## Physics of Ultraperipheral Collisions at RHIC （focusing on forward neutrons）

PHENIX，arXiv：1703．10941
GM，EPJ．C 75， 614 （2015）
GM，PRC 95， 044908 （2017）

## Gaku Mitsuka <br> （RIKEN BNL Research Center） <br> July 7th 2017 <br> 第12回「高エネルギー QCD•核子構造」勉強会 <br> KEK東海

## Motivation and Outline

- Transverse single spin asymmetries for forward neutrons
- What are ultraperipheral collisions (UPCs)?
- UPC simulation methodology
- Hadronic interactions (one-r exchange, OPE)
- Comparison of the RHIC data with the UPC+OPE simulation
- Summary


## Transverse single spin asymmetries for forward neutrons

RHIC-15 run in $p+A I$ and $p+A u$ collisions Dedicated run for $A_{N}$ measurements Average pol. ~ 0.5-0.6 (syst. uncertainty ~ 3\%)


Nucleus
100 GeV


## Inclusive $A_{N}$ for forward neutrons

PHENIX, arXiv:1703.10941


Prediction before the measurement: weak A-dependence (expected from Reggeon exc.)

Surprisingly strong A-dependence
$\rightarrow$ whats mechanisms do produce such strong A-dependence?
$\rightarrow$ hint: how does $A_{N}$ behave with the other triggers?

## BBC correlated $A_{N}$ for forward neutrons



Particle veto at lower rapidities: BBC-VETO

$\rightarrow$ much stronger A-dependence

Particle hits at lower rapidities: BBC-TAG

$\rightarrow$ weak A-dependence

## BBC correlated $A_{N}$ for forward neutrons



Particle veto at lower rapidities: BBC-VETO

$\rightarrow$ much stronger A-dependence

Large $A_{N}$ when fewer underlying particles Small $\mathrm{A}_{N}$ when ample underlying particles Do not only hadronic interactions but also electromagnetic interactions play a crucial role in $p+A$ ?

Particle hits at lower rapidities: BBC HIT

$\rightarrow$ weak A-dependence

## What are ultraperipheral collisions?

Particle production in Ultraperipheral p+A collisions (UPCs):

- a collision of a proton with the EM field made by a relativistic nucleus when the impact parameter $b$ is larger than $R_{A}+R_{p}$
- fewer underlying particles unlike in hadronic interactions $\rightarrow$ smaller activity at BBC


Pseudorapidity

$$
\begin{array}{r}
\sigma_{\mathrm{UPC}} \approx \sigma_{\mathrm{Had}} \\
\text { at } \eta>7
\end{array}
$$

UPC cross section $\quad \gamma^{*}$ flux Does $\gamma^{*} p \rightarrow \pi^{+} n$
$\propto Z^{2}$ lead to large $A_{N}$ ?

$$
\frac{d \sigma_{\mathrm{UPC}\left(p^{\uparrow} \mathrm{A} \rightarrow \pi^{+} n\right)}^{4}}{d W d b^{2} d \Omega_{n}}=\frac{d^{3} N_{\gamma^{*}}}{d W d b^{2}} \frac{d \sigma_{\gamma^{*} p^{\uparrow} \rightarrow \pi^{+} n}(W)}{d \Omega_{n}} \overline{P_{\mathrm{had}}}(b)
$$

## Virtual photon flux

The number of virtual photons per energy and $b$ is formulated by the Weizsacker-Williams approximation or QED (Phys. Rep 364 359, NPA 442 739, etc...):
$\frac{d^{3} N_{\gamma^{*}}}{d \omega_{\gamma^{*}}^{\text {rest }} d b^{2}}=\frac{Z^{2} \alpha}{\pi^{2}} \frac{x^{2}}{\omega_{\gamma^{*}}^{\text {rest }} b^{2}}\left(K_{1}^{2}(x)+\frac{1}{\gamma^{2}} K_{0}^{2}(x)\right) \quad \begin{gathered}\text { Proportional to } Z^{2} \\ \left(\sim 6 \times 10^{3} \text { for } \mathrm{Au}\right)\end{gathered}$
where $x=\omega_{\gamma^{*}}^{r e s t} b / \gamma$ and $\omega^{\text {rest }}$ is the virtual photon energy in the proton rest frame. Note that the virtual photon flux depends on the charge of photon source as $\mathrm{Z}^{2}$.


- From the virtual photon flux, we see that low-energy photons dominate UPCs.

Photon virtuality is limited by $Q^{2}<\frac{1}{R^{2}}$. So, $Q^{2}<10^{-3} \mathrm{GeV}^{2}$

## Do low-E $\gamma^{*} p$ interactions have large $A_{N}$ ?

$$
\begin{aligned}
\begin{aligned}
\text { Polarized } \gamma^{*} \mathrm{p} \text { cross sections } & \begin{array}{l}
\text { (Drechsel and Tiator, } \\
\frac{d \sigma_{\gamma^{*} p^{\uparrow} \rightarrow \pi^{+} n}}{d \Omega_{\pi}}
\end{array} \\
= & \frac{|q|}{\omega_{\gamma^{*}}}\left(R_{T}^{00}+P_{y} R_{T}^{0 y}\right) \\
& =\frac{|q|}{\omega_{\gamma^{*}}} R_{T}^{00}\left(1+P_{2} \cos \phi_{\pi} T\left(\theta_{\pi}\right)\right)
\end{aligned} \\
\text { Equivalent to } 18,449 \text { (1992)) }
\end{aligned}
$$

$\mathrm{T}\left(\theta_{\pi}\right)$ is decomposed into multipoles:
$T\left(\theta_{\pi}\right) \equiv \frac{R_{T}^{0 y}}{R_{T}^{00}} \propto \operatorname{Im}\left\{E_{0+}^{*}\left(E_{1+}-M_{1+}\right)\right.$


Interference between $\mathrm{E}_{0+}$ and $\mathrm{M}_{1+}$ leads to large $\mathrm{T}\left(\theta_{\pi}\right)$ in the $\Delta(1232)$ region
MC simulations of the polarized $\gamma^{*} p$ interactions are developed for testing $\mathrm{T}\left(\theta_{\pi}\right)$, i.e. $\mathrm{A}_{N}$ in pA collisions.

## Multipole decomposition of $\mathrm{T}\left(\theta_{\pi}\right)$

$R^{0 y} \quad$ Leading part
Subleading part




## MC simulations for low-E $\gamma^{*} p$ interactions

- MC simulations based on the MAID2007 model (Drechsel et al. EPJ A 34, 69 (2007)) are performed for $\mathrm{R}^{000}$ and $T\left(\theta_{\pi}\right)$.
- $\mathrm{T}\left(\theta_{\pi}\right) \sim 0.8$ at $\Delta(1232), \sim-0.5$ at $\mathrm{N}(1680) \rightarrow$ large $A_{N}!$ !
$\mathbf{Y}^{*} \mathbf{p}$ center-of-mass system
transversely polarized proton along 2-axis


Numerical data from MAID 2007 ( $\mathrm{Q}^{2}=0, \theta \pi=90$ degree)


## MC simulations for low-E $\gamma^{*} p$ interactions

- MC simulations based on the MAID2007 model (Drechsel et al. EPJ A 34, 69 (2007)) are performed for $\mathrm{R}^{000}$ and $\mathrm{T}\left(\theta_{\pi}\right)$.
- $T\left(\theta_{\pi}\right) \sim 0.8$ at $\Delta(1232), \sim-0.5$ at $N(1680) \rightarrow$ large $A_{N}!$ !
$\gamma^{*}$ p center-of-mass system


GM, PRC 95, 044908 (2017)


- Solid curves indicate the ZDC acceptance.
- $T\left(\theta_{\pi}\right)$ with the weight of $\gamma^{*}$ flux $=A_{N}$


## Inclusive cross sections of $\gamma p$ interactions



Only $1 \pi$ channel is taken into account in this study.
Hard to simulate neutron momenta in $2 \pi$ channels, leave for future study

## UPC cross sections as a function of W



TABLE I. Cross sections for neutron production in ultraperipheral collisions and hadronic interactions at $\sqrt{s_{\mathrm{NN}}}=$ 200 GeV . Cross sections in parentheses are calculated without $\eta$ and $z$ limits.

| UPCs |  |  | Hadronic interactions |  |
| :---: | :---: | :---: | :---: | :---: |
| $p^{\uparrow} \mathrm{Al}$ | $p^{\uparrow} \mathrm{Au}$ |  | $p^{\uparrow} \mathrm{Al}$ | $p^{\uparrow} \mathrm{Au}$ |
| $0.7 \mathrm{mb}(2.2 \mathrm{mb})$ | $19.6 \mathrm{mb}(41.7 \mathrm{mb})$ |  | 8.3 mb | 19.2 mb |

TABLE II. Cross sections in ultraperipheral $p A u$ collisions at $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$.

| $p \mathrm{Au} \rightarrow n X(\eta>6.9$ and $z>0.4)$ |  |  | $p^{\uparrow} \mathrm{Au} \rightarrow \pi^{+} \pi^{0} n$ |
| :---: | :---: | :---: | :---: |
| $<1.1 \mathrm{GeV}$ | $1.1-2.0 \mathrm{GeV}$ | $>2.0 \mathrm{GeV}$ | $1.25-2.0 \mathrm{GeV}$ |
| 0.6 mb | 27.4 mb | 1.8 mb | 6.2 mb |

## Hadronic interactions (one-т exchange)



X

$$
\begin{aligned}
z \frac{d \sigma_{p p \rightarrow n X}}{d z d p_{\mathrm{T}}^{2}}= & S^{2}\left(\frac{\alpha_{\pi}^{\prime}}{8}\right)^{2}|t| G_{\pi^{+} p n}^{2}(t)\left|\eta_{\pi}(t)\right|^{2} \\
& \times(1-z)^{1-2 \alpha_{\pi}(t)} \sigma_{\pi^{+}+p}^{\mathrm{tot}}\left(M_{X}^{2}\right) \\
z \frac{d \sigma_{p^{\uparrow} A \rightarrow n X}}{d z d p_{\mathrm{T}}^{2}}= & z \frac{d \sigma_{p \mathrm{~A} \rightarrow n X}}{d z d p_{\mathrm{T}}^{2}}\left(1+\cos \Phi A_{\mathrm{N}}^{\mathrm{HAD}(p \mathrm{~A})}\right) \\
= & z \frac{d \sigma_{p p \rightarrow n X}}{d z d p_{\mathrm{T}}^{2}} A^{0.42}\left(1+\cos \Phi A_{\mathrm{N}}^{\mathrm{HAD}(p \mathrm{~A})}\right)
\end{aligned}
$$

- Kopeliovich et al. (PRD 84, 114012) propose an interference between $\pi$ and $a_{1}$-Reggeon leading to negative asymmetry in $p+p$ and $p+A$.
- In this study I omit an implementation of the interference. Alternatively, I simply apply $\left(1+\cos \Phi A_{N}\right)$ to the differential cross section of unpolarized proton and then effectively obtain the differential cross section of polarized proton.
- The coupling $G_{\pi+p n}$ and is the absorption S are chosen so that $d \sigma / d z$ gives the best-fit to the PHENIX result.


## UPCs and OPE at the ZDC acceptance



## Neutron $A_{N}$ : PHENIX vs. UPC+OPE model



GM, PRC 95, 044908 (2017)

$$
A_{N}^{\mathrm{UPC}+\mathrm{OPE}}=\frac{\sigma_{\mathrm{UPC}} A_{N}^{\mathrm{UPC}}+\sigma_{\mathrm{OPE}} A_{N}^{\mathrm{OPE}}}{\sigma_{\mathrm{UPC}}+\sigma_{\mathrm{OPE}}}
$$

- Simulations (UPC+OPE) are consistent with the PHENIX inclusive measurements in both $p+A l$ and $p+A u$ collisions.
- Simulations (UPC) are larger than the PHENIX measurements. This may indicate that the PHENIX with BBC veto includes some levels of hadronic interactions.
- More detailed comparisons need to estimate a rejection efficiency of hadronic interaction by the BBC veto.


## Summary

- Large $A_{N}$ for forward neutrons was observed in $p+A u$. This was clearly different from that in $p+p$.
- $\sigma_{u p c} \sim \sigma_{\text {HAD }}$ at $\eta>7$ in $p+A u$ collisions.
- UPCs lead to large $A_{N}$ only in p+A collisions and promotional to $Z^{2}$ unlike hadronic interactions.


## Future Prospects

- Prospect 1: trying to explain the FNAL results ( $\pi^{0}+p$ ) using this framework
- Prospect 2: UPCs contribute weaker than hadronic interactions at $\mathrm{p}_{\mathrm{T}}>0.2$ $\mathrm{GeV} / \mathrm{c}$. Interesting to see below and above $0.2 \mathrm{GeV} / \mathrm{c}$ if experimentally feasible (can see a transition from positive large $A_{N}$ to negative small $A_{N}$ ?)
- Prospect 3: Coulomb nuclear interference in forward neutron production


FIG. 2. The invariant-mass spectrum of the $\pi^{0}-p$ system in $p+\mathrm{Pb} \rightarrow \pi^{0}+p+\mathrm{Pb}$ for $\left|t^{\prime}\right|<1 \times 10^{-3}(\mathrm{GeV} / c)^{2}$. Peaks due to the $\Delta^{+}(1232)$ and $N^{*}(1520)$ resonances are shown. Regions I and II are defined in the text.

## Backup

## Target asymmetry $\mathrm{T}(\theta)$ as a function of W



## үp interactions



- Recalling the virtual photon flux and dominance of low-energy photons in UPCs, most UPCs occur at the baryon resonance region.
- Namely, low-energy $\gamma+p$ interactions ( $\omega^{\text {rest }}{ }_{Y}<1.5 \mathrm{GeV}$ ) play major role in UPCs.


## Disentangling Z-dependent asymmetries for forward neutrons

- In my previous study (GM, EPJC 75,614 15), Yp interactions are simulated by SOPHIA ( $\mathrm{W}<7 \mathrm{GeV}$ ) and DPMJET3/PYTHIA6 ( $\mathrm{W}>7 \mathrm{TeV}$ ). These models worked well for the LHCf $\pi^{0}$ analyses in (unpolarized) p-Pb collisions at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=5.02 \mathrm{TeV}$ (PRD 94, 032007'16).


- DPMJET 3.06 EPOS LHC
QGSJET II-04
UPC
$\rightarrow \quad$ LHCf (stat.+syst.)
- But the previous UPC simulation framework can not deal with a proton polarization. Therefore, in this study, I change the $\gamma p$ interaction model to MAID 2007 which well explains low-energy photopion production on a polarized proton target.

|  | Previous study (GM, EPJC 75, 614'15) | This study |
| :---: | :---: | :---: |
| Yp interactions | SOPHIA (low E) and DPMJET/PYTHIA (high E) | MAID isobar model 2007 |
| Energy range | $0.16 \mathrm{GeV}<\omega^{\text {rest }}<1.1 \mathrm{TeV}$ | $0.18<\omega^{\text {rest }}<{ }_{\gamma}<1.7 \mathrm{GeV}(1.1<\mathrm{W}<2 \mathrm{GeV})$ |
| Proton polarization | No | Yes |
| Neutron production | Isotropic | depending on $W, \theta$, and $\varphi$ |

## UPC formalism

The UPC cross section is factorized as

$$
\frac{d \sigma_{\mathrm{UPC}\left(p^{\uparrow} \mathrm{A} \rightarrow \pi^{+} n\right)}^{4}}{d W d b^{2} d \Omega_{n}}=\frac{d^{3} N_{\gamma^{*}}}{d W d b^{2}} \frac{d \sigma_{\gamma^{*} p^{\uparrow} \rightarrow \pi^{+} n}(W)}{d \Omega_{n}} \overline{P_{\mathrm{had}}}(b)
$$

photon flux ( N ): quasi-real photons produced by a relativistic nucleus
$\sigma_{\gamma+p \rightarrow x}$ : inclusive cross sections of $\gamma+p$ interactions
$\overline{P_{\text {had }}}$ : a probability not having a $\mathrm{p}+\mathrm{A}$ hadronic interaction.


## Forward particle production in UPCs

- Indications by large $A_{N}$ in $p-A$ :

1) substantial nuclear effects in A target
2) effects of electromagnetic (EM) field produced by relativistic A target.

- In order to test the second scenario, i.e. effects of EM field, I made the MC simulation framework that takes into account the both hadronic interactions and ultra-peripheral collisions.
- Ultra-peripheral collisions (aka Primakoff effects);
a collision of a proton with the EM field made by a relativistic nucleus when the impact parameter is larger than $R_{A}+R_{p}$.



UPCs for forward $\pi^{0}$

- DPMJET 3.06 EPOS LHC
QGSJET II-04
UPC
$-\quad$ LHCf (stat.+syst.)

25

## Photopion production formalism

(Berends et al. NPB 4, 1 ‘67)

$$
\begin{equation*}
\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{q}{k}\left|\left\langle\mathrm{x}_{\mathrm{f}}\right| \mathcal{F}\right| \mathrm{x}_{\mathfrak{i}}\right\rangle\left.\right|^{2}, \tag{A.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{F}=\mathrm{i} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon} \mathcal{F}_{1}+\boldsymbol{\sigma} \cdot \hat{q} \boldsymbol{\sigma} \cdot(\hat{k} \times \boldsymbol{\varepsilon}) \mathcal{F}_{2}+\mathrm{i} \boldsymbol{\sigma} \cdot \hat{k} \hat{q} \cdot \boldsymbol{\varepsilon} \mathcal{F}_{3}+\mathrm{i} \boldsymbol{\sigma} \cdot \hat{q} \hat{q} \cdot \boldsymbol{\varepsilon} \mathcal{F}_{4} \cdot  \tag{A.2}\\
& \sum_{f}\left\langle\mathrm{x}_{\mathbf{f}}\right| \mathcal{F}\left|\mathrm{x}_{\mathbf{i}}\right\rangle^{\dagger}\left\langle\mathrm{x}_{\mathbf{f}}\right| \mathcal{F}\left|\mathrm{x}_{\mathbf{i}}\right\rangle=\left\langle\mathrm{x}_{\mathbf{i}}\right| \mathcal{F} \dagger \mathcal{F}\left|\mathrm{x}_{\mathbf{i}}\right\rangle \\
& \left\langle\mathrm{x}_{\mathbf{i}}\right| \mathcal{F}_{ \pm}^{\dagger} \mathcal{F}_{ \pm}\left|\mathrm{x}_{\mathrm{i}}\right\rangle=(1 \mp \hat{k} \cdot \boldsymbol{P}) \alpha+\beta \pm \sin \theta \hat{e}_{1} \cdot \boldsymbol{P}_{\gamma}+\sin \theta \hat{e}_{2} \cdot \boldsymbol{P}_{\delta} \tag{A.7}
\end{align*}
$$ where

$$
\begin{align*}
& \alpha=\left|\mathcal{F}_{1}\right|^{2}+|\mathscr{F}|^{2}-2 \cos \theta \operatorname{Re}\left(\mathcal{F}_{1}^{*} \mathcal{F}_{2}\right)+\sin ^{2} \theta \operatorname{Re}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{4}+\mathcal{F}_{2}^{*} \mathcal{F}_{3}\right\} \text {, }  \tag{A.8}\\
& \beta=\frac{1}{2} \sin ^{2} \theta\left\{\left|\mathcal{F}_{3}\right|^{2}+\left|\mathcal{F}_{4}\right|^{2}+2 \cos \theta \operatorname{Re}\left(\mathcal{F}_{3}^{*} \mathcal{F}_{4}\right)\right\},  \tag{A.9}\\
& \gamma=\operatorname{Re}\left\{\mathscr{F}_{1}^{*} \mathcal{F}_{3}-\mathcal{F}_{2}^{*} \mathcal{F}_{4}\right\}+\cos \theta \operatorname{Re}\left\{\mathcal{F}_{1}^{*} \mathscr{F}_{4}-\mathcal{F}_{2}^{*} \mathcal{F}_{3}\right\} \text {, }  \tag{A.10}\\
& \delta=\operatorname{Im}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{3}-\mathcal{F}_{2}^{*} \mathcal{F}_{4}\right\}+\cos \theta \operatorname{Im}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{4}-\mathcal{F}_{2}^{*} \mathcal{F}_{3}\right\} \\
& -\sin ^{2} \theta \operatorname{Im}\left(\mathcal{F}_{3}^{*} \mathcal{F}_{4}\right) \text {. } \tag{A.11}
\end{align*}
$$

Polarized nucleon, unpolavized photon

$$
\begin{aligned}
\frac{\mathrm{d} \sigma(\boldsymbol{P})}{\mathrm{d} \boldsymbol{\Omega}} & =\frac{1}{2}\left\{\frac{\mathrm{~d} \sigma_{+}(\boldsymbol{P})}{\mathrm{d} \boldsymbol{\Omega}}+\frac{\mathrm{d} \sigma_{-}(\boldsymbol{P})}{\mathrm{d} \boldsymbol{\Omega}}\right. \\
& =\frac{q}{k}\left\{\alpha+\beta+\sin _{26} \theta \hat{e}_{\mathbf{2}} \cdot \boldsymbol{P} \delta\right\} \rightarrow \frac{d \sigma_{0}}{d \Omega}=\frac{q}{k}(\alpha+\beta), A_{N}=\frac{\sin \theta \delta}{\alpha+\beta}
\end{aligned}
$$

## Photopion production

(Berends et al. NPB 4, 1 ‘67)

$$
\begin{aligned}
& \text { Eq. (A.2) } \\
& \tilde{\mathscr{F}}(s, t)=\sum_{l=0}^{\infty}\left[\begin{array}{cc}
G_{l}(x) & 0 \\
0 & H_{l}(x)
\end{array}\right] \tilde{M}_{l}(s), \tilde{M}_{l}=
\end{aligned}
$$

$\left[\begin{array}{c}E_{l_{+}} \\ E_{l_{-}} \\ M_{l_{+}} \\ M_{l_{-}} \\ s_{l_{+}} \\ S_{l_{-}}\end{array}\right]$
$\boldsymbol{G}_{l}$ and $\boldsymbol{H}_{l}$ are Legendre polynomials, and $\tilde{\boldsymbol{M}}_{l}$ are multipoles.
(Drechsel and Tiator, JphysG 18, 449‘92) Several models provide their predicted multipoles.
Multipole decomposition:
MAID2007 is available at https://maid.kph.uni-mainz.de.

$$
\begin{aligned}
R_{\mathrm{T}}=\left|E_{0+}\right|^{2}+ & \frac{1}{2}\left|2 M_{1+}+M_{1-}\right|^{2}+\frac{1}{2}\left|3 E_{1+}-M_{1+}+M_{1-}\right|^{2} \\
& +2 \cos \Theta \operatorname{Re}\left\{E_{0+}^{*}\left(3 E_{1+}+M_{1+}-M_{1-}\right)\right\} \\
& +\cos ^{2} \Theta\left(\left|3 E_{1+}+M_{1+}-M_{1-}\right|^{2}-\frac{1}{2}\left|2 M_{1+}+M_{1-}\right|^{2}\right. \\
& \left.-\frac{1}{2}\left|3 E_{1+}-M_{1+}+M_{1-}\right|^{2}\right)
\end{aligned}
$$

$$
R_{\mathrm{T}}\left(n_{i}\right)=3 \sin \Theta \operatorname{Im}\left\{E_{0+}^{*}\left(E_{1+}-M_{1+}\right)-\cos \Theta\left(E_{1+}^{*}\left(4 M_{1+}-M_{1-}\right)+M_{1+}^{*} M_{1-}\right)\right\}
$$

$$
\begin{aligned}
R_{\mathrm{T}}^{00} \equiv R_{\mathrm{T}} \text { and } R_{\mathrm{T}}^{0 y} \equiv R_{\mathrm{T}}\left(n_{i}\right) \frac{d \sigma_{\gamma^{*} p^{\uparrow} \rightarrow \pi^{+} n}}{d \Omega_{\pi}} & =\frac{|q|}{\omega_{\gamma^{*}}}\left(R_{T}^{00}+P_{y} R_{T}^{0 y}\right) \\
\text { pion and neutron production in UPCs } & =\frac{|q|}{\omega_{\gamma^{*}}} R_{T}^{00}\left(1+P_{2} \cos \phi_{\pi} T\left(\theta_{\pi}\right)\right)
\end{aligned}
$$

## $\mathrm{R}_{00}$ distribution



## Target asymmetry as a function of W



## Hadronic interactions (one-т exchange)



## What are ultraperipheral collisions?

Heavy-ions (with the charge $Z$ ) produce strong electromagnetic fields due to the coherent action of all proton charges.

Equivalent photon approximation formula for the photon flux in ultraperipheral (p) $A+A$ collisions at $b>b_{\min } \sim R_{1}+R_{2}$ :

$$
\begin{aligned}
& n(\omega)=\frac{2 Z^{2} \alpha}{\pi \beta^{2}}\left[\xi K_{0}(\xi) K_{1}(\xi)-\frac{\xi^{2}}{2}\left(K_{1}^{2}(\xi)-K_{0}^{2}(\xi)\right)\right] \\
& \text { where } \xi=\omega b_{\text {min }} / \gamma \beta \hbar c=2 \omega R_{\mathrm{A}} / \gamma \beta \hbar c .
\end{aligned}
$$



Characteristics of photon beams:
Photon flux $\sim Z^{2}\left(\sim 6 \times 10^{3}\right.$ for Au ) and $\sigma(\gamma \gamma) \sim Z^{4}$ (i.e. $\sim 4 \times 10^{7}$ )
$\gamma$ wavelength $>$ nucleus size $\rightarrow$ very low photon virtuality

