Two-photon Physics at Belle, KEKB

Sadaharu Uehara (KEK) Belle Collaboration

第12回 高エネルギー QCD・核子構造 勉強会 July 7, 2017

Two-photon Physics at e⁺e⁻ collider

 $\begin{array}{c} e^{-} & (\text{Resonance}) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & e^{+} & & \\ &$

Strict constraints for quantum numbers \rightarrow **Determination of J^P by PWA** $\Gamma\gamma\gamma$: The cross section is proportional to the two-photon partial decay width of the resonance, useful information to explore **meson's internal structure**

Decay properties of the resonance

Searches/Discoveries of **new resonances**

Isospin mixing, interference effects among various processes Form factors, Test of QCD (including a use of highly virtual photons)

KEKB Accelerator and Belle Detector

- Asymmetric e⁻ e⁺ collider 8 GeV e⁻ (HER) x 3.5 GeV e⁺ (LER)
 √s= around 10.58 GeV ⇔ Υ(4S)
 Beam crossing angle: 22mrad
- World-highest Luminosity L_{max}=2.1x10³⁴ cm⁻²s⁻¹

 \int Ldt \sim 1040 fb⁻¹ (Completed in Jun.2010)

High momentum/energy resolutions CDC+Solenoid, Csl Vertex measurement – Si strips Particle identification TOF, Aerogel, CDC-dE/dx, RPC for K_L/muon

S. Uehara, KEK, Jul. 2017

Published Two-photon Results from Belle

Process	Reference	Int. Lum.	γγ c.m. energy	Light Mesons	Charm.
p p K ⁺ K ⁻	PRD93,112017(2016) 980 fb ⁻¹	3.2-5.6 GeV	<mark>Λ(1520)</mark> , Θ(11540)	Х _{с0,} с2
γ*γ→π ⁰ π	⁰ PRD93, 032003 (2016) 759 fb ⁻¹	Q ² <30 GeV ²	f0(980), f2(1270)	
$K_{S}^{0}K_{S}^{0}$	PTEP 2013, 123C01 (2013)	972 fb ⁻¹	1.05-4.0 GeV	$\begin{array}{l} f_2(1270),a_2(1320),f_0(2500)\\ f_2'(1525),f_2(2200),f_0(1710) \end{array}$	$\frac{\chi_{c0,c2}}{\eta_c}$
η'π ⁺ π⁻	PRD 86, 052002 (2012)	673 fb ⁻¹	1.4-3.4 GeV	η(1760), X(1835)	η_c
$\gamma\gamma^* \rightarrow \pi^0$	PRD 86, 092007 (2012)	759 fb ⁻¹	4 <q<sup>2 < 40 GeV²</q<sup>		
ωφ, φφ, ωω	PRL 108, 232001 (2012)	870 fb ⁻¹	< 4.0 GeV		$\chi_{c0, c2} = \eta_c$
ηη	PRD82,114031(2010)	393 fb ⁻¹	1.096- 3.8 GeV	f ₂ (1270), f ₂ '(1525)	χ _{c0, c2}
ω//ψ	PRL104, 092001 (2010)	694 fb ⁻¹	3.9-4.2 GeV		X(3915)
φ//ψ	PRL 104, 112004 (2010)	825 fb ⁻¹	4.2-5.0 GeV		X(4350) 21
$\eta\pi^0$	PRD80:032001, 2009	223 fb ⁻¹	0.84-4.0 GeV	a ₀ (980), a ₀ (1450),a ₂ (1320)	
$\pi^0\pi^0$	PRD79:052009,2009	223 fb ⁻¹	0.6-4.1 GeV	f4(2050), f2(1950)	χ _{c0, c2}
$\pi^0\pi^0$	PRD78:052004,2008	972 fb ⁻¹	0.6-4.0 GeV	f ₂ (1270), f ₀ (980),f2'(1525)	$\chi_{c0, c2}$ η_c
four- meson	EPJC53,1(2008)	395 fb ⁻¹	1.4-3.4 GeV		$\frac{\chi_{c0, c2}}{\eta_{c}(2S)}$
$K_{s}^{0}K_{s}^{0}$	PLB 651, 15 (2007)	397.6 fb ⁻ 1	2.4-4.0 GeV		χ _{c0, c2}
$\pi^+\pi^-$	PRD 75, 051101(2007)	85.9 fb ⁻¹	0.8-1.5 GeV	$f_0(980), f_2(1270), \eta'(958)$	
DD	PRL 96, 082003 (2006)	395 fb ⁻¹			χ' _{c2}
pp	PLB 621, 41 (2005)	89 fb ⁻¹	2.03-4.0 GeV		η_{c}
$\pi^+\pi^-/K^+K^-$	PLB 615, 39 (2005)	87.7 fb ⁻¹	2.4-4.1 GeV		χ _{c0, c2}
K^+K^-	EPJC32,323(2003)	67 fb ⁻¹	1.4-2.4 GeV	f2'(1525)	
γJ/ψ	PLB 540, 33 (2002)	32.6 fb ⁻¹	3.2-3.8 GeV		Χ_{c2} 22
				(0000))

Comments

Pentaguarks Single tag, scalar and tensor meson TFF Neutral P-meson pair P-, PT- mesons Single tag, pi0 TFF **Neutral V-meson pairs Neutral P-meson pair** Exotic charmonium-like Exotic charmonium-like **Neutral P-meson pair Neutral P-meson pair Neutral P-meson pair** Charmonium decays Neutral P-meson pair Charged P-meson pair New charmonium Baryon pair Charged P-meson pair Radiative decay of charmonium S. Uehara, KEK, Jul. 2017

QCD test at high-energy region

Meson-pair production and QCD

M.Diehl, P.Kroll, PLB 683, 165 (2010)

" $\gamma\gamma \rightarrow$ Pseudoscalar-meson pair" from Belle

10 papers for 6 processes

Process	Reference BELLE	Int.Lum. (fb ⁻¹)	γγ c.m. Energy (GeV)	Light Mesons	QCD	Char- monia
$\pi^+\pi^-$	PLB 615, 39 (2005) PRD 75, 051101(R) (2007) J. Phys. Soc. Jpn. 76, 074102 (2007)	87.7 85.9 85.9	2.4 - 4.1 0.8 - 1.5 0.8 - 1.5	$\sqrt{1}$	\checkmark	\checkmark
K^+K^-	EPJC 32, 323 (2003) PLB 615, 39 (2005)	67 87.7	1.4 - 2.4 2.4 - 4.1	\checkmark	\checkmark	\checkmark
$\pi^0\pi^0$	PRD 78, 052004 (2008) PRD 79, 052009 (2009)	95 223	0.6 - 4.0 0.6 - 4.0	$\sqrt[]{}$	\checkmark	\checkmark
$K^0_{\ S}K^0_{\ S}$	PLB 651, 15 (2007) PTEP 2013, 123C01 (2013)	397.1 972	2.4 - 4.0 1.05 - 4.0	\checkmark	$\sqrt[]{}$	$\sqrt{1}$
$\eta\pi^0$	PRD 80, 032001 (2009)	223	0.84 - 4.0	\checkmark	\checkmark	
ηη	PRD 82, 114031 (2010)	393	1.1 – 3.8	\checkmark	\checkmark	\checkmark

Differential cross section $d\sigma/d \cos \theta^*$ for these processes are measured.

S.Uehara, KEK, Jul. 2017

W-dependences at high energies

Cross sections and their ratios

Process	п	W(GeV)	$ \cos \theta^* $	BL	BC	DKV
$K_{\rm S}^0 K_{\rm S}^0$	$11.0 \pm 0.4 \pm 0.4$	2.4 - 4.0 [†]	< 0.8		10	
$\pi^+\pi^-$	$7.9 \pm 0.4 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
K^+K^-	$7.3 \pm 0.3 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
$\pi^0\pi^0$	$8.0\pm0.5\pm0.4$	3.1 - 4.1 [†]	< 0.8		10	
$\eta \pi^0$	$10.5 \pm 1.2 \pm 0.5$	3.1 - 4.1	< 0.8		10	
$\eta\eta$	$7.8\pm0.6\pm0.4$	2.4 – 3.3	< 0.8		10	
Process	σ_0 ratio	W(GeV)	$ \cos heta^* $	BL	BC	DKV
$K^{+}K^{-}/\pi^{+}\pi^{-}$	$0.89 \pm 0.04 \pm 0.15$	3.0 - 4.1	< 0.6	2.3	1.06	
$K_S K_S / K^+ K^-$	\sim 0.10 to \sim 0.03	2.4 - 4.0	< 0.6		0.005	2/25
$\pi^{0}\pi^{0}/\pi^{+}\pi^{-}$	$0.32 \pm 0.03 \pm 0.06$	3.1 - 4.1	< 0.6		0.04-0.07	0.5
$\eta \pi^0 / \pi^0 \pi^0$	$0.48 \pm 0.05 \pm 0.04$	3.1 - 4.0	< 0.8	$0.24R_f(0.46R_f)^{\ddagger}$		
$\eta\eta/\pi^0\pi^0$	$0.37 \pm 0.02 \pm 0.03$	2.4 - 3.3	< 0.8	$0.36R_f^2(0.62R_f^2)^{\ddagger}$		

† Exclude χ_{cJ} region, 3.3 - 3.6 GeV.

Assuming η is a member of SU(3) octet (superposition of octet and singlet with mixing angle of $\theta_p = -18^\circ$). R_f is a ratio of decay constants, $f_{\eta}^2/f_{\pi^0}^2$.

- *n* ranges 7 to 11. Close or not far from QCD prediction of 6 and 10.
- Cross section ratios tend to be constant above 3 GeV.

Summarized by H.Nakazawa Hadron2013

$\gamma\gamma \rightarrow$ Vector-meson pair

Belle, PRL 108, 232001 (2012)

Discussion of the Cross-section sizes by V. Chernyak (arXiv:1212.1304[hep-ph])

```
Slope parameters for high W:
n=7.2 \pm 0.6 (\omega \phi)
8.4 \pm 1.1 (\phi \phi)
9.1 \pm 0.6 (\omega \omega)
```

pp final-state cross sections

PLB 621, 41 (2005) $W_{\gamma\gamma}^{-n}$ dependence $n=15.1 \pm_{1.1}^{0.8}$ @ 2.5 - 2.9 GeV $n=12.4 \pm_{2.3}^{2.4}$ @ 3.2 - 4.0 GeV Might agree with a QCD prediction n= 10 at some energy above 3.1 GeV

Slope – steeper than meson pairs

C-even Charmonium(-like) states

Most beautiful signals

Interference	$N_{\chi_{c0}}$	$N_{\chi_{c2}}$	$-2\ln \mathcal{L}/ndf$
not included	$248.3^{+17.9}_{-17.2}$	$53.0^{+8.1}_{-7.4}$	57.34/73
included	266 ± 53	53^{+14}_{-12}	57.22/71

* Interference between χ_{c0} and continuum Product of two-photon decay width and $B(K^0_{S}K^0_{S})$

Interference	$\Gamma_{\gamma\gamma}\mathcal{B}(\chi_{c0})$	$\Gamma_{\gamma\gamma}\mathcal{B}(\chi_{c2})$
	(eV)	(eV)
not included	$8.09 \pm 0.58 \pm 0.83$	$0.268^{+0.041}_{-0.037} \pm 0.028$
included	$8.7\pm1.7\pm0.9$	$0.27^{+0.07}_{-0.06} \pm 0.03$
Belle 2007	$7.00 \pm 0.65 \pm 0.71$	$0.31 \pm 0.05 \pm 0.03$
PDG 2012	7.3 ± 0.5	0.297 ± 0.026

 $\eta_c(1S) \rightarrow \eta' \pi^+ \pi^-; \ \Gamma_{\gamma\gamma} \mathcal{B}$ is the product of the two-photon decay width and the branching fraction. The world-average values are shown for comparison.

Parameters	This work	PDG
Y	$486^{+40}_{-39} \pm 53$	
$M, \mathrm{MeV}/c^2$	$2982.7 \pm 1.8 \pm 2.2$	2980.3 ± 1.2
Γ , MeV/ c^2	$37.8^{+5.8}_{-5.3} \pm 2.8$	26.7 ± 3
$\Gamma_{\gamma\gamma}\mathcal{B}, eV/c^2$	$50.5^{+4.2}_{-4.1} \pm 5.6$	194 ± 97
B, %	0.87 ± 0.20	2.7 ± 1.1

S.Uehara, KEK, Jul. 2017

Peak of X(3915) in $\gamma\gamma \rightarrow \omega J/\psi$ and $\chi_{cJ}(2P)$

((3	915)
Nas	Xc0	(3915)

$$I^{G}(J^{PC}) = 0^{+}(0 \text{ or } 2^{++})$$

Mass $m = 3918.4 \pm 1.9$ MeV Full width $\Gamma = 20 \pm 5$ MeV (S = 1.1)

X(3915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega J/\psi$	seen	222
$\pi^+\pi^-\eta_c(1S)$	not seen	785
$\eta_c \eta_c$	not seen	665
$\eta_c \pi^0$	not seen	815
κ κ	not seen	1896
$\gamma\gamma$	seen	1959
The first 1		diagonad

 $\chi_{c2}(2P)$

in two-photon by Belle PRL 96, 082003 (2006)

Mass $m = 3927.2 \pm 2.6 \text{ MeV}$ Full width $\Gamma = 24 \pm 6 \text{ MeV}$ The mass is different,

x _{c2} (2P) DECAY MODES	Fraction (Γ_i/Γ)	a little.	p (MeV/c)
$\gamma\gamma$	seen		1964
$D\overline{D}$	seen		615
$D^{+}D^{-}$	seen		600
$D^0 \overline{D}{}^0$	seen		615
$\pi^+\pi^-\eta_c(1S)$	not seen		793
K <i>κ</i>	not seen		1901

It is believed as two-photon production of Y(3940) discovered in B decays, but the spin=0 is not finally confirmed, yet. S.Uehara, KEK, Jul. 2017

Any $\chi_{c0}(2P) \rightarrow D\overline{D}$ seen?

It is expected that $\chi_{c0}(2P)$ has a large coupling to DD

Light-meson spectroscopy

The six processes; in total ~20 peaks

W>~2.5 GeV: (Netgative) Power law works + (χ_c charmonia)

S.Uehara, KEK, Jul. 2017

Confirmation of $f_0(980)$ and $a_0(980)$ formations

Two-photon decay width of $f_0(980)$ and $a_0(980)$

0000

S.Uehara, KEK, Jul. 2017

The tensor-meson triplet, $f_2(1270)$, $a_2(1320)$, $f_2'(1525)$

 $f_0(1710)$ formation in $K^0_S K^0_S$

 $f_0(1710) \rightarrow K_s^0 K_s^0$ is confirmed in two-photon process.

ara, KEK, Jul. 2017

The 1.8 – 2.2 GeV region

- $f_2(1950) \rightarrow \pi^0 \pi^0$ shows a broad structure
- Similar structure exists in K⁺K⁻ (but, they can be different states)
- No peak in $\eta \pi^0$, $\eta \eta$ and $K^0_{\ S} K^0_{\ S}$ in this mass region

Search for exotic baryons (Pentaquarks)

Single-tag measurement and meson TFFs

TFF: transition form factor

$\gamma * \gamma \rightarrow \pi^0 \pi^0 : f_0$ (980) and f_2 (1270) TFF's

Physics motivations:

- Q² dependence of TFF for scalar and tensor mesons (This is the first measurement)
- Test of QCD of qq meson model
- Light-by-Light hadronic contribution for $g-2|_{u}$

PRD 93, 032003 (2016)

Formalism of PWA

$$|F(Q^2)| = \sqrt{\frac{\sigma_R^{\lambda}(Q^2)}{\sigma_R^{\lambda}(0)(1 + \frac{Q^2}{M^2})}}$$

$$\frac{d\sigma(\gamma^*\gamma \to \pi^0\pi^0)}{d\Omega} = \sum_{n=0}^2 t_n \cos(n\varphi^*),$$

$$t_0 = |M_{++}|^2 + |M_{+-}|^2 + 2\epsilon_0 |M_{0+}|^2,$$

$$t_1 = 2\epsilon_1 \Re \left((M_{+-}^* - M_{++}^*)M_{0+} \right),$$

 $t_2 = -2\epsilon_0 \Re(M_{+-}^* M_{++}),$

++ etc. --- Helicity state of the incident photons

- S, D₀ etc. -- Partial-wave amplitude in $\pi^0\pi^0$ scattering
- *B*, *A*_f -- Background and *f*-resonance components.
- ϵ_0, ϵ_1 --- A spin-dependent flux factor ratio for the virtual-photons

TFF is defined for each resonance R produced with each helicity λ

To obtain the resonance amplitudes: Perform PWA, parameterizing W dependence of the resonance and continuum components of each helicity amplitude, e.g.,

$$M_{++} = S + D_0,$$

$$S = B_S(W) + A_{f0}(W)$$

$$D_0 = 4\pi [B_{D0}(W) + A_{f2}(W)\sqrt{r_{20}}] Y_2^0$$

etc.

Determine each component as well as the relative phase by a fit

Cross-section results and fit

Q² dependence of resonant amplitudes

Theoretical predictions:

Schuler, Berends, van Gulik, a heavy quark approx. NPB 523, 423 (1998)

Pascalutes, Pauk, Vanderhaeghen, saturated sum rule, PRD 85, 116001 (2012), η 's

ibid., axial-vector mesons

Summary

Highlights of Two-photon physics results from Belle

- Systematic QCD test with many kinds of meson pair channels @ 3 4 GeV
- Discovery/observations of new charmonium(like) states $\chi_{c2}(2P)$, X(3915) etc.
- Precise determination of $\Gamma\gamma\gamma\,$ and BF for the charmonium ground states
- Comprehensive light-meson spectroscopy
 - Observation of scalar states
 - Discrimination of tensor mesons in the couplings to two photons
 - Confirmation of isospin (0 and 1)mixing
- Studies related to glueball, tetraquark, and pentaquark exotic systems
- First measurement of scalar and tensor-meson TFFs

Backup

History of integrated luminosity at Belle

Angular dependence

 $\gamma\gamma \to \pi^0\pi^0$

 $d\sigma/d|\cos\theta^*| \propto \sin^{-4}\theta^*$ is predicted by $q\overline{q}$ -meson model and perturbative QCD

- Fit to $\sin^{-4}\theta^* + b\cos\theta^*$
- b becomes constant above 3.2 GeV.

mode	$\alpha \text{ in sin}^{-\alpha} \theta^*$	GeV	$ \cos \theta^* $	
K _S K _S	3 – 8	2.6 - 3.3	< 0.8	
$\pi^+\pi^-$	Good agreement with 4	3.0 - 4.1	< 0.6	
K^+K^-	Good agreement with 4	3.0 - 4.1	< 0.6	
$\pi^0\pi^0$	Better agreement with $\sin^{-4} \theta^* + b \cos \theta^*$ Approaches $\sin^{-4} \theta^*$ above 3.1 GeV	2.4 - 4.1 [†]	< 0.8	
$\eta \pi^0$	Good agreement with 4 above 2.7 GeV	3.1 - 4.1	< 0.8	
ηη	Poor agreement with 4 Close to 6 above 3 GeV	2.4 - 3.3	< 0.9	Summarized by H.Nakazawa Hadron2013
	Exclude $\dagger \chi_{cJ}$ region, 3.3 - 3.6 G	eV		KEK, Jul. 2017

Angular dependence: $\gamma \gamma \rightarrow p \overline{p}$

Model predictions are normalized for $|\cos\theta^*| < 0.3$. Agreement is not very good in W>3 GeV

Three C-even ground charmonium states

Decays to Vector-meson pair

Baryon pair: $\gamma\gamma \rightarrow p\overline{p}$

Evidence of X(4350) in $\phi J/\psi$

Scalars in the 1.2 – 1.6 GeV region

- Hadron experiments report a wide $f_0(1370)$ and a narrow $f_0(1500)$.
- Some of previous two-photon measurements provide a hint of $f_0(1100-1400) \rightarrow \pi\pi$ under the huge peak of $f_2(1270)$
- Belle's $\pi^0 \pi^0$ measurement reports $f_0(1470)$. May be visible in the line shape.
 - → favorable to the narrow $f_0(1500)$, but also consistent with $f_0(1370)$.

f ₀ (1370) ^[j]	$I^G(J^{PC})=0$	+(0 + +)			
Mass $m = 1200$ to Full width $\Gamma = 20$	Mass $m = 1200$ to 1500 MeV Full width $\Gamma = 200$ to 500 MeV				
f0(1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)			
ππ	seen	672			
£ (1500) [a]	(G) PC) - of	(a + +)			
10(1500) ¹⁴³	$f^{(j)}(j^{(j)}) = 0$	(0 · ·)			
Mass $m = 1505 \pm$ Full width $\Gamma = 109$	7 (5 ° 4) ≡ 0 : 6 MeV (S = 1.3) 9 ± 7 MeV	(0 · ·)			
Mass $m = 1505 \pm$ Full width $\Gamma = 109$ $f_0(1500)$ DECAY MODES	$(3^{-4}) = 0^{-4}$ = 6 MeV (S = 1.3) $= \pm 7 \text{ MeV}$ Fraction (Γ_i/Γ)	(U · ·) Scale factor (MeV/c)			

1.6 – 1.8 GeV: Mass region of the greatest difficulty

- $a_2(1700) \rightarrow \rho^0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$ is confirmed by previous two-photon measurements.
- $a_2(1700) \rightarrow \eta \pi^0$ seen in our data, but no definite parameters obtained.
- $f_2(1810) \rightarrow \eta \eta$ is confirmed in two-photon process.
- An unidentified structure around ~1.6 GeV is seen in $\pi^0\pi^0$. But, its correspondence to a single resonance of the mass is not sure.

1.4 W (GeV) $f_2(1270)$ - $a_2(1320)$ interference in KK

The 2.2 – 2.6 GeV region

- The very narrow $f_1(2220)$ (was $\xi(2220)$) and a wide $f_2(2300)$ are suggested. Do the both exist? Really narrow?
- Our $\pi^0\pi^0$ result does not need $f(\sim 2300)$; the high mass $f_2(1950)$ can explain the observed line shape.
- Surely something narrow(?) peaks are found in K⁺K⁻, K⁰, K⁰, and $\eta\eta$.

An **ss** state or a glueball flavor insensible?

|cos θ*|<0.6

10

<i>f</i> ₂ (2300)	$I^{G}(J^{PC}) = 0^{+}(2^{+})$	+)
Mass <i>m</i> = Full width I	$2297 \pm 28 \text{ MeV}$ $ = 149 \pm 40 \text{ MeV}$	
f2(2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi$	seen	529
KK	seen	1037
$\gamma \gamma$	seen	1149
S.Uehar	a. KEK. Jul. 2017	41

 $f_2(2200)$ - $f_0(2500)$ is the best solution (in all the J= 0, 2, 4 combinations)

- There can be an only wide state around 2240 MeV.
- Narrow appearances in previous measurements may be due to an interference effect and/or statistical fluctuation.
- A high-mass state at 2.5 GeV may be the heaviest light-quark scalar meson so far found.

 $\gamma\gamma \rightarrow \eta'\pi^+\pi^-$

Production of light-quark mesons decaying to the **three pseudoscalar meson final state**. (The η_c production is also presented.)

Belle, PRD 86, 052002 (2012)

X(1835) is an exotic resonance candidate found in the radiative decay of J/ψ by BES. Is it gluon-rich, or $q\bar{q}$ -rich?

S.Uehara, KEK, Jul. 2017

π^0 Transition Form Factor (TFF)

PRD 86, 092007 (2012)

 π^0

- Coupling of neutral pion with two photons Good test for QCD at high Q²
- Single-tag π⁰ production in two-photon process
 with a large-Q² and a small-Q² photon

Theoretically calculated from pion distribution amplitude and decay constant $\nabla f_{\pi} \int T (-Q^2 - \lambda) f(-Q^2 - \lambda)$

$$F(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int T_{H}(x,Q^{2},\mu)\phi_{\pi}(x,\mu)dx$$

BaBar has reported a significant deviation from the expectation.

Measurement:

1-x

γ*

 $|F(Q^{2})|^{2} = |F(Q^{2},0)|^{2} = (d\sigma/dQ^{2})/(2A(Q^{2}))$ A(Q²) is calculated by QED |F(0,0)|^{2} = $64\pi\Gamma_{\gamma\gamma}/\{(4\pi\alpha)^{2}m_{R}^{3}\}$

Detects e (tag side) and π^0 Q² = 2EE'(1 - cos θ) from energy and polar angle of the tagged electron S.Uehara, KEK, Jul. 2017

Comparisons with Previous Measurements and Fits

seen in Belle result. $\sim 2.3\sigma$ difference between Belle and

BaBar in 9 – 20 GeV²

Fit A (suggested by BaBar) $Q^{2}|F(Q^{2})| = A (Q^{2}/10GeV^{2})^{\beta}$ BaBar: ---- $A = 0.182 \pm 0.002 (\pm 0.004) \text{ GeV}$ $\beta = 0.25 \pm 0.02$ Belle:

BaBar, PRD 80, 052002 (2009)

 $A = 0.169 \pm 0.006 \text{ GeV}$ β = 0.18 ± 0.05 χ^2 /ndf = 6.90/13 ~1.5 σ difference from BaBar

Fit B (with an asymptotic parameter) $Q^{2}|F(Q^{2})| = BQ^{2}/(Q^{2}+C)$ Belle: — $B = 0.209 \pm 0.016 \text{ GeV}$ $C = 2.2 \pm 0.8 \text{ GeV}^2$ χ^2 /ndf = 7.07/13 B is consistent with the QCD value (0.185GeV)

S.Uehara, KEK, Jul. 2017

Physics at Belle II, SuperKEKB

Physics of High W

• W-dependence of hadron-pair production $\sigma \propto W^{-n}$

Predictions: n = 6 (charged mesons), n=10 (neutral mesons) n=10 (proton)

Analysis of DD at around 3.80 GeV

Search for $\chi_{c0}(2P) \rightarrow D^0 \overline{D^0} / D^+ D^-$ The target is enhancements around 3.80 – 3.85 GeV? Possible backgrounds: A difference between charged pair and neutral pair seems to indicate the contribution of $D^*\overline{D}$ which has a charge (isospin) asymmetry in D^* decay

 $\chi_{c2}(2P) \rightarrow D^*\overline{D}$, then $M(D\overline{D}) \sim 3.80 \text{ GeV}$ Backgrounds systematically to be solved $\chi_{c2}(2P) \rightarrow D^{*0}\overline{D^0} \rightarrow D^0\overline{D^0}(\pi^0/\gamma)$ $\chi_{c2}(2P) \rightarrow D^{*+}D^- \rightarrow D^+D^-(\pi^0)$ $\chi_{c2}(2P) \rightarrow D^{*+}D^- \rightarrow D^0D^-(\pi^+)$ A small P_t-unbalance for DD is also important information as a sign of the extra π/γ .

Single-tag TFF's for π^0 , $K^0_S K^0_S$, etc.

Stat. error estimation for π^0 -TFF measurement in the high Q² region Assumptions:

- Integrated luminosity 50 ab⁻¹ (x 66)
- No large Bhabha-Veto inefficiency (x 2.5 @ high Q²)
- Systematic errors from $\pi^{0}\mbox{-fit}$ and trigger can be reduced
- Other systematics stay the same

Q² > 60 GeV²

Close to back-to-back topology of $e\pi^0$ in e^+e^- c.m. frame

Huge background from Bhabha

 $K_{S}^{0}K_{S}^{0}$ about 200 events to be observed for Belle. More than 10,000 events expected for Belle II.

Double-tag processes

Hadronic Light-by-Light (hLbL) contribution is important for muon g-2 theoretical cal.

At the present, the error from the hLBL contribution is the same order of that of the experiment of muon g-2. In near future, an improvement is needed.

Test of QCD

M.Diehl et al., EPJ C22, 439 (2001)

 $\gamma * \gamma * \rightarrow \pi^0$

 $Q_1^2 \sim Q_2^2$ Dependence on Distribution Amplitude is small

XXXX

The ee-based cross section $\sim O(0.1 \text{fb})$ Feasible at Belle II

The elastic scattering

- $\gamma\gamma \rightarrow \gamma\gamma$ So far, it is observed only at the peaks of π^0 , η and η' .
- Interference with lepton's and quark's box diagrams may be seen near η_c peak. BF($\eta_c \rightarrow \gamma \gamma$) = 1.5 x 10⁻⁴ is known.
- At an e⁺e⁻ collider, the Double-Radiation Bhabha process is also unseparated and interfering background.

