Generalized distribution amplitudes in two-photon process

Shunzo Kumano

High Energy Accelerator Research Organization (KEK) J-PARC Center (J-PARC) Graduate University for Advanced Studies (Sokendai) http://research.kek.jp/people/kumanos/ Collaborators: Qin-Tao Song (Sokendai/KEK),

O. V. Teryaev (JINR)

12th meeting on High-energy QCD and nucleon structure KEK Tokai campus, Tokai, Japan, July 7, 2017 https://sites.google.com/a/quark.kj.yamagata-u.ac.jp/nucllecture/

July 7, 2017

Ultra-Peripheral Collision (UPC)

INT Workshop INT-17-65W

Probing QCD in Photon-Nucleus Interactions at RHIC and LHC: the Path to EIC

February 13 - 17, 2017

Motivations

- 3D structure of hadrons
- Nucleon spin structure
- Exotic hadrons

Hadron tomography: 3D structure functions are (can be) investigated at at high-energy lepton and hadron facilities (BNL, JLab, Fermilab, CERN, J-PARC, KEKB, GSI, IHEP@China & Russia, EIC, LHeC, ILC, ...).

Here, I discuss hadron tomography by $\gamma\gamma \rightarrow h\overline{h}$, experimentally possible at KEKB and ILC.

Recent progress on origin of nucleon spin

"old" standard model

i

$$p_{\uparrow} = \frac{1}{3\sqrt{2}} \left(uud \left[2 \uparrow \uparrow \downarrow - \uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow \right] + \text{permutations} \right]$$
$$\Delta q(x) \equiv q_{\uparrow}(x) - q_{\downarrow}(x)$$
$$\Delta \Sigma = \sum \int dx \left[\Delta q_i(x) + \Delta \overline{q}_i(x) \right] \rightarrow 1 (100\%)$$

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + L_{q,g}$

Scientific American (2014)

Progress in exotic hadrons

qqMesonq³Baryon

q²q² q⁴q Tetraquark q⁴q Pentaquark q⁶ Dibaryon

q¹⁰q
e.g. Strange tribaryon

gg Glueball

- Θ⁺(1540)???: LEPS Pentaquark?
- Kaonic nuclei?: KEK-PS, ... Strange tribaryons, ...
- X (3872), Y(3940): Belle Tetraquark, DD molecule $\begin{vmatrix} c\overline{c} \\ D^0(c\overline{u})\overline{D}^0(\overline{c}u) \\ D^+(c\overline{d})D^-(\overline{c}d)? \end{vmatrix}$
- $D_{sJ}(2317), D_{sJ}(2460)$: BaBar, CLEO, Belle Tetraquark, DK molecule $\begin{bmatrix} c\overline{s} \\ D^0(c\overline{u})K^+(u\overline{s}) \end{bmatrix}$
- Z (4430): Belle
 - Tetraquark,...
- P_c (4380), P_c (4450): LHCb
 - $u\overline{c}udc, \overline{D}(u\overline{c})\Sigma_{c}^{*}(udc), \overline{D}^{*}(u\overline{c})\Sigma_{c}(udc)$ molecule?

uudds?

 K^-pnn, K^-ppn ?

 $D^+(c\overline{d})K^0(d\overline{s})$?

 $c\overline{c}u\overline{d}$, D molecule?

 K^-pp ?

Wigner distribution and various structure functions

References on following tomography topics

GPDs at J-PARC

SK, M. Strikman, K. Sudoh, PRD 80 (2009) 074003.
T. Sawada, Wen-Chen Chang, S. Kumano, Jen-Chieh Peng,
S. Sawada, K. Tanaka, PRD 93 (2016) 114034. → Tanaka's talk

GPDs and GDAs (including exotic hadrons)

H. Kawamura, SK, PRD 89 (2014) 054007.

SK, Q.-T. Song, O. Teryaev, research in progress.

My talk

Related topics: Constituent counting rule:

H. Kawamura, SK, T. Sekihara, PRD 88 (2013) 034010.

W.-C. Chang, SK, T. Sekihara, PRD 93 (2016) 034006.

GPDs for exotic hadrons at hadron facilities

H. Kawamura, SK, PRD 89 (2014) 054007.

Generalized Parton Distributions (GPDs)

provide
$$x = \frac{Q^2}{2p \cdot q}$$

promentum transfer squared $t = \Delta^2$
promentum transfer squared $\xi = \frac{p^+ - p'^+}{p^+ + p'^+} = -\frac{\Delta^2}{2p}$

GPDs are defined as correlation of off-forward matrix:

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p' \left| \overline{\psi}(-z/2)\gamma^{+}\psi(z/2) \right| p \right\rangle \Big|_{z^{+}=0,\overline{z}_{\perp}=0} = \frac{1}{2P^{+}} \left[H(x,\xi,t)\overline{u}(p')\gamma^{+}u(p) + E(x,\xi,t)\overline{u}(p')\frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2M}u(p) \right]$$
$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p' \left| \overline{\psi}(-z/2)\gamma^{+}\gamma_{5}\psi(z/2) \right| p \right\rangle \Big|_{z^{+}=0,\overline{z}_{\perp}=0} = \frac{1}{2P^{+}} \left[\tilde{H}(x,\xi,t)\overline{u}(p')\gamma^{+}\gamma_{5}u(p) + \tilde{E}(x,\xi,t)\overline{u}(p')\frac{\gamma_{5}\Delta^{+}}{2M}u(p) \right]$$

 $H(x,\xi,t)\Big|_{\xi=t=0} = f(x), \quad \tilde{H}(x,\xi,t)\Big|_{\xi=t=0} = \Delta f(x),$ Forward limit: PDFs **First moments: Form factors**

 $\int_{-1}^{1} dx H(x,\xi,t) = F_1(t), \quad \int_{-1}^{1} dx E(x,\xi,t) = F_2(t)$ Dirac and Pauli form factors F_1 , F_2 Axial and Pseudoscalar form factors G_A , $G_P \int_{-1}^{1} dx \tilde{H}(x,\xi,t) = g_A(t)$, $\int_{-1}^{1} dx \tilde{E}(x,\xi,t) = g_P(t)$ Second moments: Angular momenta

Sum rule:
$$J_q = \frac{1}{2} \int_{-1}^{1} dx x \Big[H_q(x,\xi,t=0) + E_q(x,\xi,t=0) \Big], \quad J_q = \frac{1}{2} \Delta q + L_q$$

Simple function of GPDs $H_q^h(x,t) = f(x)F(t,x)$

M. Guidal, M.V. Polyakov, A.V. Radyushkin, M. Vanderhaeghen, PRD 72, 054013 (2005).

Longitudinal-momentum distribution (PDF) for valence quarks: $f(x) = q_v(x) = c_n x^{\alpha_n} (1-x)^{\beta_n}$

- Valence-quark number sum rule (charge and baryon numbers): $\int_{0}^{1} dx f(x) = n$
- Constituent conting rule at $x \to 1$: $\beta_n = 2n 3 + 2\Delta S$ (*n* = number of constituents)
- Momentum carried by quarks $\langle x \rangle_q \simeq \int_0^1 dx \, x f(x)$

Two-dimensional form factor

Generalized Distribution Amplitudes (GDAs)

and KEKB/ILC project

H. Kawamura, SK, PRD 89 (2014) 054007. SK, Q.-T. Song, O. Teryaev, research in progress.

GPDs for exotic hadrons !?

Because stable targets do not exit for exotic hadrons, it is not possible to measure their GPDs in a usual way. → Transition GPDs

or

 \rightarrow s \leftrightarrow t crossed qunatity = GDAs at KEKB, Linear Collider

Cross section: form factor dependence

Generalized Distribution Amplitudes (GDAs) for pion

from KEKB measurements

SK, Q.-T. Song, O. Teryaev, research in progress.

KEKB-Belle measurement (2016)

M. Masuda et al., Phys. Rev. D 93 (2016) 032003 (arXiv:1508.06757).

PHYSICAL REVIEW D 93, 032003 (2016)

Study of π^0 pair production in single-tag two-photon collisions

M. Masuda,⁶⁸ S. Uehara,^{15,11} Y. Watanabe,²⁶ H. Nakazawa,⁴⁶ A. Abdesselam,⁶² I. Adachi,^{15,11} H. Aihara,⁶⁹ S. Al Said,^{62,30} D. M. Asner,⁵⁴ H. Atmacan,⁴⁰ V. Aulchenko,^{4,52} T. Aushev,⁴² V. Babu,⁶³ I. Badhrees,^{62,29} A. M. Bakich,⁶¹ E. Barberio,³⁹ P. Behera,¹⁹ B. Bhuyan,¹⁸ J. Biswal,²⁵ A. Bobrov,^{45,2} G. Bonvicini,⁷⁵ A. Bozek,⁴⁹ M. Bračko,^{37,25} T. E. Browder,¹⁴ D. Červenkov,⁵ V. Chekelian,³⁸ A. Chen,⁴⁶ B. G. Cheon,¹³ K. Chilikin,⁴¹ R. Chistov,⁴¹ K. Cho,³¹ V. Chobanova,³⁸ S.-K. Choi,¹² Y. Choi,⁶⁰ D. Cinabro,⁷⁵ J. Dalseno,^{38,64} M. Danilov,⁴¹ N. Dash,¹⁷ J. Dingfelder,³ Z. Doležal,⁵ Z. Drásal,⁵ D. Dutta,⁶⁵ S. Eidelman,^{4,52} D. Epifanov,⁶⁹ H. Farhat,⁷⁵ J. E. Fast,⁵⁴ T. Ferber,⁸ B. G. Fulsom,⁵⁴ V. Gaur,⁶³ N. Gabyshev,^{4,52} A. Garmash,^{4,52} R. Gillard,⁷⁵ F. Giordano,⁷⁸ R. Glattauer,²² Y. M. Goh,¹³ P. Goldenzweig,²⁷ B. Golob,^{35,25} J. Haba,^{15,11} K. Hayasaka,⁴⁴ H. Hayashii,⁴⁵ X. H. He,⁵⁵ W.-S. Hou,⁴⁵ T. Lijima,^{44,43} K. Inami,⁴³ A. Ishikawa,⁶⁷ R. Itoh,^{15,11} Y. Iwasaki,¹⁵ I. Jaegle,¹⁴ D. Joffe,²⁸ K. K. Joo,⁶ T. Julius,⁹⁰ K. H. Kang,³³ E. Kato,⁶⁷ T. Kawasaki,⁵¹ D. Y. Kim,⁵⁹ J. B. Kim,³² J. H. Kim,¹³ Y. J. Kim,³¹ B. R. Ko,³² S. Korpar,^{37,25} P. Krizan,^{352,5} P. Krokovny,^{45,2} T. Kumita,⁷¹ A. Kuzmin,⁴⁵² Y. J. Kwon,⁷⁷ J. S. Lange,⁹ D. H. Lee,³² I. S. Lee,¹³ C. Li,³⁹ L. Li,⁵⁷ Y. Li,⁷⁴ J. Libby,¹⁹ D. Liventsev,^{74,15} P. Lukin,⁴⁵² D. Matvienko,⁴⁵² K. Miyabayashi,⁴⁵ H. Miyata,⁵¹ R. Mizuk,^{41,42} G. B. Mohanty,⁶³ S. Shohanty,^{63,3} A. Moll,^{38,64} H. K. Moon,³² T. Mori,⁴³ R. Mussa,²⁴ E. Nakano,⁵³ M. Nakao,^{15,11} T. Nanut,²⁵ Z. Natkaniee,⁴⁹ M. Nayak,¹⁹ N. K. Nisar,⁶³ S. Nishida,^{15,11} S. Ogawa,⁶⁶ P. Pakhlov,⁴¹ G. Pakhlova,⁴² B. Pal,⁷ C. W. Patk,⁶⁰ H. Park,^{37,44} S. Sohn,⁷⁷ A. Sokolov,²³ E. Solovieva,⁴² M. Starič,²⁵ M. Sumihama,¹⁰ T. Sumiyoshi,⁷¹ U. Tamponi,^{24,72} K. Tanida,⁵⁸ Y. Saudik,⁶⁷ Y. Savinov,

(The Belle Collaboration)

Research in progress to extract $\Phi_{q}^{\pi\pi}(z,\zeta,W^{2}), \cdots$.

$$\begin{aligned} \mathbf{Cross section for } \gamma \gamma^* \to \pi^0 \pi^0 \\ d\sigma &= \frac{1}{4\sqrt{(q \cdot q')^2 - q^2 q'^2}} (2\pi)^4 \delta^4 (q + q' - p - p') \sum_{\lambda,\lambda'} |\mathcal{M}|^2 \frac{d^3 p}{(2\pi)^3 2E} \frac{d^3 p'}{(2\pi)^3 2E} \\ q &= (q^0, 0, 0, |\vec{q}|), q' = (|\vec{q}|, 0, 0, -|\vec{q}|), q'^2 = 0 \text{ (real photon)} \\ p &= (p^0, |\vec{p}|\sin\theta, 0, |\vec{p}|\cos\theta), p = (p^0, -|\vec{p}|\sin\theta, 0, -|\vec{p}|\cos\theta) \\ \beta &= \frac{|\vec{p}|}{p^0} = \sqrt{1 - \frac{4m_\pi^2}{W^2}} \\ \frac{d\sigma}{d(\cos\theta)} &= \frac{1}{16\pi(s + Q^2)} \sqrt{1 - \frac{4m_\pi^2}{s}} \sum_{\lambda,\lambda'} |\mathcal{M}|^2 \\ \mathcal{M} &= \varepsilon_{\mu}^{\lambda}(q)\varepsilon_{\nu}^{\lambda'}(q')T^{\mu\nu}, T^{\mu\nu} = i\int d^4\xi e^{-i\xi q} \langle \pi(p)\pi(p')|TJ_{em}^{\mu}(\xi)J_{em}^{\nu}(0)|0\rangle \\ \mathcal{M} &= e^2 A_{\lambda\lambda'} = 4\pi\alpha A_{\lambda\lambda'} \\ A_{\lambda\lambda'} &= \frac{1}{e^2} \varepsilon_{\mu}^{\lambda}(q)\varepsilon_{\nu}^{\lambda'}(q')T^{\mu\nu} = -\varepsilon_{\mu}^{\lambda}(q)\varepsilon_{\nu}^{\lambda'}(q')g_T^{\mu\nu} \sum_{q} \frac{e_q^2}{2} \int_0^1 dz \frac{2z-1}{z(1-z)} \Phi_q^{\pi\pi}(z,\zeta,W^2) \\ A_{++} &= \sum_{q} \frac{e_q^2}{2} \int_0^1 dz \frac{2z-1}{z(1-z)} \Phi_q^{\pi\pi}(z,\zeta',W^2), \varepsilon_{\mu}^{+}(q)\varepsilon_{\nu}^{+}(q')g_T^{\mu\nu} = -1 \\ \frac{d\sigma}{d(\cos\theta)} &= \frac{\pi\alpha^2}{4(s+Q^2)} \sqrt{1 - \frac{4m_\pi^2}{s}} |A_{++}|^2 \end{aligned}$$

GDA parametrization for pion

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{4(s+Q^2)} \sqrt{1 - \frac{4m_\pi^2}{s}} |A_{++}|^2$$
$$A_{++} = \sum_q \frac{e_q^2}{2} \int_0^1 dz \frac{2z-1}{z(1-z)} \Phi_q^{\pi\pi}(z,\zeta,W^2)$$

- GDAs without intermediate-resonance contribution $\Phi_{q}^{\pi\pi}(z,\zeta,W^{2}) = N_{\pi}z^{\alpha}(1-z)^{\beta}(2z-1)\zeta(1-\zeta)F_{q}^{\pi}(s)$
- In addition, there exist resonance contributions to the cross section.

$$\sum_{q} \Phi_{q}^{\pi\pi}(z,\zeta,W^{2}) = 18N_{f}z^{\alpha}(1-z)^{\alpha}(2z-1) \Big[\tilde{B}_{10}(W) + \tilde{B}_{12}(W)P_{2}(\cos\theta) \Big]$$
$$\tilde{B}_{nl}(W) = \bar{B}_{nl}(W)\exp(i\delta_{l}), \quad P_{2}(x) = \frac{1}{2}(3x^{2}-1)$$
$$\tilde{B}_{10}(W) + \tilde{B}_{12}(W)P_{2}(\cos\theta) = B_{10}(W) + B_{12}(W)P_{2}(2\zeta-1)$$
$$B_{10}(0) = -B_{12}(0) = -\frac{10R_{\pi}}{9N_{f}}$$

 R_{π} = momentum fraction carried by quarks

 $\overline{B}_{10}(W) = \text{resonance } \left[f_0(500) \equiv \sigma, f_0(980) \equiv f_0 \right] + \text{continuum}$

including intermediate resonance contributions

$$B_{10}(0) = -B_{12}(0) = -\frac{m}{9N_{f}}$$

$$R_{\pi} = \text{momentum fraction carried by quarks}$$

$$\overline{B}_{10}(W) = \text{resonance } \left[f_{0}(500) \equiv \sigma, f_{0}(980) \equiv f_{0}\right] + \text{continuum}$$

$$= \frac{5g_{\sigma\pi\pi}f_{\sigma}M_{\sigma}\Gamma_{\sigma}/3}{(M_{\sigma}^{2} - W^{2})^{2} + \Gamma_{\sigma}^{2}M_{\sigma}^{2}} + \frac{5g_{f_{0}\pi\pi}f_{f_{0}}M_{f_{0}}\Gamma_{f_{0}}/3}{(M_{f_{0}}^{2} - W^{2})^{2} + \Gamma_{f_{0}}^{2}M_{f_{0}}^{2}} - \frac{3 - \beta^{2}}{2}\frac{10R_{\pi}}{9N_{f}}F_{q}^{\pi}(W^{2})$$

$$\overline{B}_{12}(W) = \text{resonance } \left[f_{2}(1270)\right] + \text{continuum} = \frac{10g_{f_{2}\pi\pi}f_{f_{2}}M_{f_{0}}^{2}\Gamma_{f_{2}}/9}{(M_{f_{2}}^{2} - W^{2})^{2} + \Gamma_{f_{2}}^{2}M_{f_{0}}^{2}} + \beta^{2}\frac{10R_{\pi}}{9N_{f}}F_{q}^{\pi}(W^{2})$$

$$\overline{B}_{12}(W) = \text{resonance } \left[f_{2}(1270)\right] + \text{continuum} = \frac{10g_{f_{2}\pi\pi}f_{f_{2}}M_{f_{2}}^{3}\Gamma_{f_{2}}/9}{(M_{f_{2}}^{2} - W^{2})^{2} + \Gamma_{f_{2}}^{2}M_{f_{2}}^{2}} + \beta^{2}\frac{10R_{\pi}}{9N_{f}}F_{q}^{\pi}(W^{2})$$

$$\overline{B}_{12}(W) = \text{resonance } \left[f_{2}(1270)\right] + \text{continuum} = \frac{10g_{f_{2}\pi\pi}f_{f_{2}}M_{f_{2}}^{3}\Gamma_{f_{2}}/9}{(M_{f_{2}}^{2} - W^{2})^{2} + \Gamma_{f_{2}}^{2}M_{f_{2}}^{2}} + \beta^{2}\frac{10R_{\pi}}{9N_{f}}F_{q}^{\pi}(W^{2})$$

$$\overline{B}_{12}(W) = \text{resonance } \left[f_{2}(1270)\right] + \text{continuum} = \frac{10g_{f_{2}\pi\pi}f_{f_{2}}M_{f_{2}}^{3}\Gamma_{f_{2}}/9}{(M_{f_{2}}^{2} - W^{2})^{2} + \Gamma_{f_{2}}^{2}M_{f_{2}}^{2}} + \beta^{2}\frac{10R_{\pi}}{9N_{f}}F_{q}^{\pi}(W^{2})$$

$$\overline{B}_{12}(W) = \text{resonance } \left[f_{2}(1270)\right] + \text{continuum} = \frac{10g_{f_{2}\pi\pi}f_{f_{2}}M_{f_{2}}^{3}\Gamma_{f_{2}}/9}{(M_{f_{2}}^{2} - W^{2})^{2} + \Gamma_{f_{2}}^{2}M_{f_{2}}^{2}} + \beta^{2}\frac{10R_{\pi}}{9N_{f}}F_{q}^{\pi}(W^{2})$$

Analysis of Belle data on $\gamma \gamma^* \rightarrow \pi^0 \pi^0$

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{4(s+Q^2)} \sqrt{1 - \frac{4m^2}{s}} |A_{++}|^2, \quad A_{++} = \sum_q \frac{e_q^2}{2} \int_0^1 dz \frac{2z-1}{z(1-z)} \Phi_q^{\pi\pi}(z,\zeta,W^2)$$

$$\Phi_q^{\pi\pi}(z,\zeta,W^2) = N z^{\alpha} (1-z)^{\alpha} (2z-1)^{\alpha} \Big[\tilde{B}_{10}(W) + \tilde{B}_{12}(W) P_2(\cos\theta) \Big], \quad \tilde{B}_{nl}(W) = \bar{B}_{nl}(W) \exp(i\delta_l)$$

$$\bar{B}_{10}(W) = \frac{5g_{\sigma\pi\pi} f_{\sigma} M_{\sigma} \Gamma_{\sigma} / 3}{(M_{\sigma}^2 - W^2)^2 + \Gamma_{\sigma}^2 M_{\sigma}^2} + \frac{5g_{f_0\pi\pi} f_{f_0} M_{f_0} \Gamma_{f_0} / 3}{(M_{f_0}^2 - W^2)^2 + \Gamma_{\sigma}^2 M_{\sigma}^2} - \frac{3-\beta^2}{2} \frac{10R_{\pi}}{9N_f} (1+aW^2) \Big[F_{\pi}(W^2) \Big]^m, \quad F_{\pi}(W^2) = \frac{1}{\Big[1+(W^2-4m_{\pi}^2)/\Lambda^2 \Big]^{n_{\pi}-1}}, \quad n_{\pi} = 2$$

$$\bar{B}_{12}(W) = \frac{10g_{f_2\pi\pi} f_{f_2} M_{f_2}^3 \Gamma_{f_2} / 9}{(M_{f_2}^2 - W^2)^2 + \Gamma_{f_2}^2 M_{f_2}^2} + \beta^2 \frac{10R_{\pi}}{9N_f} (1+bW^2) \Big[F_{\pi}(W^2) \Big]^m$$

 $Q^2 = 17.23, 24.25 \text{ GeV}^2$

Detailed results will be reported soon for publication.

Prospects & Summary

Experimental studies of GDAs in future

 $\gamma\gamma \rightarrow h\overline{h}$ for internal structure of exotic hadron candidate h

3D view of hadrons

Origin of nucleon spin ...

By the tomography, we determine

or

Search for exotic hadrons ...

It is difficult to determine whether or not a hadron is exotic by low-energy observables, masses, decay widths, ... (Already, history of a half century)

By the tomography, we determine

Summary

Hadron tomography studies are important for solving the origin of the nucleon spin, for probing internal structure of exotic hadrons.

GPDs / TMDs

Recently, GPDs and TMDs have been extensively investigated.

GDAs

3D structure of hadrons can be studied by GDAs ($s \Leftrightarrow t$ of GPDs). It is interesting to probe time-like form factors, and the GDAs can be also investigated for unstable (exotic) hadrons. Our analysis is the first trial to extract the GDAs from actual experimental measurements on $\gamma + \gamma^* \rightarrow \pi^0 + \pi^0$. We will provide our "optimum" GDAs for public use.

Experimental projects on GDAs KEKB, ILC, ...

The End

The End