空間拡散過程を考慮したパルサー星雲の 一次元モデル

石崎 涉 (東京大学理学系研究科 物理学専攻 D2)

共同研究者:浅野勝晃 (宇宙線研究所)

Introduction - パルサー星雲-

- 回転駆動型パルサーの周囲に広がる天体
 - ・ 数pc程度に広がって存在
 - 中の詰まった繭状の構造
- 電波からγ線まで広がる非常にbroadなspectrum
 - ・ パルサー風がISM(or SNR)と相互作用して衝撃波を形成
 - パルサー風のe[±]が加速され非熱的放射
- 例:メシエ天体 M1「かに星雲」 (SN1054)

(X : NASA , radio : NCSU) G21.5-0.9

パルサー星雲の空間分解観測

- X線放射の空間分解観測
 - X線放射を出す粒子は、星雲内に存在する最高エネルギーの粒子
 - ⇒ X線放射の空間分布は、高エネルギー粒子の伝播過程の重要な手がかり

G21.5-0.9

b)

空間分解観測のデータを生かせる 1次元のBroadband spectrumモデルを構築する!

もくじ

- 1. Introduction
- 2.1次元定常モデル
- 3. 定常拡散モデル
- 4. 拡散過程の反作用の定式化

もくじ

1. Introduction

- 2.1次元定常モデル
- 3. 定常拡散モデル
- 4. 拡散過程の反作用の定式化

パルサー星雲の標準的描像

- 一次元定常モデル Rees & Gunn (1974), Kennel & Coroniti (1984)
 - 終端衝撃波での粒子加速を仮定
 - 加速粒子は放射冷却しながら流体とともに移流する
 - ・ 粒子のエネルギー・空間分布を計算
 かに星雲のSED・膨張速度をよく説明
 - ⇒ 星雲の標準モデルとして受け入れられた

1D steady model-

- KC modelの問題
 - KCモデルは、3C 58やG21.5-0.9といった他のパルサー星雲のX線の表面輝度分布を説明しない(Ishizaki+17)
 - SEDを説明するために必要な磁場強度の もとでは、星雲の外縁部に到達する前に 冷却でエネルギーを失ってしまう

G21.5-0.9

Motivation – Improvement of the 1D steady model-

- X線の放射領域の問題を解決するには…
 - 放射冷却を抑える過程
 - より効率的に粒子の空間的分布を拡げる過程
- パルサー星雲の拡散モデル
 - シミュレーションは星雲内に乱れた磁場の存在を示唆
 - Tang & Chevarier (2012)
 - 拡散で3C 58, G21.5-0.9のphoton indexの半径依存性を説明
 - Porth et al. (2016)
 - Test particleで3D simulationから拡散係数を推定
 - 得られた拡散係数を用いて1D steady modelを構築
 - X線の拡がりを説明するためにはκ~10²⁷cm²/sが必要
 - ・ ただし、いずれも「表面輝度分布のプロファイル」のみ議論
- 問題点
 - X線の放射領域の問題は、SEDから期待される磁場の強さが、
 表面輝度分布を説明するには強すぎるのが本質

Motivation – Improvement of the 1D steady model-

- X線の放射領域の問題を解決するには...
 - 放射冷却を抑える過程
 - より効率的に粒子の空間的分布を拡げる過程
- パルサー星雲の拡散モデル
 - シミュレーションは星雲内に乱れた磁場の存在を示唆
 - Tang & Chevarier (2012)
 - 拡散で3C 58, G21.5-0.9のphoton indexの半径依存性を説明
 - Porth et al. (2016)

拡散係数を考慮した1次元定常モデルは、

- 先行研究の拡散係数で星雲のSEDを再現できるか?
- ・ ただし、いずれも「表面輝度分布のプロファイル」のみ議論
- 問題点
 - X線の放射領域の問題は、SEDから期待される磁場の強さが、
 表面輝度分布を説明するには強すぎるのが本質

⇒ SEDと表面輝度を同時に検証すべき!

「粒子の空間拡散」を考慮することによるKCモデルの改良

Model – Overview-

- (仮定)
- 衝撃波下流の流れは、KCモデルを採用
- 拡散係数は空間的に一様とする
- 接触不連続面以遠で流体による移流の効果なし
- 星雲の年齢以内で到達できる拡散距離以遠では 粒子が存在しないとする

- ・1次元・定常拡散モデル
 - 終端衝撃波での粒子加速
 - ・ 粒子は、星雲内の流れに押し流されると同時に、星雲内の乱れた磁場に散乱されながら広がっていく
 - 接触不連続面の外にも拡散して広がる効果を考える

Model –Energy distribution & Radiation-

 $\kappa = \kappa_0 (E/E_h)^{1/3} \propto E^{1/3}$

• n(E,r):半径 rにおける粒子のエネルギースペクトル

- Photon spectrum
 - ・ シンクロトロン放射
 - KCモデルによって与えられる各点の磁場を利用
 - ・ 逆コンプトン散乱
 - ・ 非散乱光子は 天体中に一様に分布していると仮定
 - ・ 実際の天体と比較する際にはGALPROPモデルを採用

視線方向に積分

- ・ 観測量との比較
 - n(E,r)から単位体積あたりの放射率j_vが得られる

• SED:
$$F_{\nu} = \frac{1}{4\pi D^2} \int_{r_s}^{r_N} j_{\nu} 4\pi r^2 dr$$

• 表面輝度分布 : $B_{\nu}(s) = \int_{\min(r_s,s)}^{r_N} \frac{j_{\nu}rdr}{\sqrt{r^2-s^2}}$

積分

Result

G21.5-0.9 Given Parameters Symbol \mathbf{KC} AD Spin-down Luminosity (erg s^{-1}) 3.5×10^{37} $L_{\rm sd}$ 4.8^{b} Distance (kpc) DRadius of the nebula (pc) 0.9 $r_{\rm N}$ Fitting Parameters Break Energy (eV) $E_{\rm b}$ 2.6×10^{10} 6.0×10^{10} Low-energy power-law index 1.11.02 p_1 High-energy power-law index 2.32.5 p_2 Radius of the termination shock (pc) 0.050.05 r_{s} $1.0 imes 10^{26}$ Diffusion coefficient with energy $E_{\rm b}$ κ_0 Exterior magnetic field (μG) B_{ext} 40Magnetization parameter 2.0×10^{-4} $6.0 imes 10^{-4}$ σ

- Target
 - 若いパルサー星雲 G21.5-0.9
 - 多波長の観測結果が豊富で、X線の空間観測分解がある

			G21.5-0.9	
	Given Parameters	Symbol	\mathbf{KC}	AD
このときの乱流磁場強度は? δB/Bの値は?	Spin-down Luminosity (erg s^{-1})	$L_{\rm sd}$	3.5×10^{37}	
	Distance (kpc)	D	4.8^{b}	
	Radius of the nebula (pc)	$r_{ m N}$	0.9	
	Fitting Parameters			
	Break Energy (eV)	$E_{\rm b}$	2.6×10^{10}	$6.0 imes 10^{10}$
	Low-energy power-law index	p_1	1.1	1.02
	High-energy power-law index	p_2	2.3	2.5
	Radius of the termination shock (pc)	$r_{\rm s}$	0.05	0.05
	Diffusion coefficient with energy $E_{\rm b}$	κ_0	-	$1.0 imes 10^{26}$
	Exterior magnetic field (μG)	$B_{\rm ext}$	-	40
	Magnetization parameter	σ	2.0×10^{-4}	6.0×10^{-4}

Target

Result

- 若いパルサー星雲 G21.5-0.9
- 多波長の観測結果が豊富で、X線の空間観測分解がある

- 表面輝度分布
 - X線の表面輝度分布をよく再現
 - TeVの放射領域は、電波・X線の2倍程度までひろがる

もくじ

- 1. Introduction
- 2. 1次元定常モデル
- 3. 定常拡散モデル
- 4. 拡散過程の反作用の定式化

定式化

- "流体静止系"をどう決めるか?
 - 如何に非熱的粒子の集団だとはいえ、"流体"は集団運動して見える
 - ・ 速度分布が等方に見える座標系があると思って、それを"流体静止系"と思う
- 出発点
 - Boltzman方程式(等方拡散)

Result

- 拡散過程による減速
 - 球対称系では拡散は総計で外向きの流束を作る
 - ⇒ 運動量が半径方向に持ち出される ⇒ 反作用で流体は減速

Result

 $σ=3 × 10^{-4}$ $r_s=0.05 pc$ $L_{sd}=3.5 × 10^{37}$ $r_N=2.0 pc$ $γ_1=2.2 × 10^4$ $κ=3.0 × 10^{26} (E/1TeV)^{1/3} cm^2/s$

- 拡散過程による減速
 - 球対称系では拡散は総計で外向きの流束を作る
 - ⇒ 運動量が半径方向に持ち出される ⇒ 反作用で流体は減速

Summary

- ・まとめ
 - パルサー星雲の球対称・定常の拡散モデルを構築した。このとき、拡散による星 雲外への粒子の逃げ出しと、逃げ出した粒子からの放射まで考慮した
 - これをG21.5-0.9に適用し、星雲全体のスペクトル(SED)とX線の表面輝度分布を同時に再現することに成功した
 - このようなパラメータのもとでは、TeV程度のガンマ線は逃げ出した粒子からの寄 与が大きくなることを示した。さらに、この場合TeVガンマ線の放射領域の拡がりは、 X線や電波のそれの2倍程度まで広がることも示した。
 - 拡散の反作用を考慮した流体方程式の定式化を行った
 - 拡散の反作用は流体を減速する方向に働く可能性があること、また反作用を考慮しないモデルで用いた拡散係数の大きさでも、流体構造に拡散の効果が表れていること、を示した。
- 課題
 - 拡散の反作用を考慮した流体方程式のもとでの、星雲の放射計算
 - 拡散係数が放射へどのように影響を与えるかの系統的な調査
 - より現実的な拡散係数のモデル化、および境界条件の取り扱い