Production cross sections of hyperons and charmed
 baryons from e+e- annihilation near $r^{(4 S)}$
 arXiv:1706.06791 [hep-ex]

M. Niiyama (Kyoto U.)

Baryon production rates in $\mathrm{e}^{+} \mathrm{e}^{-}$collision

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \rightarrow \mathrm{qq} \rightarrow$ Haronization
- ex) $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \rightarrow \Lambda+$ anything

Hadron production rates in $\mathrm{e}^{+} \mathrm{e}^{-}$collision

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \rightarrow \mathrm{qq} \rightarrow$ Haronization
- ex) $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \rightarrow \Lambda+$ anything
- Scale on exponential function: $\underset{+}{\text { - }}$ $\frac{\sigma}{\sigma_{h a d}(2 J+1)} \propto \exp \left(-\alpha m_{h a d}\right)$
- Different slope for mesons and $\frac{0}{0}$ baryons
- quark counting?
- what about "exotic" hadrons?
- $\wedge(1405), ~ \Xi(1530)$

Baryon production rates in $\mathrm{e}^{+} \mathrm{e}^{-}$collision

- Baryon production: color suppression to form colorsinglet combination among random quark colors
- Diquark-antidiquark production model can explain relatively high production rate
- Relativistic-string model
B. Andersson, G. Gustafson, T. Sjostrand, Physica Scripta 32, 574, 1985

Baryon production rates in $\mathrm{e}^{+} \mathrm{e}^{-}$collision

- Higher rates for \wedge and $\wedge(1520)$ in ARGUS and LEP.
- J=0, light (ud) diquark in \wedge ?
- R.L. Jaffe, Phys.Rept.409,1 (2005)
- A. Selem, F. Wilczek, hep-ph/0602128
- Issues
- Feed down is subtracted?
- Large error in ARGUS results
- How about charmed baryons?
- Study at Belle!

Belle data

Aerogel Cerenkov

Integrated luminosity
: 562. fb-1 @ on $\Upsilon(4 \mathrm{~S})$ resonance data for charmed baryons

$$
(\sqrt{s}=10.58 \mathrm{GeV})
$$

: $79.3 \mathrm{fb}^{-1} @$ continuum data for hyperons, charmed baryons

$$
\left(\sqrt{\mathrm{S}}_{\mathrm{s}}=10.52 \mathrm{GeV}\right)
$$

Mass spectra for hyperons

Reconstruction of $S=-1$ hyperons

momentum

Reconstruction of $\Xi^{-}, \Omega^{-}, \Omega_{\mathrm{c}}, \Xi_{\mathrm{c}}$

Mass spectra for charmed baryons

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (X_{p}). $\mathrm{x}_{p}=p / \sqrt{s / 4-M^{2}}$ (M, p : mass and CM momentum)

Error bar represent statistical fluctuation.

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (X_{p}). $\mathrm{x}_{p}=p / \sqrt{s / 4-M^{2}}$ (M, p : mass and CM momentum)

Error bar represent statistical fluctuation.

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (X_{p}). $\mathrm{x}_{p}=p / \sqrt{s / 4-M^{2}}$ (M, p : mass and CM momentum)

Error bar epresent tatistical muctuation

Inclusive differential cross sections, charmed baryons

- In order to increase statistics, both of on $\Upsilon(4 \mathrm{~S})$ and continuum data are used.
- B-meson decay contribution concentrate in low x_{p}, and is eliminated by selecting $x_{p}>0.44$.

Inclusive differential cross sections, charmed baryons

 Sum of on $\Upsilon(4 \mathrm{~S})$ and continuum

 Sum of on $\Upsilon(4 \mathrm{~S})$ and continuum}

Absolute B.F. for $\Omega_{c^{\prime}} \bar{\Xi}_{\mathrm{c}}$ is unknown.

Inclusive differential cross sections, charmed baryons

${\underset{c}{x_{0}^{2}}}_{0.025}^{0.03}(\mathrm{~d}) \sum_{\mathrm{c}}(2455)^{0}+\mathrm{c} . \mathrm{c}$.

Inclusive differential cross sections, charmed baryons

Comparison of visible cross section with previous measurements

Comparison of visible cross section with previous measurements

Feed-down subtracted (direct) cross section

Results for hyperons

Results for hyperons

Results of charmed baryons

Discussion

- Assuming that a c-quark picks up a diquark from vacuum,
- Schwinger-like "tunnel effect" of diquark and antidiquark

- Difference of production rates may be related with diquark structure in \wedge_{c} and. Σ_{c}.

Discussion

- Assuming that a c-quark picks up a diquark from $\ell=1$
vacuum,
- Schwinger-like "tunnel effect" of diquark and antidiquark
$\sigma \propto \exp \left(-\pi \mu^{2} / \kappa\right)$
μ : diquark mass
κ : gluonic string tension
B. Andersson et al., Phys. Scripta. 32, 574 (1985)
- \wedge_{c} : spin-0 light diquark ("good" diquark),
- Σ_{c} : spin-1 heavy diquark ("bad" diquark)

ρ-MODE

λ-MODE
- Difference of production rates may be related with diquark structure in \wedge_{c} and. Σ_{c}.
- Quark model prediction by
T. Yoshida et al, PRD92, 114029 (2015)
$\wedge_{c}(2593)(1 / 2-)$ and $\wedge_{c}(2625)(3 / 2-)$
are composed of (qq) $)_{\ell=0}$ diquark with $\mathrm{L}=1$ excitation relative to charm quark.

T. Yoshida et al PRD92, 114029 (2015)

Discussion

- Assuming that a c-quark picks up a diquark from vacuum,
- Schwinger-like "tunnel effect" of diquark and antidiquark
$\sigma \propto \exp \left(-\pi \mu^{2} / \kappa\right) \quad \begin{aligned} & \mu: \text { diquark mass } \\ & \kappa \text { : gluonic string tension }\end{aligned}$ B. Andersson et al., Phys. Scripta. 32, 574 (1985)
- $\sigma\left(\Sigma_{c}\right) / \sigma\left(\wedge_{c}\right)=0.27 \pm 0.07$
- mass difference of spin-1 and 0 diquarks

$$
\begin{aligned}
& \qquad \begin{array}{r}
m\left(u d_{1}\right)^{2}-m\left(u d_{0}\right)^{2} \\
=(8.2 \pm 0.8) \times 10^{4}\left(\mathrm{MeV} / c^{2}\right)^{2} \\
\text { ref. } \quad 490^{2}-420^{2}=6.4 \times 10^{4}\left(\mathrm{MeV} / c^{2}\right)^{2} \\
\text { B. Andersson et al., Phys. Rept. 97,31(1983) }
\end{array} .
\end{aligned}
$$

- Slightly higher than reference but consistent with the spin-1/0 diquark mass difference!

Summary

- Production cross sections of hyperons and charmed baryons are measured near the $\gamma(4 \mathrm{~S})$ energy using Belle data.
- $d \sigma / d x_{p}$ distributions for hyperons
- Slightly higher Peak positions for Ω - and $\equiv(1530)$
- $d \sigma / d x_{p}$ distributions for charmed baryons
- Peak positions for heavier particles seem higher.
- "Inclusive" total cross sections for hyperons
- Consistent with previous measurements with much higher precision
- Direct total cross sections
- Clear exponential dependence on baryon masses
- No enhancements for $\wedge, ~ \wedge(1520)$
- Suppression of decuplet hyperons and Σ_{c} family
- Suggesting diquark structure in ground and low-lying $\wedge_{c^{\prime}} \Sigma_{c}$
- Next, exotic candidates, heavier \wedge_{c} resonances ...
- Input of absolute B.F. for $\bar{\Xi}_{c}$ is helpful

