている

NICER ファーストライト

https://www.nasa.gov/press-release/goddard/2017/nasaneutron-star-mission-begins-science-operations

NICERでこういう観測ができれば:

- 1. X線スーパーバーストの観測→rp過程の元素合成
- 2. X線連星パルサーの表面温度の変化→NSの内部 情報
- 3. X線連星パルサーのkHz帯域の変動の探査→ULX パルサーの放射機構

低質量X線連星からのX線「スーパーバースト」

9

10

が欲しい

エネルギー(keV)

30

40

スーパーバースト:継続時間が数時間。Ignition column depth~10¹² g/cm²。海の底で起きる炭素の核融合と考え られる。→ rp過程元素が放出、曝露すればX線で観測で きるのでは?

問題:年に数回のレアイベント。観測例が少なく、エネ ルギー分解能の良い検出器での観測例が無い

<u>MAXI-NICER連携</u>

・感度は低いが92分でX線帯域の全天を走査しているMAXIと、感度は高いが視野の狭い NICERは非常に相補的。スーパーバーストのToO観測はまだだが、これまで恒星フレアなど 地上経由でのToO観測を2 events/月程度で行っている ・究極的には、MAXIのトリガーソフトをISSのPCで走らせて、直接NICERに情報を送る計画も 進められている(軟X線帯域におけるSwift衛星のようなものになる) スーパーバーストの他のトピック

どうやって炭素に火がつく温度(6 x 10⁸ K)に達するか?

アウタークラスト付近の温度を上げる物理としては、電子捕獲(e.g, Gupta+07) とピクノ核融合(高密度下、格子振動による核融合)等がある。

連星系のNSの表面温度は?

低質量X線連星の、アウトバーストが終了してからのNSの表面温度の 変化を測定していくと、MAXI J0556-322の温度が高すぎる(kT~300 eV)。 アウタークラスト付近に未知のShallow heating source(Homan+14, Deibel+15)? このような観測はこれまで主にチャンドラ衛星が担っていたが、<u>NICER</u>に よってもさらにサンプルが増えていくと考えられる。

磁場の強いNSの連星系(X線パルサー)の表面温度は?

連星軌道毎に表面温度が測定で きれば、近星点で「磁極」に物が 降ってから、どのように冷えていく かが見えるのではないか。←有効 面積が大きく、<u>NICER</u>の観測が適し ている。

課題:降着による放射と、表面放射 の成分を切り分けられるかどうか。

X線パルサーの観測からULXパルサーの情報を得られるか?

ULX (Ultra Luminous X-ray) パルサー :

- 光度が、10³⁹ erg/s を超える、つまりエディントン光度を超えている系外のパルサー
- NuSTAR衛星による発見を皮切りに、これまで3天体発見されている

→超臨界降着?マグネターの連星系(Tsygankov+16a,b)?

- スーパーバースト後の輝線の解釈のアイデア募集中
- NICERでやりたいサイエンス募集中