Production cross sections of hyperons and charmed baryons from e+e- annihilation near Y(4S)

arXiv:1706.06791 [hep-ex]

M. Niiyama (Kyoto U.)

Baryon production rates in e⁺e⁻ collision

- $e^+e^- \rightarrow \gamma^* \rightarrow qq \rightarrow Haronization$
 - ex) $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda + anything$

Hadron production rates in e⁺e⁻ collision

- $e^+e^- \rightarrow \gamma^* \rightarrow qq \rightarrow Haronization$
 - ex) $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda + anything$
- Scale on exponential function: $\frac{\sigma}{\sigma_{had}(2J+1)} \propto \exp(-\alpha m_{had})$
- Different slope for mesons and baryons
 - quark counting?
 - what about "exotic" hadrons?
 - ∧(1405), Ξ(1530)

Baryon production rates in e⁺e⁻ collision

- Baryon production: color suppression to form colorsinglet combination among random quark colors
- Diquark-antidiquark production model can explain relatively high production rate
- Relativistic-string model

B. Andersson, G. Gustafson, T. Sjostrand, Physica Scripta 32, 574, 1985

Baryon production rates in e⁺e⁻ collision

- Higher rates for Λ and Λ(1520) in ARGUS and LEP.
- J=0, light (ud) diquark in Λ ?
 - R.L. Jaffe, Phys.Rept.409,1 (2005)
 - A. Selem, F. Wilczek, hep-ph/0602128
- Issues
 - Feed down is subtracted?
 - Large error in ARGUS results
 - How about charmed baryons?
- Study at Belle!

Belle data

Integrated luminosity

- : 562. fb⁻¹ @ on $\Upsilon(4S)$ resonance data for charmed baryons
- $(\sqrt{s} = 10.58 \text{ GeV})$: 79.3 fb⁻¹@ continuum data for hyperons, charmed baryons $(\sqrt{s} = 10.52 \text{ GeV})$

Mass spectra for hyperons

Reconstruction of S=-1 hyperons

Reconstruction of Ξ^- , Ω^- , Ω_c , Ξ_c

Mass spectra for charmed baryons

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (x_p). $x_p = p/\sqrt[3]{s/4} - M^2$ (M, p : mass and CM momentum)

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (x_p). $x_p = p/\sqrt[3]{s/4} - M^2$ (M, p : mass and CM momentum)

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (x_p). $x_p = p/\sqrt[3]{s/4} - M^2$ (M, p : mass and CM momentum)

Inclusive differential cross sections, charmed baryons

- In order to increase statistics, both of on Υ(4S) and continuum data are used.
- B-meson decay contribution concentrate in low x_p, and is eliminated by selecting x_p>0.44.

Absolute B.F. for Ω_c , Ξ_c is unknown.

15

Inclusive differential cross sections, charmed baryons

,16

. .

Inclusive differential cross sections, charmed baryons 0.03 dx 0.025 dv 0.025 dv (qu)_{0.035} (qu) ^d 0.45 (qu) ^d 0.45 0.35 (qu)_{0.045} (c) $\Lambda_c(2625)^{\dagger}$ +c.c. (d) $\Sigma_c (2455)^0 + c.c.$ (b) $\Lambda_c(2595)^+$ +c.c. $(a)\Lambda_{c}^{+}+c.c.$ d xp/Ωp 0.035 do/dxp • w/o radiative w/o radiative correction \circ w/ radiative 0.025 0.03 \circ w/ radiative 0.3 correction correction 0.015 0.02 0.025 0.25 0.2 Peaks around x_p~0.6-0.7 0.15 0.1 \rightarrow charm quarks are produced in e⁺e⁻ $\rightarrow \gamma^*$ \rightarrow CC. 0.05 $\overline{}_{(e) \Sigma_{c}(2)}$ Peak positions for heavier particles seem higher. ⁺+c.c. (qu) 0.025 ^dxp/ວp · w/o rad More energetic fragmentation process is w/ radia necessary to produce heavy particle? corr 0.015 ₩ 0.01 Total cross sections of excited states are obtained 0.005 0.7 by fitting Lund fragmentation model. 0.2

Comparison of visible cross section with previous measurements

Comparison of visible cross section with previous measurements

Feed-down subtracted (direct) cross section

Results for hyperons

21

Results for hyperons

Results of charmed baryons

Discussion

- Assuming that a c-quark picks up a diquark from vacuum,
 - Schwinger-like "tunnel effect" of diquark and antidiquark

 $\sigma \propto \exp(-\pi \mu^2/\kappa)$ μ : diquark mass κ : gluonic string tension

B. Andersson et al., Phys. Scripta. 32, 574 (1985)

- Λ_c : spin-0 light diquark ("good" diquark),
- Σ_c : spin-1 heavy diquark ("bad" diquark)
- Difference of production rates may be related with diquark structure in Λ_c and. Σ_c .

Discussion

- Assuming that a c-quark picks up a diquark from e=1 vacuum,
 - Schwinger-like "tunnel effect" of diquark and antidiquark

 $\sigma \propto \exp(-\pi \mu^2/\kappa)$ μ : diquark mass κ : gluonic string tension

B. Andersson et al., Phys. Scripta. 32, 574 (1985)

- Λ_c : spin-0 light diquark ("good" diquark),
- Σ_c : spin-1 heavy diquark ("bad" diquark)
- Difference of production rates may be related with diquark structure in Λ_c and. Σ_c .
- Quark model prediction by

T. Yoshida et al, PRD92, 114029 (2015) $\Lambda_c(2593)(1/2-)$ and $\Lambda_c(2625)(3/2-)$ are composed of $(qq)_{\ell=0}$ diquark with L=1 excitation relative to charm quark.

Discussion

- Assuming that a c-quark picks up a diquark from vacuum,
 - Schwinger-like "tunnel effect" of diquark and antidiquark

 $\sigma \propto \exp(-\pi \mu^2/\kappa)$ μ : diquark mass κ : gluonic string tension B. Andersson et al., Phys. Scripta. 32, 574 (1985)

- $\sigma(\Sigma_c)/\sigma(\Lambda_c) = 0.27 \pm 0.07$
 - mass difference of spin-1 and 0 diquarks

$$m(ud_1)^2 - m(ud_0)^2$$

= $(8.2 \pm 0.8) \times 10^4 \ (\text{MeV}/c^2)^2$
ref. $490^2 - 420^2 = 6.4 \times 10^4 \ (\text{MeV}/c^2)^2$

B. Andersson et al., Phys. Rept. 97, 31 (1983)

Slightly higher than reference but consistent with the spin-1/0 diquark mass difference!

Summary

- Production cross sections of hyperons and charmed baryons are measured near the Y(4S) energy using Belle data.
- $d\sigma/dx_p$ distributions for hyperons
 - Slightly higher Peak positions for Ω and $\Xi(1530)$
- $d\sigma/dx_p$ distributions for charmed baryons
 - Peak positions for heavier particles seem higher.
- "Inclusive" total cross sections for hyperons
 - Consistent with previous measurements with much higher precision
- Direct total cross sections
 - Clear exponential dependence on baryon masses
 - No enhancements for Λ , Λ (1520)
 - Suppression of decuplet hyperons and $\Sigma_{\rm c}$ family
 - Suggesting diquark structure in ground and low-lying $\Lambda_c,\,\Sigma_c$
- Next, exotic candidates, heavier Λ_c resonances ...
 - Input of absolute B.F. for Ξ_c is helpful